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Abstract

This work establishes the first framework of federated X -
armed bandit, where different clients face heterogeneous lo-
cal objective functions defined on the same domain and are
required to collaboratively figure out the global optimum.
We propose the first federated algorithm for such problems,
named Fed-PNE. By utilizing the topological structure of
the global objective inside the hierarchical partitioning and
the weak smoothness property, our algorithm achieves sub-
linear cumulative regret with respect to both the number of
clients and the evaluation budget. Meanwhile, it only requires
logarithmic communications between the central server and
clients, protecting the client privacy. Experimental results on
synthetic functions and real datasets validate the advantages
of Fed-PNE over various centralized and federated baseline
algorithms.

Introduction
Federated bandit is a newly-developed bandit problem

that incorporates federated learning with sequential deci-
sion making (McMahan et al. 2017; Shi and Shen 2021a).
Unlike the traditional bandit models where the exploration-
exploitation tradeoff is the only major concern, federated
bandit problem also takes account of the modern concerns of
data heterogeneity and privacy protection towards trustwor-
thy machine learning. In particular, in the federated learning
paradigm, the data available to each client could be drawn
from non-i.i.d distributions, making collaborations between
the clients necessary to make valid inferences for the ag-
gregated global model. However, due to user privacy con-
cerns and the large communication cost, such collaborations
across the clients must be restricted and avoid direct trans-
missions of the local data. To make correct decisions in the
future, the clients have to utilize the limited communications
from each other and coordinate exploration and exploitation
correspondingly.
To the best of our knowledge, existing results of federated

bandits, such as Dubey and Pentland (2020); Huang et al.
(2021); Shi and Shen (2021a); Shi, Shen, and Yang (2021b);
Xu, Xie, and Lui (2021); Huang et al. (2023), focus on either
the case where the number of arms is finite (multi-armed
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bandit), or the case where the expected reward is a linear
function of the chosen arm (linear contextual bandit). How-
ever, for problems such as dynamic pricing (Chen and Gal-
lego 2022) and hyper-parameter optimization (Shang, Kauf-
mann, and Valko 2019), the available arms are often defined
on a domain X with infinite or even uncountable cardinal-
ity, and the reward function is usually non-linear with re-
spect to the metric employed by the domain X . These prob-
lems challenge the applications of existing federated bandit
algorithms to more complicated real-world problems. Two
applications (Figure 1) that motivate our study of federated
X -armed bandit are given below.

• Federated medicine dosage recommendation. For the
dosage recommendation of a newly-invented medicine/-
vaccine (in terms of volume or weight), the clinical tri-
als could be conducted at multiple hospitals (clients). To
protect patients’ privacy, hospitals cannot directly share
the treatment result of each trial (reward). Moreover, be-
cause of the demographic difference among the patient
groups, the best dosage obtained at each hospital (i.e.,
the optimal of local objectives) could be different from
the optimal recommended dosage for entire population
of the state (i.e., the optimal of the global objective). Re-
searchers needs to collaboratively find the global optimal
dosage by exploring and exploiting the local data.

• Federated hyper-parameter optimization. An im-
portant application of automating machine learning
workflows with minimal human intervention con-
sists of hyper-parameter optimization for ML mod-
els, e.g., learning rate, neural network architecture,
etc. Many modern data are collected by mobile de-
vices (clients). The model performance (reward) of each
hyper-parameter setting could be different for each mo-
bile device (i.e., local objectives) due to user heterogene-
ity. To fully utilize the whole dataset (i.e., global objec-
tive) for hyperparameter optimization such that the ob-
tained auto-ML model can work seamlessly for diverse
scenarios, the central server need to coordinate the lo-
cal search properly without violating the regulations of
consumer data privacy.

