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Abstract

Sentence Representation Learning (SRL) is a fundamental
task in Natural Language Processing (NLP), with the Con-
trastive Learning of Sentence Embeddings (CSE) being the
mainstream technique due to its superior performance. An
intriguing phenomenon in CSE is the significant performance
gap between supervised and unsupervised methods, with their
only difference lying in the training data. Previous works at-
tribute this performance gap to differences in two represen-
tation properties (alignment and uniformity). However, since
alignment and uniformity only measure the results, they fail
to answer “What aspects of the training data contribute to the
performance gap?” and “How can the performance gap be
narrowed?”. In this paper, we conduct empirical experiments
to answer these “What” and “How” questions. We first an-
swer the “What” question by thoroughly comparing the be-
havior of supervised and unsupervised CSE during their re-
spective training processes. From the comparison, we iden-
tify the similarity pattern as a key factor to the performance
gap, and introduce a metric, called Relative Fitting Difficulty
(RFD), to measure the complexity of the similarity pattern.
Then, based on the insights gained from the “What” ques-
tion, we tackle the “How” question by increasing the pattern
complexity of the training data. We achieve this by leveraging
the In-Context Learning (ICL) capability of the Large Lan-
guage Model (LLM) to generate data that simulates complex
patterns. By utilizing the hierarchical patterns in the LLM-
generated data, we effectively narrow the gap between su-
pervised and unsupervised CSE. We release our codes and
appendix at https://github.com/BDBC-KG-NLP/NGCSE.

Introduction
Sentence Representation Learning (SRL) is a crucial task in
Natural Language Processing (NLP), which learns represen-
tations (or embeddings) for sentences in the feature space.
It is a fundamental task that underpins many NLP applica-
tions, including Semantic Textual Similarity (STS) (Wang
and Isola 2020), Information Retrieval (IR) (Cer et al. 2018),
and text classification (Pang and Lee 2004). Contrastive
learning of Sentence Embeddings (CSE) has been recently
introduced into SRL (Yan et al. 2021; Gao, Yao, and Chen
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Figure 1: RFDu-RFDa plot of models based on BERTbase.
The colors of the points and the numbers in brackets rep-
resent Spearman’s correlation in the evaluation data, i.e.,
the validation split of STS Benchmark dataset. RFD is a
metric we propose to measure the complexity of the simi-
larity pattern in the training data. This metric helps us an-
swer the “What” question and further leads us to address the
“How” question. “�” is trained with unsupervised data, “ ”
is trained with supervised data, and “F” is trained with data
generated from the LLM.

2021) and has drawn much attention as it significantly im-
proves the performance of sentence embeddings. CSE can
be trained in both supervised and unsupervised settings,
where the primary difference is the training data. However,
with only this difference, supervised CSE can outperform
unsupervised CSE on STS tasks by a large margin. Gao,
Yao, and Chen (2021) explain this performance gap by re-
ferring to two properties (alignment and uniformity) from
(Wang and Isola 2020). Specifically, compared to the rep-
resentations trained by the unsupervised method, they find
that the representations trained by supervised data exhibit
better alignment, uniformity or both (as shown in Figure 2),
thereby resulting in better performance on STS tasks. This
explanation still rests on the final results, and cannot explain
the mechanism that led to these results. In this paper, we
focus on the training data and its relationship with the per-
formance gap. Specifically, we pose two questions: “What
aspects of the training data contribute to the performance
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gap?” and “How can the performance gap be narrowed?”,
and answer them with empirical experiments in this study.

To answer the “What” question, we record the variety of
alignment and uniformity in the training processes of both
supervised and unsupervised CSE, where we identify the
similarity pattern, i.e., how a dataset defines similar and dis-
similar sentence pairs, as a key factor to the performance
gap. The more complex the similarity pattern of a training
dataset, the higher the performance that training with such
a dataset can yield. We also find that the complexity of the
similarity pattern (pattern complexity for short) can be mea-
sured by the relative magnitude of alignment and unifor-
mity between the training data and the evaluation data. More
specifically, the similarity pattern of the supervised training
data is more difficult to fit than that of the evaluation data,
resulting in higher alignment and uniformity values in the
training data than those in the evaluation data. In contrast,
the similarity pattern of the unsupervised training data is
simpler to fit, resulting in lower alignment and uniformity
values. Therefore, we define a metric called Relative Fitting
Difficulty (RFD) to measure the pattern complexity and pro-
vide the answer to the “What” question: the increase of the
pattern complexity leads to the performance gap between
supervised and unsupervised CSE.

