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Abstract

Imitation learning (IL) has achieved considerable success in
solving complex sequential decision-making problems. How-
ever, current IL methods mainly assume that the environment
for learning policies is the same as the environment for col-
lecting expert datasets. Therefore, these methods may fail to
work when there are slight differences between the learning
and expert environments, especially for challenging problems
with high-dimensional image observations. However, in real-
world scenarios, it is rare to have the chance to collect ex-
pert trajectories precisely in the target learning environment.
To address this challenge, we propose a novel robust imita-
tion learning approach, where we develop an inverse dynam-
ics state representation learning objective to align the expert
environment and the learning environment. With the abstract
state representation, we design an effective reward function,
which thoroughly measures the similarity between behavior
data and expert data not only element-wise, but also from the
trajectory level. We conduct extensive experiments to evalu-
ate the proposed approach under various visual perturbations
and in diverse visual control tasks. Our approach can achieve
a near-expert performance in most environments, and signifi-
cantly outperforms the state-of-the-art visual IL methods and
robust IL methods.

Introduction
Imitation learning (IL) has gained encouraging success in
various domains, e.g., games (Scheller, Schraner, and Vogel
2020; Baker et al. 2022), robotics (Hua et al. 2021; Wang
and Chang 2021), and autonomous driving (Hawke et al.
2020; Hu et al. 2022). By learning behaviors directly from
expert demonstrations, IL provides a way of sparing the bur-
den of designing delicate reward functions (Hussein et al.
2017; Arora and Doshi 2021). However, every coin has two
sides. Despite no dependence on the rewards, collecting ex-
pert datasets requires much effort. Furthermore, in some sce-
narios, it is quite difficult to collect expert trajectories ex-
actly in the target learning environment. For example, al-
though the aim is to learn a manipulation policy for a real
robot arm, since the hardware is sophisticated and expen-
sive, the expert demonstrations could only be collected in a
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(b) Learning environment(a) Expert environment

Figure 1: We refer the environment of collecting the expert
dataset as expert environment, and the environment of learn-
ing the target policy as learning environment.

simulator, which is similar to the target real-world environ-
ment, but has differences. The difference between the expert
environment and the target learning environment induces an
important challenge for current IL approaches, especially for
tasks with high-dimensional visual observations.

Behavior cloning (BC) (Pomerleau 1991; Torabi, War-
nell, and Stone 2018a; Shafiullah et al. 2022) is a conven-
tional IL method, which maximizes the likelihood of tak-
ing the demonstrated action in a supervised learning man-
ner. Although simple, BC requires a large amount of expert
data and suffers from compounding error (Ross and Bagnell
2010; Ross, Gordon, and Bagnell 2011). As there is no on-
line interaction, BC cannot handle the difference between
the expert environment and the learning environment. In-
verse reinforcement learning (IRL) (Ng and Russell 2000;
Ziebart et al. 2008; Han et al. 2022) is a popular learning
paradigm for IL problems, which generates rewards by mea-
suring the difference between expert data and behavior data.
With the generated reward function, IRL employs an off-the-
shelf RL algorithm to learn policies. Note that in challenging
tasks with high-dimensional observation space, estimating
differences between observations is difficult. Furthermore,
when the learning environment and the expert environment
are not exactly the same, IRL approaches may misuse the
difference between environments to generate uninformative
rewards. For example, even if the robot positions in Figure
1(a) and Figure 1(b) are similar (both standing), the back-
ground in Figure 1(b) may disturb the reward generation,
which leads to a small reward to punish the observation in
Figure 1(b). In fact, as the underlying state of this observa-
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Figure 2: Robust visual imitation learning with inverse dynamics representations.

tion is similar to that of the expert observation, this obser-
vation should be encouraged. In addition, current IRL ap-
proaches measure the difference between expert data and
behavior data either from the element-wise view (Ho and
Ermon 2016; Kostrikov et al. 2019; Liu et al. 2023) or from
the trajectory view (Haldar et al. 2023; Papagiannis and Li
2023; Dadashi et al. 2021), which does not fully utilize the
expert dataset to generate effective rewards.