In the aforementioned examples, the reward objectives are
defined on a domain X , which can often be formatted as
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Bandit algorithms Average Regret Commun.cost Conf. Heterogeneity
HCT eO

⇣
T

d+1
d+2

⌘
N.A. N.A. 7

BLiN eO
⇣
T

d+1
d+2

⌘
N.A. 3 7

Centralized eO
⇣
M� 1

d+2T
d+1
d+2

⌘
O(MT ) 7 3

Fed-PNE (This work) eO
⇣
M� 1

d+2T
d+1
d+2

⌘
eO(M log T _MT

d
d+2 ) 3 3

Table 1: Comparison of the (client-wise) regret upper bounds, the communication cost for sufficiently large T and the other
properties. Columns: “Commun. cost” refer to communication cost. “Conf.” refers to whether the raw rewards of one client
are kept confidential from the other clients and only statistical summary is shared. “Heterogeneity” refers to whether the client
functions are different/the same. Rows: HCT is a single-client X -armed bandit algorithm. BLiN is a batched-X -armed bandit
algorithm. Centralized results are adapted from the centralized algorithms such as HOO (Bubeck et al. 2011) and HCT (Azar,
Lazaric, and Brunskill 2014) by assuming that the server makes all the decisions with access to all client-wise information.
Notation: M denotes the number of clients; T denotes the budget (time horizon) and d denotes the near-optimality dimension
in Assumption 3.

a region of Rd and has infinite cardinality. Moreover, the
objectives (both local and global ones) are highly nonlinear
mapping with respect to the arm chosen due to the complex
nature of the problem. Therefore, the basic assumptions of
federated multi-armed bandit or federated linear contextual
bandit algorithms are violated, and thus the existing feder-
ated bandit algorithms cannot apply or perform well on such
problems.
Under the classical setting where centralized data is im-

mediately available, X -armed bandit algorithms such as
HOO and HCT have been proposed to find the optimal arm
inside the domain X (Bubeck et al. 2011; Azar, Lazaric, and
Brunskill 2014). However, these algorithms cannot be triv-
ially adapted to the task of finding the global optimum when
there are multiple clients and limit communications. The lo-
cal objectives could have very different landscapes across
the clients due to the non-i.i.d local datasets, and no effi-
cient communication method has been established between
X -armed bandit algorithms that run on the local data sets.
In this work, we propose a new federated algorithm where
all the clients collaboratively learn the best solution to the
global X -armed bandit model on average, while few com-
munications (in terms of the amount and the frequency) are
required so that the privacy of each client is preserved.
We highlight our major contributions as follows.

• Federated X -armed bandit. We establish the first
framework of the federated X -armed bandit problem,
which naturally connects the X -armed bandit prob-
lem with the characteristics of federated learning. The
new framework introduces many new challenges to X -
armed bandit including (1) potential severe heterogene-
ity among the local objectives due to non-i.i.d local data
sets, (2) the non-accessibility of the global objective for
all local clients or the central server, and (3) the re-
striction of communications between the server and the
clients.

• New algorithm with desirable regret. We propose a
new algorithm for the federated X -armed bandit prob-
lem named Fed-PNE. Inspired by the heuristic of

arm elimination in multi-armed bandits (Lattimore and
Szepesvári 2020), the new algorithm performs hierar-
chical node elimination in the domain X . More impor-
tantly, it incorporates efficient communications between
the server and the clients to transmit information while
protecting client-privacy. We establish the sublinear cu-
mulative regret upper bound of the proposed algorithm
as well as the bound of the communication cost. Theo-
retically, we prove that Fed-PNE utilizes the advantage
of federation and at the same time has high communi-
cation efficiency. We also provide a regret lower bound
analysis to justify the tightness of our upper bound. The-
oretical comparisons of our regret bounds with existing
bounds are provided in Table 1.

• Empirical results. By examining the empirical perfor-
mance of our Fed-PNE algorithm on both synthetic
functions and real datasets, we verify the correctness
of our theoretical results. We show the advantages of
Fed-PNE over centralized X -armed and kernelized
bandit algorithm, and federated neural and multi-armed
bandit algorithm. The empirical results exhibit the use-
fulness of our algorithm in real-life applications.

Preliminaries
We first introduce the preliminary concepts and notations

used in this paper. For a real number a 2 R, we use dae
to represent the smallest integer larger than a. For an in-
teger N 2 N, we use [N ] to represent the set of integers
{1, 2, · · · , N}. For a set A, |A| denotes the number of el-
ements in A. We use eO(·) to hide the logarithmic terms in
big-O notations, i.e., for two functions a(n), b(n), a(n) =
eO(b(n)) represents that a(n)/b(n)  logk(n), 8n > 0 for
some k > 0.