Based on the insight gained from answering the “What”
question, we answer the “How” question by introducing
complex similarity patterns into the unsupervised train-
ing data. This is achieved by leveraging the In-Context
Learning (ICL) capability of the Large Language Model
(LLM) (Brown et al. 2020) to simulate the similarity pat-
terns in STS (Agirre et al. 2012) and NLI (Gao, Yao, and
Chen 2021) datasets. Furthermore, we notice the hierarchi-
cal nature of the STS dataset, where the semantic similar-
ity between two sentences is measured with a score ranging
from 0 to 5, rather than simply classified as similar or dis-
similar. This finding motivates us to simulate the hierarchi-
cal pattern of the STS dataset. And to utilize the hierarchical
pattern, we propose a loss called Hierarchical Triplet (HT)
loss to ensure that such a pattern can be learned during train-
ing, which helps us further narrow the performance gap.

Briefly, our main contributions are as follows:

• We propose a new metric, i.e., Relative Fitting Difficulty
(RFD), to measure the complexity of the similarity pat-
tern and demonstrate that the higher RFDs on both align-
ment and uniformity correlate with better performance
on STS tasks;

• We narrow the performance gap on STS tasks between
supervised and unsupervised CSE by introducing the
training data with complex similarity patterns, which is
obtained by the ICL capability of LLMs, and introduce a
novel loss function called Hierarchical Triplet (HT) loss
to utilize the hierarchical patterns effectively;

• We conduct extensive further experiments to validate our
findings on RFDs and to verify the effectiveness of our
proposed methods in narrowing the performance gap.
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Figure 2: Uniformity-alignment plot of models based on
BERTbase. The colors of the points and the numbers in
brackets represent Spearman’s correlation in the validation
split of STS Benchmark dataset. “N” is the pre-trained
model, “�” is trained with unsupervised data, and “ ” is
trained with supervised data.

Background
In this section, we first detail the differences in training and
performance between supervised and unsupervised CSE to
help readers understand the background better, and then give
some notations for the convenience of the later narrative.

Performance Gap on the STS Tasks
Contrastive learning of Sentence Embeddings (CSE) (Yan
et al. 2021; Gao, Yao, and Chen 2021) is a prevalent tech-
nique in SRL for its superior performance. CSE refines the
sentence embeddings in two ways: 1) pulling the anchor sen-
tence si and its semantically similar sentence (or positive
sentence spi ) closer; 2) pushing the anchor sentence si and
its semantically dissimilar sentence (or negative sentence
sni ) apart. The commonly used contrastive learning loss, In-
foNCE (Oord, Li, and Vinyals 2018), can be expressed as

LC = − log
ef(si)

>f(spi )/τ

ef(si)>f(s
p
i )/τ +

∑N
j=1 e

f(si)>f(sni,j)/τ
, (1)

where τ is a hyper-parameter and {sni,j}Nj=1 is a set of nega-
tive sentences corresponding to si.

There are two settings of CSE, namely Supervised CSE
(S-CSE) and Unsupervised CSE (U-CSE). Many improve-
ments have been proposed based on both S-CSE and U-
CSE (Jiang et al. 2022; Wu et al. 2022), but we focus on the
typical paradigm in this study. For U-CSE, the augmented
view of si is treated as its positive sentence spi , and a ran-
domly sampled sentence is treated as its negative sentence
sni . The common data augmentation methods used to gener-
ate this augmented view include dropout, token shuffle, and
token cutoff (Yan et al. 2021). U-CSE is typically trained
with a Wikipedia dataset (Gao, Yao, and Chen 2021), con-
sisting of one million sentences extracted from Wikipedia.
For S-CSE, it relies on human-annotated spi and sni , with
the supervision signal from the Natural Language Infer-
ence (NLI) task (Conneau et al. 2017). Specifically, given
a premise, the entailment hypothesis is treated as spi and
the contradiction hypothesis is treated as sni . Gao, Yao, and
Chen (2021) collect a widely used NLI dataset (Gao, Yao,
and Chen 2021) for CSE.
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The performance of CSE is usually evaluated with the
SentEval toolkit (Conneau and Kiela 2018), which includes
the STS tasks and the transfer tasks. The STS task quan-
tifies the semantic similarity between two sentences with
a score ranging from 0 to 5 and takes Spearman’s corre-
lation as the metric for performance. There are seven STS
datasets are included for evaluation: STS 2012-2016 (Agirre
et al. 2012, 2013, 2014, 2015, 2016), STS Benchmark (Cer
et al. 2017), SICK Relatedness (Marelli et al. 2014). The
transfer tasks evaluate the transfer capability of sentence
embeddings by performing logistic regression. There are
also seven datasets included for the evaluation of transfer
task: MR (Pang and Lee 2005), CR (Hu and Liu 2004),
SUBJ (Pang and Lee 2004), MPQA (Wiebe, Wilson, and
Cardie 2005), SST-2 (Socher et al. 2013), TREC (Voorhees
and Tice 2000), and MRPC (Dolan and Brockett 2005).