To align the learning environment and the expert envi-
ronment, we propose a novel imitation learning approach
based on inverse dynamics representation learning. The in-
verse dynamics objective serves to extract the action-related
features from the high-dimensional observations, so that we
could obtain a common state representation space between
the learning and expert environments. Thanks to the inverse
dynamics state representation, the proposed approach could
deal with challenging IL tasks with visual observations, and
is robust to the difference between the learning environment
and the expert environment. By measuring the similarity be-
tween expert state embeddings and behavior state embed-
dings, we develop an imitative reward function, which not
only considers the element-wise similarity of observation-
action pairs, but also takes the trajectory-level similarity into
consideration. This thorough reward function improves the
previous IRL methods which only generate rewards from a
single perspective.

We conduct extensive experiments on a set of visual con-
trol tasks in Meta-World domain (Yu et al. 2020) and Deep-
Mind Control Suite (DMC) (Tassa et al. 2018). The exper-
iment results demonstrate that the proposed approach sig-
nificantly outperforms the state-of-the-art visual IL methods
and robust IL methods in terms of learning efficiency and
convergent performance. To probe into the reason for the
great performance, we further analyze the learned state rep-
resentation in detail. Moreover, we conduct several ablation
studies to validate the effectiveness of the various compo-
nents in the proposed approach. It is hoped that these results
could provide some insights for representation learning and
reward design in robust visual imitation learning.

Preliminaries
We formulate the learning problem with a discounted finite-
horizon Markov Decision Process (MDP). The MDP is
of the form (O,A, P,R, γ), where O is the observation
space, A is the action space, P (ot+1|ot, at) is the tran-
sition function specifying the probability distribution over
the next observation given the current observation and ac-
tion, R : O × A → R is the reward function, and γ ∈
[0, 1) is the discount factor. In this paper, we focus on
the challenging problems where the observations are high-
dimensional images. The goal is to learn a policy π : O → A
that maximizes the expected cumulative discounted reward:
maxπ EP,π[

∑T
t=1 γ

tR(ot, at)], where T denotes the hori-
zon length.

In the IL setting, there is no available reward func-
tion for an agent to infer. Instead, the agent is pro-
vided with a demonstration dataset T e = {τen|Nn=1} =
{(oet , aet )Tt=1|Nn=1}, which includes n trajectories collected
by experts. IRL approaches (Ng and Russell 2000; Abbeel
and Ng 2004) try to solve the IL problem by generating re-
wards based on expert trajectories T e, and then optimize
policy π to maximize the cumulative rewards. Our work
falls in the IRL paradigm, and uses the actor-critic learning
framework to conduct policy optimization. Specifically, we
employ the Twin Delayed Deep Deterministic policy gradi-
ent algorithm (Fujimoto, Hoof, and Meger 2018) as the base
RL optimizer, which alleviates the Q overestimation issue
with the twin delayed critic networks.

Approach
This paper considers an IL setting where the learning envi-
ronment is different from the environment of collecting the
expert dataset (expert environment), e.g., the learning envi-
ronment is perturbed by visual distractors (e.g., the white
noise in ot in Figure 2), but the expert environment is free
from noise. The similarity between the learning and expert
environments is that they share the same task. Previous IRL
methods (Ho and Ermon 2016; Torabi, Warnell, and Stone
2018b; Kostrikov et al. 2019) generate rewards based on
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the similarity between expert data and behavior data. How-
ever, under the visual perturbations, it is challenging to accu-
rately measure the similarity of the underlying states, which
severely hurts imitation policy learning.

To fully exploit the expert trajectories even not in the
expert environment, we propose a Robust visual Imitation
Learning approach based on Inverse dynamics Representa-
tions (RILIR), as depicted in Figure 2. To avoid the negative
influence of visual perturbations, we design a state represen-
tation module to extract prominent features from image ob-
servations. Based on the abstract state representation, we de-
sign a reward function that measures the similarity between
the learned policy and the expert policy from not only the
single-step perspective but also the trajectory perspective.
The following of this section first elaborates on the state rep-
resentation learning module, and then describes the way of
using the state embeddings to generate rewards.