Problem Formulation and Performance Measure
Let X be a measurable space of arms. We model the prob-

lem as a federated X -armed bandit setting where a total of
M clients respectively have the access to M different local
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Figure 1: Examples of real-life applications that motivate the federated X -armed bandit problem. Left: federated medicine
dosage recommendation. Right: Federated hyper-parameter optimization.

objectives fm(x) : X 7! R, which could be non-convex,
non-differentiable and even non-continuous. Given a lim-
ited number of rounds T , each client 2 [M ] chooses a point
xm,t 2 X at each round t 2 [T ] and observes a noisy feed-
back rm,t 2 [0, 1] defined as rm,t := fm(xm,t) + ✏m,t ,
where ✏m,t is a zero-mean and bounded random noise in-
dependent from previous observations or other clients’ ob-
servations. The goal of the clients is to find the point that
maximizes the global objective f(x), which is defined to be
the average of the local objectives, i.e.,

f(x) :=
1

M

MX

m=1

fm(x).

However, the global objective is not accessible by any client.
The only information that the clients have access to is:
(1) noisy evaluations of their own local objective functions
fm(x), and (2) communications between themselves and the
central server. For the global objective, we assume that there
is at least one global maximizer x⇤

2 X such that f(x⇤) =
sup

x2X f(x) = f⇤. Given the sequence of the points chosen
by the clients {xm,t}

M,T

m=1,t=1, the performance of the clients
is measured by the expectation of the cumulative regret, de-
fined as

E [R(T )] := E
"

TX

t=1

MX

m=1

(f⇤
� f(xm,t))

#
.

Another possible measure of algorithm performance is the
so-called simple regret which only evaluates the goodness
of optimizer in the final round, i.e., r(T ) =

P
M

m=1(f
⇤
�

f(xm,T )). This paper aligns with the standard federated
bandit analysis framework and focuses on cumulative re-
gret only (Shi and Shen 2021a; Huang et al. 2021). More-
over, as mentioned by Bubeck et al. (2011), we always have
E[r(T )]  E[R(T )]/T if we select the path via a cumulative
regret-based policy.

Hierarchical Partitioning of the Parameter Space
Following the recent progress in centralized X -armed

bandit (e.g., Azar, Lazaric, and Brunskill 2014; Shang,
Kaufmann, and Valko 2019; Bartlett, Gabillon, and Valko
2019), we utilize a pre-defined infinitely-deep hierarchical

partitioning P := {Ph,i}h,i of the parameter space X to
optimize the objective functions. The hierarchical partition
discretizes the space by recursively defining the following
relationship:

P0,1 := X , Ph,i :=
k�1[

j=0

Ph+1,ki�j ,

where k is the (maximum) number of disjoint children for
one node, and for every node Ph,i, (h, i) denotes the depth
and the index of the node inside the partition. Each nodePh,i

on depth h is partitioned into k children on depth h+1, while
the union of all the nodes on each depth h equals the param-
eter set X . The partition is chosen before the optimization
process and the same partition of the space X is shared and
used by all the M clients as the partition itself reveals no
information of the reward distributions of local objectives.
A simple and intuitive example is a binary equal-sized par-
tition on the domain X = [0, 1], where each node on depth
h has length (0.5)h.

Communication Model and Privacy Concerns
Similar to the setting of federated multi-armed bandit (Shi

and Shen 2021a; Huang et al. 2021), we assume that there
exists a central server that coordinates the behaviors of all
the different clients. The server has access to the same par-
tition of the parameter space used by all the clients, and is
able to communicate with the clients. Due to privacy con-
cerns, the client-side algorithm should keep the reward of
each evaluation confidential and the only things that can be
transmitted to the server are the local statistical summary
of the rewards. The clients are not allowed to communicate
with each other. In accordance to McMahan et al. (2017);
Shi and Shen (2021a), we assume that the server and the
clients are fully synchronized. Although the clients can com-
municate with the server, the number of clients M could be
very large and thus the communication would be very costly.
We take into account such communication cost in our algo-
rithm design and the theoretical analysis.

Definitions and Assumptions
To analyze the performance of the proposed algorithms,

we use the following set of definitions and assumptions,
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which are also present in the prior works on X -armed bandit
(Bubeck et al. 2011; Azar, Lazaric, and Brunskill 2014).