Both S-CSE and U-CSE exhibit strong performance in the
transfer tasks, but there exists a significant performance gap
in the STS task, even when the sole difference between them
lies in the training data. Gao, Yao, and Chen (2021) borrow
two properties, alignment and uniformity, from the empirical
work of Wang and Isola (2020) to better understand it, and
the two properties can be expressed as

Lalign , E
(s,sp)∼ppos

‖f(s)− f(sp)‖α2 (2)

Luniform , log E
(si,sj)

i.i.d.∼ pdata
e−t‖f(si)−f(sj)‖

2
2 (3)

where α and t are two hyper-parameters, ppos is the distribu-
tion of positive sentence pairs, and pdata is the distribution of
sentences. These properties measure the quality of the sen-
tence embeddings. Gao, Yao, and Chen (2021) has shown
that the performance gap results from the better alignment
and uniformity of S-CSE in comparison to U-CSE (as shown
in Figure 2). This explains the result of the performance gap,
but does not shed light on the question of “What aspects of
the training data contribute to the performance gap?”. In this
study, we seek to answer this “What” question. Furthermore,
based on the insights from the “What” question, we will ex-
plore “How can the performance gap be narrowed?”.

Notation

We conduct experiments under various training data settings
to study how the training data affects the performance of
CSE. To maintain consistency, we organize all settings us-
ing the same naming format: “[Data-Domain].[Similarity-
Pattern]”, where [Data-Domain] represents how the anchor
sentences are collected, and [Similarity-Pattern] represents
how the positive and negative sentences are defined. Two
data domains are included: (1) Wiki, consisting of sentences
from Wikipedia (Gao, Yao, and Chen 2021); (2) NLI, con-
sisting of the premises from the NLI dataset (Gao, Yao, and
Chen 2021). And similarity patterns are divided into three
types, including supervision signals (denoted as SUP), data
augmentations, and our proposed pattern simulation tech-
niques, which will be explained in later sections.

What Aspects of the Training Data Contribute
to the Performance Gap?
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Figure 3: Alignment and uniformity in both the held-out
training data and the evaluation data during the training pro-
cess. We only plot the results of “NLI.SUP”, “NLI.dropout”,
and “Wiki.dropout” here for comparison. The results of
“token shuffle” and “token cutoff” are similar to those of
“dropout”, so we plot them in the appendix.

Observation in the Training Process
In this section, we study how the training data affects the
performance of CSE. To ensure the results are only cor-
related with training data, we select pre-trained BERTbase

model (Devlin et al. 2019) as the backbone and ensure iden-
tical settings across all training, with details illustrated in
the appendix. Then, we record changes in alignment and
uniformity in both the training and evaluation data during
the training process and observe how these changes vary be-
tween S-CSE and U-CSE. Note that the widely-used training
data for S-CSE (“NLI.SUP”) and U-CSE (“Wiki.dropout”,
“Wiki.token cutoff”, “Wiki.token shuffle”) differ in both
their data domains and similarity patterns. To study the
impact of these two factors separately, we introduce three
additional training data settings to U-CSE: “NLI.dropout”,
“NLI.token cutoff”, and “NLI.token shuffle”. Part of the re-
sults are shown in Figure 3.

We first fix the similarity pattern to investigate the im-
pact of the data domain, e.g., comparing “NLI.dropout” with
“Wiki.dropout”. The results in Figures 2 and 3 show that the
performance of the STS task and the trends in alignment and
uniformity are similar across different data domains, indicat-
ing that the data domain does not influence the performance
significantly. Next, we fix the data domain to investigate the
impact of the similarity pattern, e.g., comparing “NLI.SUP”
with “NIP.dropout”. From the comparison, we can observe
the performance gap in Figure 2, indicating that the similar-
ity pattern is a key factor in such phenomenon. Furthermore,
Figure 3 shows that the changes in alignment and unifor-
mity during the training process in S-CSE are quite different
from those in U-CSE. Specifically, S-CSE exhibits higher
alignment and uniformity values in the held-out training data
than those in the evaluation data. In contrast, U-CSE exhibits
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lower alignment and uniformity values in the held-out train-
ing data than those in the evaluation data. We argue that this
difference in the training process, in fact, reflects the dif-
ference in the complexity of the similarity pattern (pattern
complexity for short).