State Representation Learning
To facilitate reward generation and imitation policy learn-
ing, we aim to learn a representation function ϕ, which ex-
tracts state embedding zt = ϕ(ot) from high-dimensional
observation ot. The features related to actions are important
for decision-making, and with the action-related state rep-
resentation, we could better measure the similarity between
the behavior trajectories and the expert trajectories. To learn
such state representations, we build an inverse dynamics net-
work fθ(ϕ(ot), ϕ(ot+1)), which takes the subsequent state
embeddings as inputs and predicts the action at in the transi-
tion. In addition to the action-related property, the state rep-
resentation needs to be beneficial to imitation policy learn-
ing as well, since state representation learning and policy
learning influence each other in a loop: the training data
for the state representation is collected by the learned pol-
icy, and the rewards for policy learning are dependent on the
learned state representation. Therefore, we augment the in-
verse dynamics objective with the value function optimiza-
tion in an end-to-end manner. The overall loss function of
representation network ϕ, inverse dynamics network fθ, and
the Q network Qω(ϕ(ot), at) is as follows:

Lϕ,θ,ω = E(ot,at,ot+1)∼{τ,τe}[(fθ(ϕ(ot), ϕ(ot+1))− ât)
2]

+ E(ot,at,ot+1)∼τ,rt=Ri(τ,τe)[(rt + γ min
i=1,2

Q̂i(ϕ(ot+1), at+1)

−Qi
ω(ϕ(ot), at))

2|i=1,2],
(1)

where Ri denotes the imitative reward function, Q̂ denotes
the target Q network, and at+1 is the action taken by the
policy π on observation ot+1 with exploration:

at+1 ← π(ϕ(ot+1)) + ϵ, ϵ ∼ clip(N (0, σ),−c, c). (2)

The loss in Equation (1) influences the representation net-
work ϕ through stochastic gradient descent, as depicted by
the reverse directions of the green lines in Figure 2(a).

To boost the diversity of the training data for state repre-
sentation, the inverse dynamics objective is optimized with
both the expert and behavior trajectories. As we focus on
the tasks with continuous action space, the inverse dynam-
ics network is optimized with the mean-squared loss. For

tasks with discrete action space, the first term in Equation
(1) could be alternated with a cross-entropy loss. Note that
the online update of the representation function induces non-
stationarity for the rewards, we employ a target representa-
tion network for reward generation, where the target repre-
sentation network is synchronized with the learned represen-
tation network for each ∆t timesteps.

Imitative Reward Generation
A key component in IRL is generating effective rewards to
learn policies resembling the expert policy. The rewards gen-
erated by the discriminator in the adversarial IRL frame-
works suffer from the non-stationary issue, as the discrim-
inator is updated online with policy learning. Recent IL
works (Cohen et al. 2021; Dadashi et al. 2021; Haldar et al.
2023; Papagiannis and Li 2023) propose to generate rewards
with trajectory matching, which measures the similarity be-
tween the expert trajectories and the behavior trajectories
with optimal transport. Since trajectory matching is non-
parameteric, the rewards in these methods are stationary.
However, as the optimal-transport based trajectory matching
methods emphasize the trajectory similarity as a whole, the
element-wised similarity, i.e. the similarity of state-action
pairs, may be neglected. To solve this problem, we propose
a novel reward function that combines the advantages of tra-
jectory matching and state-action pair similarity. The follow-
ing of this subsection first gives the formulations of trajec-
tory matching rewards and discriminator rewards, and then
elaborates on how to integrate them.

Trajectory Matching Rewards Inspired by previous
works (Haldar et al. 2023), we compute the closeness be-
tween the expert trajectories T e and behavior trajectories T
by measuring the optimal transport of probability mass from
T → T e. Given a cost function c : Z × Z → R defined
in the state representation space Z and an optimal trans-
port objective g, the optimal alignment between an expert
trajectory τe and a behavior trajectory τ is shown in Equa-
tion (3).1 Note that it is necessary to define the cost function
in the state representation space, since the distance in the
high-dimensional image observation space cannot measure
the similarity between states.

µ∗ ∈ argmin
µ∈M

g(µ, fθ(τ), fθ(τ
e), c), (3)

whereM = {µ ∈ RT×T : µ1 = µT1 = 1
T 1} is the cou-

pling matrix set and the cost function c could be Euclidean
or cosine distance.2 Specifically, we utilize the Wasserstein
distance with cosine cost as the optimal transport metric, and
then

g(µ, fθ(τ), fθ(τ
e), c) =W2(fθ(τ), fθ(τ

e))

=
T∑

t,t′=1

Ct,t′µt,t′ ,
(4)

1Here we overwrite the notation fθ for trajectory embeddings:
fθ(τ) = [fθ(o1), ..., fθ(oT )].