Assumption 1. (Dissimilarity) The space X is equipped
with a dissimilarity function ` : X

2
7! R such that

`(x, x0) � 0, 8(x, x0) 2 X
2 and `(x, x) = 0

Throughout this work, we assume that X satisfies As-
sumption 1. Given the dissimilarity function `, the diameter
of a set A ⇢ X is defined as diam (A) = sup

x,y2A `(x, y).
The open ball of radius r and with center c is then defined
as B(c, r) = {x 2 X : `(x, c)  r}. We now introduce the
local smoothness assumptions.

Assumption 2. (Local Smoothness) We assume that there
exist constants ⌫1, ⌫2 > 0, and 0 < ⇢ < 1 such that for all
nodes Ph,i,Ph,j 2 P on depth h,

• diam (Ph,i)  ⌫1⇢h

• 9x�
h,i

2 Ph,i s.t. Bh,i:=B

⇣
x�
h,i

, ⌫2⇢h
⌘
⇢ Ph,i

• Bh,i \ Bh,j = ; for all 1  i < j  kh.

• The global objective function f satisfies that for all
x, y 2 X , we have

f⇤
� f(y)  f⇤

� f(x) + max {f⇤
� f(x), `(x, y)}

Remark 1. Similar to the existing works on the X -armed
bandit problem, the dissimilarity function ` is not an ex-
plicit input required by our Fed-PNE algorithm and only
the smoothness constants ⌫1, ⇢ are accessed (Bubeck et al.
2011; Azar, Lazaric, and Brunskill 2014). As mentioned by
Bubeck et al. (2011); Grill et al. (2015), most regular func-
tions satisfy Assumption 2 on the standard equal-sized par-
tition with accessible ⌫1 and ⇢.

Finally, we introduce the definition of the near-optimality
dimension, which measures the number of near-optimal re-
gions and thus the difficulty of the problem (Azar, Lazaric,
and Brunskill 2014).

Assumption 3. (Near-optimality dimension) Let ✏ =
6⌫1⇢h and ✏0 = ⇢h < ✏, for any subset of ✏-optimal nodes
X✏ = {x 2 X : f⇤

� f(x)  ✏}, there exists a constant
C such that N (X✏, `, ✏0)  C(✏0)�d, where d is the near-
optimality dimension of function f and N (X✏, `, ✏0) is the
✏0-cover number of the set X✏ w.r.t. the dissimilarity `.

Remark 2. Some recent progress of solving centralized X -
armed bandit problem such as Shang, Kaufmann, and Valko
(2019); Bartlett, Gabillon, and Valko (2019) have proposed
an even weaker version of Assumption 2, i.e., the local
smoothness without a metric assumption. Correspondingly,
they define the complexity measure named near-optimal di-
mension w.r.t. the partition P . However, it is highly non-
trivial to directly adopt this weaker local smoothness as-
sumption in the federated X -armed bandit problem. The
limited communications and the weak assumption will lead
to continual sampling in the sub-optimal regions, and thus
yielding large cumulative regrets. As a pioneer work in
federated X -armed bandit, we choose to use the slightly

stronger assumptions in Bubeck et al. (2011) so that theoret-
ical guarantees of our Fed-PNE algorithm can be success-
fully established. Weakening our set of assumption while
keeping the regret bound guarantee is an interesting future
work direction.

Algorithm and Analysis
The federated X -armed bandit problem encounters sev-

eral challenges, the core of which is to accommodate the
heterogeneity among local objectives with limited commu-
nications. Hence, how to design an efficient communication
pattern and construct an unbiased estimation of the global
objective while taking advantage of the large number of
clients is a crucial component in algorithmic design. More-
over, since local rewards are not instantaneously observable
due to communication limitation, any algorithm that “uses
instant rewords of each time step to estimate the optimal re-
gion with high confidence”, e.g., HOO (Bubeck et al. 2011)
and HCT (Azar, Lazaric, and Brunskill 2014), cannot be di-
rectly applied to this problem. Instead, an algorithm that
gradually eliminates the sub-optimal regions in phases is
preferred.
In this section, we propose the new algorithm to solve the

above challenges, show its uniqueness compared with prior
algorithms, and provide its theoretical analysis.