Relative Fitting Difficulty
The similarity pattern in S-CSE, which is defined by su-
pervision signals, is far more complex than the similarity
pattern in U-CSE, which is defined by data augmentations.
Moreover, the similarity pattern in S-CSE training data is
more difficult to fit than that of the evaluation data, while
the similarity pattern in U-CSE training data is simpler to fit
than that of the evaluation data. This difference in the pat-
tern complexity results in the difference in the training pro-
cess between S-CSE and U-CSE. Therefore, we introduce a
metric called Relative Fitting Difficulty (RFD) to act as an
indicator of the pattern complexity. RFD is defined as the
difference in fitting difficulty between the held-out training
data and the evaluation data, i.e., the relative magnitude of
alignment and uniformity between the held-out training data
and the evaluation data during the training process.

Let the alignment and uniformity of a sentence encoder
f at time step t in the held-out training data be denoted
by ah(f, t) and uh(f, t), while those in the evaluation data
be denoted by ae(f, t) and ue(f, t). We can then define the
RFD for alignment over a set of time steps T = {ti}Mi=1 as

RFDa(f, T ) =
1

M

M∑
i=1

ah(f, ti)− ae(f, ti), (4)

and the RFD for uniformity as

RFDu(f, T ) =
1

M

M∑
i=1

uh(f, ti)− ue(f, ti). (5)

We calculate the RFD for the six U-CSE settings and one
S-CSE setting mentioned in the last subsection, and present
the results in Figure 1 using “�” and “ ”. By comparing the
results within each data domain, we can observe two facts:
(1) when one setting has both lower RFDa and RFDu val-
ues than another setting, it will have lower performance in
the STS task accordingly; (2) When either RFDa or RFDu

value increases, the performance in the STS task tends to im-
prove. These observations show a tendency that higher RFD
values correspond to better performance. In other words,
compared to U-CSE, S-CSE has higher fitting difficulty in
alignment and uniformity, i.e., higher pattern complexity,
which leads to better performance in the STS task. In fact,
we conjecture it may be the answer to the what question.

However, this answer is drawn from only seven points in
two data domains. If we need to get this answer more con-
clusive, we need to experiment under more settings and to
get more RFD coordinates and their corresponding STS task
performance. Therefore, in the next section, we will intro-
duce some artificial settings and explore the correlation be-
tween their RFDs and STS performance to further corrobo-
rate the conclusions of this section.

How Can the Performance Gap Be Narrowed?
In this section, we answer the “How” based on the insights
gained from the “What”. At the same time, we will provide
additional validation for our answer to the “What” question.

Pattern Simulation With LLM
Our answer to the “What” question reveals the correlation
between the pattern complexity in training data and the STS
task performance. Therefore, to narrow the performance
gap, we propose to increase the RFD of U-CSE by intro-
ducing complex similarity patterns (patterns for short) into
U-CSE. To realize this, we leverage the In-Context Learn-
ing (ICL) (Brown et al. 2020) capability of LLM to sim-
ulate the patterns in NLI and STS datasets. We adopt the
gpt-3.5-turbo-0613 as the LLM through the official
API 1 from OpenAI with default parameters.

Figure 4 illustrates the overall procedure of pattern sim-
ulation and dataset generation. The datasets are generated
from two types of sources: a corpus source and a pattern
source. For the corpus source, we consider the two data do-
mains used in the previous experiments: (1) Wiki, which
consists of sentences from Wikipedia, and (2) NLI, which
consists of the premises from the NLI dataset. For the pat-
tern source, we also consider two classes of patterns: (1)
STS patterns, which adopt the training split of the STS12
dataset (Agirre et al. 2012) as the source of patterns, and (2)
NLI patterns, which adopt the same NLI dataset as previ-
ously as the source patterns.