2We provide an ablation study on the cost function c in Ap-
pendix D, and using cosine distance performs slightly better than
Euclidean distance.
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where the cost matrix Ct,t′ = c(fθ(ot), fθ(o
e
t′)). By maxi-

mizing the rewards in Equation (5), the agent could learn the
policy that closely matches the expert trajectories,

R1(ot) = −
T∑

t′=1

Ct,t′µ
∗
t,t′ . (5)

Solving Equation (3) to compute µ∗ is computationally
expensive, so we employ the Sinkhorn algorithm (Knight
2008) to obtain an approximate solution. As there are multi-
ple expert trajectories, previous works (Haldar et al. 2023;
Cohen et al. 2021) search the expert dataset, and use the
nearest trajectory with the current behavior trajectory to
compute the rewards in Equation (5). However, the ignored
expert trajectories may contain certain state-action pairs,
which are closer to the current behavior trajectories but not
used to generate rewards, since a trajectory is considered as
a whole. To thoroughly utilize the expert dataset, we propose
to augment the trajectory-matching rewards with the follow-
ing discriminator rewards, which estimate the similarity of
state-action pairs.

Discriminator Rewards Following the GAIL method
(Ho and Ermon 2016), we train a discriminator D that dif-
ferentiates between the agent’s samples and the expert data
with the following loss function:

LD =− E(oet ,a
e
t )∼T e [logD(fθ(o

e
t ), a

e
t )]

− E(ot,at)∼T [log(1−D(fθ(ot), at))].
(6)

Similar to trajectory matching, the discriminator D also
works in the state representation space. Beyond that, D takes
the actions into account, hence the similarity between the ex-
pert trajectories and the behavior trajectories could be mea-
sured more accurately. By training the discriminator, we de-
rive another reward function:

R2(ot, at) = − logD(fθ(ot), at). (7)

To summarize, the trajectory matching reward is derived
from a macro view, and the discriminator reward is formu-
lated from a micro view. They are both heavily dependent on
the state representation learning in the previous section. By
integrating these two kinds of rewards together, we obtain
a reward function Ri which could thoroughly describe the
similarity between the expert data and the behavior data:

Ri(ot, at) = R1(ot) + ηR2(ot, at). (8)

η is a scaling factor balancing these two kinds of imitative
rewards. In Appendix A, we provide the pseudocode and the
algorithmic details of RILIR.

Related Work
Imitation Learning IL aims to learn policies from demon-
strations without access to the environment rewards (Hus-
sein et al. 2017). There are three major paradigms in IL.
(1) Behavior cloning (BC) (Pomerleau 1991; Torabi, War-
nell, and Stone 2018a; Shafiullah et al. 2022) treats policy
learning as a supervised learning problem over state-action
pairs. While these methods are appealingly simple, they suf-
fer from compounding errors caused by covariate shift (Ross

and Bagnell 2010; Ross, Gordon, and Bagnell 2011). An im-
proved BC method (Brantley, Sun, and Henaff 2020) alle-
viates the covariate shift problem in specific tasks. (2) In-
verse reinforcement learning (IRL) (Ng and Russell 2000;
Ziebart et al. 2008; Han et al. 2022) infers rewards from the
given demonstrations. Compounding error is not an issue for
these methods (Mendez, Shivkumar, and Eaton 2018; Zeng
et al. 2022). However, IRL is extremely expensive regard-
ing samples, since after inferring rewards, it still needs to
run RL methods in an inner loop to learn the policies. (3)
Generative adversarial imitation learning (GAIL) (Ho and
Ermon 2016) is an adversarial learning based formulation
inspired by maximum entropy IRL (Ziebart et al. 2008) and
GANs (Goodfellow et al. 2014). Compared to IRL, this line
of research does not need to infer the rewards while regard-
ing the discriminator results as an auxiliary (Dadashi et al.
2021; Papagiannis and Li 2023), which contributes to more
efficient learning. Previous works (Baram et al. 2017; Sun
et al. 2021) combine model-based learning with GAIL to
construct a fully differentiable frame and enable more accu-
rate gradient estimation. Different from these model-based
IL methods, the inverse dynamics model in this work is de-
signed for an abstract state representation, and the discrimi-
nator reward is inspired by the GAIL paradigm.