The Fed-PNE Algorithm
We propose the new Federated-Phased-Node-Elimination

(Fed-PNE) algorithm, which consists of one client-side al-
gorithm (Algorithm 1) and one server-side algorithm (Algo-
rithm 2). The Fed-PNE algorithm runs in dynamic phases
and it utilizes the hierarchical partition to gradually find the
optimum by eliminating different regions of the domain. For
a nodePh,i 2 P , since its depth h and index i uniquely iden-
tifies the node, we will use (h, i) to index the nodes in the
elimination and expansion process. We use Kp to denote the
indices of active nodes that need to be sampled in phase p
and E

p for the indices of nodes that need to be eliminated.
To obtain a reward r over a node Ph,i (i.e., pull a node), the
client evaluate the local objective at some x where x is ei-
ther uniformly sampled from the node as in Bubeck et al.
(2011) or some pre-defined point in the node as in Azar,
Lazaric, and Brunskill (2014). The regret analysis will only
be slightly different because of the smoothness assumption.
In the theoretical analysis, we have used the latter strategy
to derive our regret bound.
Algorithm Explanation: At initialization, the server

starts from the root of the partition K
1 = {(0, 1)}. At the

beginning of each phase p > 0, the server expands the
exploration tree as described in Algorithm 2 and the set
K

p until the criterion |K
p
|⌧h � M is satisfied, where the

threshold number ⌧h is the minimum required number of
times each node on depth h needs to be pulled, defined as
⌧h :=

l
c
2 log(c1T/�)

⌫
2
1

⇢�2h
m
where c, c1 are two absolute con-

stants, and � is the confidence (details in Lemma 2). The
number of times tm,h,i each node Ph,i has to be sampled
by each client m and the phase length |T

p
| are then com-

puted. This unique expansion criteria and sampling scheme
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Algorithm 1: Fed-PNE: m-th client

1: Input: k-nary partition P
2: Initialize p = 0
3: while not reaching the time horizon T do
4: Update p = p+ 1
5: Receive {Ph,i, tm,h,i}(h,i)2Kp from the server
6: for Ph,i with (h, i) 2 K

p do
7: Pull the node for tm,h,i times, receive rewards

{rm,h,i,t}
tm,h,i

t=1

8: Calculate bµm,h,i =
1

tm,h,i

P
t
rm,h,i,t

9: end for
10: Send the estimates {bµm,h,i}(h,i)2Kp to the server
11: end while

guarantee four important things at the same time: (1) Ev-
ery client samples every node at least one time so that the
global objective is explored; (2) The empirical averages in
line 12 of Algorithm 2 are unbiased estimators of the global
function values for every node; (3) Every node is sampled
enough number of times (larger than ⌧h); (4) The waste
of budget due to the limitation on communication is min-
imized. After the broadcast in line 9, every client receives
{Ph,i, tm,h,i}(h,i)2Kp from the server.
Next, the clients perform the exploration and send only

the empirical reward averages bµm,h,i back to the server, as
in Algorithm 1. The server then computes the best node, de-
noted by Php,ip , and decides the elimination set Ep by the
following selection criteria.

E
p := {(h, i) 2 K

p
| bµh,i + bh,i + ⌫1⇢

h < bµhp,ip � bhp,ip}

(1)

where bh,i = c
p
log(c1T/�)/Th,i and Th,i = Mtm,h,i.

In other words, for any node Ph,i such that (h, i) 2 E
p,

the function value of the global objective inside the node is
much worse than the function value in the best node with
high probability, and thus can be safely eliminated. The
server then eliminate the bad nodes and proceed to the next
phase with the new set Kp+1, which consists of nodes that
are children of un-eliminated nodes in the previous phase, as
shown in line 15-16 in Algorithm 2.
Remark 3. Fed-PNE is very different from the tradi-
tional Phased-Elimination (PE) algorithm in multi-armed
bandit(Lattimore and Szepesvári 2020), though both algo-
rithms utilize the idea of successive elimination of the sub-
optimal arms/nodes. Apart from the obvious uniqueness in
the algorithm design such as line 5-8, 15-16 in Algorithm
2, Fed-PNE also introduces the new idea of “node elimina-
tion”, which is based on the hierarchical partitioning of the
parameter space. Even if we treat nodes in the partition as
the “arms” in multi-armed bandit, Fed-PNE is still unique
in the following aspects:

• Fed-PNE utilizes the hierarchical partition and grad-
ually eliminate nodes on deeper layers that represent
smaller and smaller regions in domain X . The nodes can
not be eliminated until the algorithm reaches their layer
in the partition. In other words, the eliminated nodes are