When generating datasets, we randomly sample 20,000
sentences from the corpus source and use the LLM to simu-
late STS and NLI patterns separately. We refer to these sen-
tences as source sentences. For every source sentence si, we
subsequently generate a positive sentence spi and a negative
sentence sni using the following process:

1. Sampling Pattern Example: To simulate STS patterns,
We randomly sample three sentence pairs with STS
scores above 4 as examples for the pattern of positive
sentence pairs (referred to as positive examples), and
three sentence pairs with STS scores below 1 as examples
for the pattern of negative sentence pairs (referred to as
negative examples). Similarly, to simulate NLI patterns,
we randomly sample three premises and their entailment
hypotheses as positive examples, and three premises and
their contradiction hypotheses as negative examples;

2. Generating Positive Sentence spi : To generate spi that
simulates STS patterns, we prompt the LLM with posi-
tive examples to generate a sentence that is semantically
similar to si. And to generate spi that simulate NLI pat-
terns, we prompt the LLM with positive examples to gen-
erate a sentence that is an entailment hypothesis to si;

3. Generating Negative Sentence sni : To generate sni that
simulates STS patterns, we prompt the LLM with neg-
ative examples to generate a sentence with a distinct
meaning compared to spi . And to generate sni that sim-
ulate NLI patterns, we prompt the LLM with negative
examples to generate a sentence that contradicts spi .

1https://openai.com/api
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Figure 4: The procedure of pattern simulation and pattern utilization. We simulate the STS and NLI patterns separately with the
ICL capability of the LLM. Then, we adopt a combination of contrastive loss and HT loss proposed by us to utilize the pattern.
The prompt consists of three examples randomly sampled from the pattern source and its detail is shown in the appendix.

The data generated in these processes is called “LLM-
generated data” for simplicity. We combine the LLM-
generated data with the remaining sentences in the source
corpus to form hybrid datasets, resulting in a total of four
hybrid datasets. We name the training data settings of these
four datasets by: “Wiki.STS”, “Wiki.NLI”, “NLI.STS”, and
“NLI.NLI”. Note that (1) For “Wiki.NLI” and “NLI.NLI”,
the supervision signals in the NLI dataset are used; (2) For
“NLI.STS”, we only utilize the premises, which do not con-
tain any supervision signals in the NLI dataset.

Then we employ the four training data settings to perform
CSE under the same setting as in the Observation section.
This allows us to examine whether the introduced complex
patterns can help narrow the performance gap between S-
CSE and U-CSE. Additionally, we calculate both RFDa and
RFDu for all four settings to further validate our answer to
the “What” question. The results are plotted in Figure 1 us-
ing “F”. From the results, it is evident that all the results
trained by the hybrid datasets outperform the U-CSE, indi-
cating success in narrowing the performance gap. Moreover,
all of these new settings exhibit larger RFD values (RFDa

or RFDu or both) compared to U-CSE, which indicates that
we indeed introduce complex patterns to the training data
that lead to an increase in performance. Also, these obser-
vations can be viewed as evidence to support our answer to
the“What” question.

Pattern Utilization With Hierarchical Triplet Loss
In the previous subsection, we have managed to narrow
the performance gap to some extent. However, there is still
something not being fully utilized, which is the hierarchical
nature of the STS patterns. Instead of defining the positive
sentence pair and negative sentence pair, the STS task adopts
a score ranging from 0 to 5 to reflect the semantic similarity
between two sentences, which makes the similarity pattern
in STS dataset hierarchical. To maintain such hierarchical
nature of STS patterns, we revise our process of pattern sim-
ulation (as shown in Figure 4). Specifically, we prompt the

LLM to generate an intermediate sentence smi which con-
tains the less details compared to the positive sentence spi ,
and we randomly sample three sentences from the source of
STS patterns with STS scores between 1 and 4 as examples
in the prompt. Then, we propose a method to utilize all three
sentences spi , smi and sni by adopting a sequence of triplet
losses. This approach ensures that the hierarchical pattern
can be learned by the sentence encoder. We refer to this loss
as the Hierarchical Triplet (HT) loss, and we provide its for-
mal definition below.

For a source sentence si and the three sentences generated
based on it spi , smi and sni , the HT loss is defined as

LHT =
1

2
(max(f(si)

>f(smi )− f(si)>f(s
p
i ) +m1, 0)+

max(f(si)
>f(sni )− f(si)>f(smi ) +m2, 0)),

(6)

where m1,m2 are two hyper-parameters that control the
margin of the triplet loss, and f is the sentence encoder that
maps sentences into a hypersphere. The HT loss is combined
with the contrastive loss 1 to form the final loss:

L = LC + βLHT, (7)

where β is a hyper-parameter controls the weight of LHT.
Note that LHT is calculated only on the LLM-generated
data, which covers 20,000 instances in the hybrid dataset.