Robust Imitation Learning Robustness against the vari-
ations between learning and expert environments has re-
cently received much attention. Domain adaptive IL meth-
ods (Cetin and Çeliktutan 2021; Kim et al. 2020) seek the
consistency between the expert and learning domains with
a set of prior data pre-collected in both two domains, and
use this consistency for policy learning in a related target
task in the learning domain. In contrast to domain-adaptive
IL, the proposed approach does not need a prior dataset, and
can learn directly in the learning environment instead. Chae
et al. (2022) proposed an IL method to deal with the dynam-
ics variance in the learning and expert environments. The
proposed approach aims to solve the visual variance prob-
lem, which commonly occurs in real-world tasks, e.g., an
occluded camera. The SeMAIL method (Wan et al. 2023)
tries to solve the visual distractors in IL with model-based
learning. However, as the high-dimensional visual obser-
vations are hard to reconstruct, the forward model learn-
ing in SeMAIL is sample inefficient. In contrast, the pro-
posed approach learns an inverse dynamics model, which
has achieved a better performance, as shown in the experi-
ment section.

Visual Representation Learning (Visual RepL) Learn-
ing from visual observations is an important problem due
to its potential impact on fields like robotics (Hua et al.
2021), autonomous driving (Hawke et al. 2020) and video
games (Ye et al. 2023). OpenAI seeks to train general-
purpose foundation models for sequential decision-making
by utilizing freely available internet-scale unlabeled visual
datasets via imitation learning (Baker et al. 2022). However,
this paradigm suffers from low sample efficiency and poor
generalization ability due to the high-dimensional visual
space. Therefore, Visual RepL plays a critical role, which
could be divided into the following categories. (1) Repre-
sentation learning with auxiliary objectives, e.g., learning
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Figure 3: Experiment results under various types of visual shifts. The videos of the learned policies are shown in https://sites.
google.com/view/rilir-aaai.

compact state representations with an encoder-decoder ar-
chitecture (Rafailov et al. 2021), enhancing discriminators
with patches (Liu et al. 2023), joint optimization of model,
representation and policy (Ghugare et al. 2022). (2) World
model based methods (Hu et al. 2022; Wu, Piergiovanni,
and Ryoo 2019; Seo et al. 2022). These methods first con-
struct an evolution world by a latent dynamics model that
predicts latent states from visual observations, and then the
learned latent state is fed to the policy network as an input.
Rolling out within the learned world model can help reduce
the sample number in the real environment for RL methods
(Hafner et al. 2019, 2020). (3) Image augmentation (Yarats,
Kostrikov, and Fergus 2021; Laskin, Srinivas, and Abbeel
2020), which is widely studied in the computer vision do-
main (Hendrycks et al. 2020; Sohn et al. 2020). Recently it
has also been utilized to promote representation learning in
RL and IL (Wang and Chang 2021; Chen et al. 2022). Our
work belongs to the auxiliary-task paradigm, and could be
easily combined with the data augmentation methods.

Experiments
We evaluate the proposed approach RILIR on a set of chal-
lenging visual control environments with perturbations, aim-
ing at answering the following questions: (1) Can RILIR
generally work under various types of visual perturbations?
(2) Can RILIR work in different types of tasks, including lo-
comotion and manipulation? (3) How is the state represen-
tation learned by RILIR? (4) How important are the various
components of the RILIR approach?

Experiment Results Under Various Visual Shifts
In this subsection, we aim to evaluate the ability of RILIR
to work under different types of visual shifts, and two tasks
from the DeepMind Control (DMC) suite (Tassa et al. 2018)

are used for evaluation. RILIR’s ability to work in diverse
tasks is evaluated in the next subsection. RILIR is compared
with state-of-the-art IL methods, including BC, adversarial
IL methods, visual IL methods, and robust IL methods. A
brief description of the baselines is as follows, and in Ap-
pendix C, we provide the hyperparameters for all the base-
lines and the proposed approach.

• Behavior cloning (BC): Supervised learning method
trained with expert demonstrations.

• Discriminator Actor-Critic (DAC) (Kostrikov et al.
2019): An adversarial IL method, which outperforms
prior works such as GAIL (Ho and Ermon 2016) and
AIRL (Fu, Luo, and Levine 2018).