Algorithm 2: Fed-PNE: server

1: Input: k-nary partition P , smooth parameters ⌫1, ⇢
2: Initialize K1 = {(0, 1)}, h = 0, p = 0
3: while not reaching the time horizon T do
4: p = p+ 1;h = h+ 1
5: while |Kp

|⌧h  M or ⌧h  1 do
6: K

p = {(h0 + 1, ki� j) | 8(h0, i) 2 K
p, j < k}

Renew h = h+ 1
7: end while
8: Compute the number tm,h,i =

⌃
⌧h
M

⌥
and the phase

length |T
p
| = |K

p
|tm,h,i

9: Broadcast the set of nodes and pulled times
{Ph,i, tm,h,i}(h,i)2Kp to every clientm

10: Receive local estimates {bµm,h,i}m2[M ],(h,i)2Kp from
the clients

11: for every (h, i) 2 K
p do

12: Calculate bµh,i =
1
M

P
M

m=1 bµm,h,i

13: end for
14: Compute (hp, ip) = argmax(h,i)2Kp bµh,i

15: Compute the elimination set Ep

16: Compute the new set of nodes K
p+1 =

{(h+ 1, ki� j) | (h, i) 2 (Kp
\ E

p), j < k}
17: end while

different in nature, whereas in multi-armed bandit prob-
lem, the arms have equal roles and can be eliminated in
any phase;

• While eliminating the sub-optimal regions, Fed-PNE
also explores deeper in the partition and splits one node
into multiple nodes, which means that the number of
nodes to be sampled may increase instead of decrease
as p increases. However, the number of remaining arms
never increases in PE. This feature also brings more dif-
ficulty to the analysis of FedPNE because the phase
length is dynamic instead of fixed;

• The elimination criteria in Eqn. (1) is carefully de-
signed so that non-optimal nodes are gradually elimi-
nated. The design takes account of not only the Upper-
Confidence Bound (UCB) terms bh,i for statistical un-
certainty, but also the smoothness term ⌫1⇢h, which re-
flects for the variation of the objective function inside
one node.

Remark 4. Compared with centralized X -armed bandit al-
gorithms such as HOO and HCT, our algorithm is also unique
in the sense that none of them can deal with the federated,
heterogeneous learning setting. The collaboration scheme
and the length of each phase T p is carefully designed so that
the communication to the server is effective. It is worth men-
tioning that our algorithm requires the parameters ⌫1, ⇢ as
part of the input, which measures how fast the diameter of a
node shrinks in the partition. These parameters are important
because they characterize the smoothness of the global ob-
jective and we need them to determine the threshold ⌧h and
the elimination set Ep. This information is crucial to ensure
that validity of cumulative regret analysis theorems even for
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centralized X -armed bandit problems. Most of existing X -
armed bandit algorithms, such as Bubeck et al. (2011), Azar,
Lazaric, and Brunskill (2014) and Li et al. (2023b), require
these parameters.

Theoretical Analysis
We provide the upper bound on the expected cumula-

tive regret of the proposed Fed-PNE algorithm as follows,
which exhibits our theoretical advantage over non-federated
algorithms.
Theorem 1. Suppose that f(x) satisfies Assumption 2, and
d is the near-optimality dimension of the global objective f
as defined in Assumption 3. Setting � = 1/M , we have the
following upper bound on the expected cumulative regret of
the Fed-PNE algorithm.

E[R(T )]  C1M
1� 1

2 logk ⇢ + C2M
d+1
d+2T

d+1
d+2 (log(MT ))

1
d+2

where C1 and C2 are two absolute constants that do not de-
pend onM and T . Moreover, the number of communication
rounds of Fed-PNE scales as eO(M log T )

Remark 5. The proof of the above theorem and the exact
values of the two constants are relegated to the Appendix.
Theorem 1 displays a desirable regret upper bound for the
Fed-PNE algorithm because the first term on the right-
hand side only depends on M and it is a cost due to fed-
eration across all the clients. When T is sufficiently large
compared with M 1, the second term dominates the bound
and it depends sub-linearly on both the number of rounds
T and the number of agents M , which means that the al-
gorithm converges to the optimum of the global objective.
Moreover, the average cumulative regret of each client is of
order eO