We perform CSE with this final loss on “Wiki.STS”
and “NLI.STS” under the same setting as in the Ob-
servation section, These training settings are denoted as
“Wiki.STS HT” and “NLI.STS HT” respectively. For all
settings in this section, we set m1 = 5e − 3, m2 = 1e − 2
and β = 1. Similarly, we calculate the RFD of these set-
tings and plot the results in Figure 1 using F points. It can
be observed that training with LHL increases both RFDa

and RFDu, and then improves the performance. The rise
of RFD values can be explained as follows: the common
pattern only determines which sentence pair is similar and
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Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Supervised methods

InferSent† 52.86 66.75 62.15 72.77 66.87 68.03 65.65 65.01
SBERT† 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
ConSERT* 74.07 83.93 77.05 83.66 78.76 81.36 76.77 79.37
SimCSE* 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
PromptBERT† 75.48 85.59 80.57 85.99 81.08 84.56 80.52 81.97

Unsupervised methods

BERT-whitening‡ 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
ConSERT* 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
SimCSE* 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
PromptBERT† 71.56 84.58 76.98 84.47 80.60 81.60 69.87 78.54
InfoCSE‡ 70.53 84.59 76.40 85.10 81.95 82.00 71.37 78.85

LM-based methods

Dino§ 72.61 81.92 75.09 80.42 76.26 77.10 70.43 76.26
CLAIF§ 70.62 81.51 76.29 85.05 81.36 84.34 78.22 79.63

Our methods

Wiki.STS HT 72.46±0.15 84.88±0.40 77.80±0.63 83.85±0.66 81.11±0.44 81.90±0.18 76.56±0.26 79.79±0.23

NLI.STS HT 72.94±0.19 84.32±0.27 77.71±0.29 84.20±0.40 80.85±0.27 82.21±0.19 78.04±0.35 80.02±0.22

Table 1: Spearman’s correlation on STS Tasks. All models adopt BERTbase as the backbone. †: results from (Jiang et al. 2022),
‡: results from (Wu et al. 2022), §: results from (Cheng et al. 2023), *: results from their original paper. We bold the highest
results among all models and underline the highest results among the models that are not supervised.

dissimilar, while the hierarchical pattern determines which
sentence pair is more similar and dissimilar than another. In
other words, the hierarchical pattern extends the ideas of the
common pattern, thereby increasing the pattern complexity
and raising RFD values.

Through the above subsections, we significantly narrow
the performance gap between S-CSE and U-CSE. We now
provide our answer to the “How” question: By utilizing the
ICL capability of LLM, we can simulate the patterns in the
NLI and STS datasets, thereby introducing complex patterns
to the unsupervised training dataset. This process narrows
the performance gap to some extent. Subsequently, we thor-
oughly exploit the hierarchical patterns in the STS dataset
with the HT loss, further narrowing the performance gap.

Final Performance
In this section, we compare our methods with various well-
known and state-of-the-art baselines:
Unsupervised baselines include a post-processing method,
BERT-whitening (Su et al. 2021), as well as contrastive
learning methods like ConSERT (Yan et al. 2021), Sim-
CSE (Gao, Yao, and Chen 2021),PromptBERT (Jiang et al.
2022), and InfoCSE (Wu et al. 2022).
Supervised baselines include some traditional super-
vised methods such as InferSent (Conneau et al. 2017),
SBERT (Reimers and Gurevych 2019), and some of the con-
trastive learning methods mentioned above, which can also
be utilized in a supervised setting.
LM-based baselines includes Dino (Schick and Schütze
2021), which generates training data with the Pre-trained

Language Model (PLM), and CLAIF (Cheng et al. 2023),
which generates training data with the LLM.

In the previous sections, all experiments were conducted
under the same settings for a fair comparison. While in
this section, we run the “Wiki.STS HT” and “NLI.STS HT”
training settings under a group of hyper-parameters and de-
cide the best combination of hyper-parameters with the eval-
uation data, i.e., the validation split STS Benchmark dataset.
The details are provided in the appendix. We get sentence
embeddings following Jiang et al. (2022) to achieve bet-
ter and more stable performance. We evaluate our method
following the standard evaluation protocol mentioned in
the Background section and compare our method with
the baselines on the STS tasks in Table 1 (with BERTbase

as backbone) and 2 (with RoBERTabase (Liu et al. 2019)
as backbone). By comparing our method with both su-
pervised and unsupervised baselines, we observe that al-
though our method is still inferior to state-of-the-art super-
vised methods, it outperforms all unsupervised baselines by
a large margin. This indicates that we successfully narrow
the performance gap between supervised and unsupervised
CSE. When compared to data-generation-based methods,
our method outperforms them by generating only 20,000 in-
stances, which is significantly fewer than them.