• Regularized Optimal Transport (ROT) (Haldar et al.
2023): A state-of-the-art visual IL method based on tra-
jectory matching, which not only takes the BC policy as
an initialization, but also regularizes the policy updates
with the BC objective.

• DA-ROT (Yarats, Kostrikov, and Fergus 2021): As data
augmentation has shown its strength in handling visual
shifts, we compare RILIR with the DrQ data augmenta-
tion version of ROT.

• PatchAIL (Liu et al. 2023): A visual IL method which
generates rewards based on patches of images.

• SeMAIL (Wan et al. 2023): A robust IL method which
aims to eliminate visual distractors via separated models.

In the experiments, we consider three types of visual
shifts, including changing the backgrounds, adding white
noise, and random masking.3 For the experiments of chang-

3The experiment results including more aspects of robustness,
e.g., changing colors, changing sizes, and adding objects, are
shown in Appendix D.
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Figure 4: Experiment results in various types of tasks with random masking noises.

ing backgrounds, we use the environments in the easy ver-
sion of the distracting control suite (Stone et al. 2021). In
contrast to the noisy learning environments, the environ-
ments for collecting the expert demonstrations are free of
noise. We provide the details of the learning environments
and the way of collecting expert datasets in Appendix B.
Besides, we conduct comparative experiments in “clean”
environments without visual distractors as well. Figure 3
demonstrates the results in the CartPole Swingup task and
the Walker Stand task under various types of visual shifts.
The y axis shows the average return over 10 episodes. Each
line is the mean of 3 runs with shaded regions correspond-
ing to a confidence interval of 95%. All the curves have been
smoothed equally for visual clarity. The code to reproduce
these results is available in the supplementary material.

As shown in the first three columns in Figure 3, the pro-
posed approach significantly outperforms the baseline meth-
ods.4 In the “clean” environments, the performance of all the
methods is nearly the same. Similar to ROT, our approach
and PatchAIL also utilize the behavior-cloned policy as an
initialization for the policy network, so there is a jump start
in these learning curves. Comparing the columns in Fig-
ure 3, we find that changing backgrounds is severely more
challenging than other visual shifts. Even in this challeng-
ing environment, the proposed approach can achieve posi-
tive learning and perform better than the baselines. In other
types of environments, the proposed approach accomplishes
a near-expert learning performance using much fewer sam-
ples than the baselines.

Note that ROT (Haldar et al. 2023) is a state-of-the-art vi-
sual IL method, which has shown better performance than
DAC, and we also compare the proposed approach with the
DrQ data augmented version of ROT (DA-ROT). Data aug-
mentation improves the learning performance of ROT in
some cases, but not all cases, possibly because data aug-
mentation induces a heavier computation burden and can-
not cover all types of visual shifts. PatchAIL has a similar
performance with DAC in the “clean” environments, but the
performance of PatchAIL drops severely in the noisy envi-
ronments. This phenomenon implies that segmenting images
into patches and generating rewards by taking averages over
patches can hardly help the agent adapt to visual shifts. Se-

4These experiments have been run with A100 GPUs, and each
run takes no more than 1 day.

MAIL is a robust visual IL method with separated forward
models. This method achieves a comparable performance
with other baselines in the Walker Stand task with changing
backgrounds. However, SeMAIL is not as efficient as other
baselines in the environments with easier visual perturba-
tions due to the heavy burden of optimizing a forward model.
We provide the results of running SeMAIL with more steps
in Appendix D.

Experiment Results in Diverse Tasks
To evaluate RILIR’s ability to work in diverse tasks, we con-
duct experiments in two domains: manipulation and loco-
motion. Two tasks in the Meta-World benchmark (Yu et al.
2020) are used as the manipulation tasks, and two tasks in
the DMC suite are used as the locomotion tasks. These tasks
are with medium difficulty, and the difficulty of tasks is mea-
sured by the dimension of action spaces. The learning results
in harder tasks are provided in Appendix D. To evaluate the
robustness of these IL methods, the visual observations in
the learning environments are randomly masked.

As shown in Figure 4, in both manipulation and locomo-
tion domains, the proposed approach significantly outper-
forms the baselines regarding learning efficiency and con-
vergent performance. Benefiting from the inverse dynamics
representation learning and effective imitative rewards, the
return or success gap between the policy learned by the pro-
posed method and the expert policy is less than 5%. Similar
to the results in Figure 3, PatchAIL suffers from the random
masking noises. In the following subsection, we analyze the
state representation learning in our method to probe into the
reason why it can achieve such a good performance.