Further Study
In this section, we investigate how each component of our
method impacts the performance, and how the embeddings
transfer to the downstream tasks. We conduct the experi-
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Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

SRoBERTa† 71.54 72.49 70.80 78.74 73.69 77.77 74.46 74.21
SimCSE* 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52
PromptRoBERTa† 76.75 85.93 82.28 86.69 82.80 86.14 80.04 82.95

RoBERTa-whitening† 57.83 63.24 57.23 71.36 68.99 61.36 62.91 61.73
SimCSE* 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
PromptRoBERTa† 73.94 84.74 77.28 84.99 81.74 81.88 69.50 79.15

Dino§ 71.24 81.55 75.67 81.42 78.77 80.10 71.31 77.15
CLAIF§ 68.33 82.26 77.00 85.18 83.43 85.05 78.02 79.90

Wiki.STS HT 75.68±0.41 84.97±0.63 78.08±0.69 84.82±0.23 83.41±0.37 83.79±0.25 77.66±0.20 81.20±0.21

NLI.STS HT 74.54±0.51 85.10±0.42 79.10±0.15 85.48±0.19 82.93±0.28 83.87±0.17 78.31±0.27 81.33±0.09

Table 2: Spearman’s correlation on STS Tasks. All models adopt RoBERTabase as the backbone. †: results from (Jiang et al.
2022), §: results from (Cheng et al. 2023), *: results from their original paper. We bold the highest results among all models
and underline the highest results among the models that are not supervised.

ments on “Wiki.STS HT” with BERTbase as the backbone.
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(a) The average Spearman’s correlation on STS tasks w.r.t the num-
ber of LLM-generated data in the hybrid training dataset.
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(b) The average Spearman’s correlation on STS tasks w.r.t the mar-
gins (m1 and m2) in HT loss.

Figure 5: The study of hyper-parameters.

The Number of LLM-Generated Data
In this section, we want to investigate the impact of the num-
ber, which is 20,000 previously, of LLM-generated data on
performance. To this end, We run our method under different
numbers of LLM-generated data and plot the results in Fig-
ure 5a. From this figure, we can observe a scaling effect that
as the number of LLM-generated data increases, the perfor-
mance of our method tends to improve.

The Margins of HT Loss
There are two margins in the HT loss, m1 and m2. In pat-
tern simulation, both spi and smi can be regarded as positive

samples to the source sentence. As such, we set a small m1

to ensure that the distance between f(spi ) and f(smi ) is not
large when learning their hierarchical pattern. Conversely,
sni can be treated as a negative sample to the source sen-
tence, so we set a large m2 to ensure that the distance be-
tween f(smi ) and f(sni ) is sufficiently large when learning
their hierarchical pattern. In this section, we invert these set-
tings to investigate the impact of a large m1 and small m2

on performance. The results are plotted in Figure 5b, and
they conform to our expectation that large m1 and small m2

would adversely affect the performance.

Avg.
Wiki.STS 79.79±0.23
CL.single psitive 78.72±0.24
CL.multiple positive 79.14±0.27

Table 3: The average Spearman’s correlation on STS tasks
when HT loss is replaced with Contrastive Loss (CL).

HT Loss vs. Contrastive Loss

The HT loss is proposed to ensure that the sentence encoder
can learn the hierarchical STS pattern. However, training
with the HT loss includes more positive samples (i.e., smi )
than training without the HT loss. To investigate whether
the improvement in performance brought about by the HT
loss is solely due to the presence of more positive samples,
we run our method with only the contrastive loss in two set-
tings: single positive, where only spi is treated as positive
samples, and multiple positive, while both spi and smi are
treated as positive samples. The results are shown in Table 3.
“CL.multiple positive” outperforms “CL.single positive”, in-
dicating that more positive samples indeed improve perfor-
mance. However, it still underperforms when compared to
training with the HT loss, suggesting that the HT loss indeed
brings more effective signals to the training process.
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Model MR CR SUBJ MPQA SST TREC MRPC Avg.

InferSent† 81.57 86.54 92.50 90.38 84.18 88.20 75.77 85.59
SBERT† 83.64 89.43 94.39 89.86 88.96 89.60 76.00 87.41
SimCSE* 82.69 89.25 94.81 89.59 87.31 88.40 73.51 86.51
PromptBERT† 83.14 89.38 94.49 89.93 87.37 87.40 76.58 86.90

Avg. BERT embed† 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94
BERT-[CLS] embed† 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
SimCSE* 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81
PromptBERT† 80.74 85.49 93.65 89.32 84.95 88.20 76.06 85.49
InfoCSE* 81.76 86.57 94.90 88.86 87.15 90.60 76.58 86.63

Dino§ 79.96 85.27 93.67 88.87 84.29 88.60 69.62 84.33
CLAIF§ 81.64 87.98 94.24 89.34 86.16 89.80 77.16 86.62

Wiki.STS HT 82.12±0.63 87.96±0.27 94.82±0.18 90.10±0.13 86.84±1.38 89.20±1.74 75.88±1.81 86.70±0.76

NLI.STS HT 82.36±0.61 88.19±0.11 94.62±0.15 90.15±0.19 87.75±0.45 90.60±0.60 76.93±0.53 87.23±0.24

Table 4: Results on the transfer tasks. All models adopt BERTbase as the backbone. We use the names of hybrid datasets to
denote our models. †: results from (Jiang et al. 2022), §: results from (Cheng et al. 2023), *: results from their original paper.
We bold the highest results among all models and underline the highest results among the models that are not supervised.

Transfer Tasks
Our study focuses on improving sentence embeddings in the
STS task performance, so it remains a mystery how well the
learned sentence embeddings can be applied to the down-
stream tasks. In this subsection, we evaluate the performance
of transfer tasks for our methods following the standard eval-
uation protocol mentioned in the Background section, and
compare our methods with the baselines in Table 4. The
statistics in the table show that, by improving the STS task
performance, our methods can learn sentence embeddings
that are suitable for the downstream tasks.

Related Work
Sentence Representation Learning (SRL) (Conneau et al.
2017; Reimers and Gurevych 2019; Li et al. 2020) is a fun-
damental task in NLP, aiming to learn representations for
sentences that maintain semantic information. The super-
vised (Conneau et al. 2017; Reimers and Gurevych 2019)
and unsupervised (Li et al. 2020; Su et al. 2021) settings of
SRL used to diverge a lot, where supervised SRL (Conneau
et al. 2017; Reimers and Gurevych 2019) focused on how to
utilize NLI datasets and unsupervised SRL (Li et al. 2020;
Su et al. 2021) focused on how to mitigate the anisotropy
problem (Li et al. 2020). With the introduction of contrastive
learning into SRL (Yan et al. 2021; Gao, Yao, and Chen
2021), many recent works (Gao, Yao, and Chen 2021; Jiang
et al. 2022) can be applied to both supervised and unsuper-
vised SRL, building a bridge between these two settings. Al-
though these works boost the performance of SRL under the
contrastive learning paradigm, they do not explore the un-
derlying processes leading to the performance gap between
supervised CSE (S-CSE) and unsupervised CSE (U-CSE),
which motivates our study. Our study also provides a method
to improve U-CSE, which can be related to the studies (Wu
et al. 2022) that specifically focus on U-CSE.

Our study utilizes the LLM in SRL, and a recent study
by (Cheng et al. 2023) employs this approach as well. How-

ever, our study differs from theirs in both the method of data
generation and the intention of using the LLM. They gen-
erate data by predicting masks, while we do so by pattern
simulation. They use the LLM to enhance the performance
of CSE, while we use the LLM to narrow the performance
gap between supervised and unsupervised CSE, and concur-
rently validate our findings about the fitting difficulty. There
is also an early work (Schick and Schütze 2021) that gener-
ates datasets with Pre-trained Language Models (PLM) in a
way similar to ours. Though our methods seem similar, their
intention is to mitigate the need for human-generated data,
which is different from our intention.

To the best of our knowledge, we are the first to study
what aspects of the training data contribute to the perfor-
mance gap between supervised and unsupervised CSE.

Conclusion
In this study, we investigate the training process of S-CSE
and U-CSE, where we find that the similarity pattern of
training data is a key factor to the STS task performance.
Then, we define a new metric called Relative Fitting Diffi-
culty (RFD) to quantify the complexity of the similarity pat-
tern in the training data, and prove that higher RFD values
correlate with improved performance. Building on this in-
sight, we successfully narrow the performance gap between
S-CSE and U-CSE by introducing STS and NLI patterns to
the unsupervised data. Moreover, we introduce a Hierarchi-
cal Triplet (HT) loss to utilize the hierarchical STS patterns,
further narrowing the gap. The fact that we train better sen-
tence embeddings with hierarchical STS patterns than with
NLI patterns indicates that a more advanced model may
be trained by replacing the long-used NLI dataset with a
carefully-crafted hierarchical STS dataset. Such a dataset,
previously difficult to create due to the lack of sentences
with hierarchical semantic similarities, is now attainable
thanks to the powerful LLM.
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