Analysis of the State Representation
In this subsection, we analyze the learned representation
in the RILIR approach. Specifically, we visualize the state
representations in the form of saliency maps (Simonyan,
Vedaldi, and Zisserman 2013) to analyze which regions have
been paid more attention by the representation function. The
saliency map is calculated as follows,∑

i

|∂(ϕi(ot))

∂ot
|, (9)

where ϕi(ot) denotes the i-th element of the state represen-
tation ϕ(ot). A pixel with a larger saliency value has a larger
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(c) Walker Stand (d) Saliency Map(a) Finger Spin (b) Saliency Map

Figure 5: (a)(b) Example observation in the Finger Spin task with random masking perturbation, and the corresponding saliency
map at 200k steps. (c)(d) Example observation in the Walker Stand task with changing background distractors from the Dis-
tracting Control suite (Stone et al. 2021), and the corresponding saliency map at 600k steps. Note that the saliency maps are
only used to analyze the learned representation model, which has not been involved in the training process.

influence on the Q network and the policy network, since
ϕ(ot) is the input of these two networks.

A darker green color denotes a larger saliency value.
In the locomotion tasks, the proprioception features of the
robot are substantially important. As shown in Figure 5, our
method clearly extracts the position of the Finger in the Fin-
ger Spin task and ignores the random masking distractors.
With a changing background, our approach can still extract
the leg positions of the simulated Walker robot, as shown in
Figure 5 (c) and (d). The state representations in more tasks
are shown in https://sites.google.com/view/rilir-aaai, and we
provide a comparison with the representations learned by the
baselines in Appendix D.

Ablation Studies
To validate the effectiveness of various components in the
proposed approach, we conduct ablation studies in two
tasks, Hammer and Drawer Close, with random masking
perturbations in the environments. Hammer is relatively
easy, and Drawer Close is a difficult task, as it takes nearly
1 million steps for RILIR to converge. In this subsection, we
have respectively ablated the representation learning module
and the rewards in RILIR. “Ours w/o representation” in Fig-
ure 6 denotes the experiments removing the inverse dynam-
ics representation objective, and “Ours w/o discriminator”
denotes removing the discriminator rewards, i.e., only us-
ing the trajectory matching rewards. More ablation studies
in both the noisy environment and the “clean” environment
are provided in Appendix D.
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Figure 6: Ablation studies of the state representation learn-
ing and the reward function in the proposed approach RILIR.

The results in Figure 6 show that both the representa-
tion learning module and the discriminator rewards are ef-
fective. Specifically, the discriminator rewards mainly af-
fect learning efficiency, and the inverse dynamics represen-
tation learning influences convergent performance. Beyond
that, in more challenging tasks (Drawer Close), the influence
is more obvious. Furthermore, among the three curves, the
shaded areas of the proposed approach are the smallest. This
implies that the state representation learning objective and
the compound rewards help stabilize the learning process.

Conclusion and Limitations

In this work, we have proposed a robust visual imitation
learning approach based on inverse dynamics representa-
tion learning, dubbed RILIR, which is able to resist the
difference in the expert environment and the learning envi-
ronment, since the representation module extracts the com-
mon parts in these two environments. Based on this abstract
state representation, we develop a thorough reward function,
which considers the similarity of expert data and behavior
data from both an element-wise view and a trajectory-level
view. Extensive experiment results in a set of challenging
visual control tasks demonstrate that the proposed approach
has achieved substantially better performance than prior vi-
sual IL works and robust IL works. Furthermore, we have
conducted ablation studies to validate the effectiveness of
the representation learning module and the reward function
in the RILIR approach.

However, we recognize a few limitations in this work: (a)
The proposed approach may not work well when the obser-
vations in the learning environments are significantly differ-
ent from those in the expert demonstrations, and more ad-
vanced representation learning methods need to be investi-
gated in the robust visual IL domain. (b) The inverse dynam-
ics objective may not be the right thing when the dynamics
models are not consistent between the learning environment
and the expert environment, as this objective relies on the
invariant dynamics model. A recent work (Chae et al. 2022)
proposed to solve the robust IL problem with various dy-
namics by imitating multiple experts simultaneously.
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