⇣
M� 1

d+2T
d+1
d+2

⌘
, which represents that increasing

the number of clients helps reducing the regret of each client,
and thus validates the effectiveness of federation. Compared
with the regret of centralized X -armed bandit algorithms,
i.e., eO

⇣
T

d+1
d+2

⌘
(Bubeck et al. 2011; Azar, Lazaric, and

Brunskill 2014), the average regret bound of our algorithm
is smaller whenM is large, which means that our algorithm
is faster.
Remark 6. When T is relatively small, the first term in
Theorem 2 dominates the regret bound, yielding a super-
linear dependence w.r.t. M (but no dependence on T ). Such
a rate is mainly due to the lack of information and thus (po-
tentially) inefficient sampling in the early stage, especially
when there are too many clients. For example, when we ex-
plore the shallow layers, i.e., h is small, in the partition at
the beginning of the search, the total number of pulls of the
node Ph,i, i.e., Th,i = Mtm,h,i, could be much larger than
the required threshold ⌧h.
Remark 7. (Communication Rounds and Information)
Moreover, the number of communication rounds in The-
orem 1 only depends logarithmically on the time horizon
T , showing that there are no frequent communications be-
tween the server and the clients during the federated learn-
ing process. Moreover, only the mean rewards are shared

1Specifically, when T d+1 > M1�(d+2)/(2 logk ⇢) is satisfied.

instead of all the rewards. Therefore, our algorithm success-
fully protects data confidentiality to certain extent and saves
the communication cost. Similar dependence is observed in
prior federated bandit works (Shi and Shen 2021a) (Huang
et al. 2021).
It’s also worth mentioning that since the number of nodes

|K
p
| could increase when we increase the phase number p,

a better measure of the communication cost is the amount
of information communicated instead of the number of
rounds. In this measure, the communication cost depends on
the near-optimality dimension d (Assumption 3). If d = 0, it
is easy to show that the communicated information is also
of logarithmic order eO(M log T ). As mentioned by prior
research, d = 0 is the most commonly observed case for
blackbox objectives (Bubeck et al. 2011; Valko, Carpentier,
and Munos 2013). However, when d > 0, the communicated
information could be as large as O(MT

d
d+2 ) because both

|K
p
| and ⌧hp can exponentially increase when we increase

p. In the Appendix, we show that such dependence on T
is unfortunately unavoidable by any algorithm that has the
same regret rate as Fed-PNE, and thus our cost is already
optimal.
Remark 8. (Privacy) The privacy guarantee in the main
text refers to the limited communications between the server
and the clients as in Shi and Shen (2021a); Shi, Shen, and
Yang (2021b); Huang et al. (2021), instead of the quan-
titative privacy measures such as differential privacy (DP)
(Dwork et al. 2010). However, since Fed-PNE only re-
quires communications of the average rewards in very few
rounds, it would be easy to guarantee differential privacy
by adding Laplacian/Gaussian noise to the rewards in the
Fed-PNE algorithm. In the Appendix, we prove our claim
by presenting the differentially-private version of our algo-
rithm (DP-Fed-PNE) and its analysis.

Regret Lower Bound
To show the tightness of the regret bound in Theorem 1,

we provide the following lower bound.
Theorem 2. There exists an instance of the federated X -
armed bandit problem satisfying Assumptions 2 and 3 such
that the expected cumulative regret of any multi-client algo-
rithm is lower bounded as E[R(T )] = ⌦(M

d+1
d+2T

d+1
d+2 ).

Remark 9. The proof of the above theorem is pro-
vided in the Appendix. Theorem 2 essentially claims an
⌦(M

d+1
d+2T

d+1
d+2 ) regret lower bound for the M -client, T -

round federated X -armed bandit problem, even if we al-
low instantaneous and unlimited number of communications
between the clients and the server, i.e., the clients and the
server can communicate in every round about the reward of
any xm,t they choose. Therefore, the regret upper bound in
Theorem 1 is asymptotically unimprovable if we ignore the
logarithmic term O(log(MT )

1
d+2 ).

Experiments
We empirically evaluate the proposed Fed-PNE algo-

rithm on both synthetic functions and real-world datasets.
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(a) Garland (b) DoubleSine (c) Landmine (d) COVID

Figure 2: Cumulative regret of different algorithms over the number of rounds on the synthetic functions and the real-life
datasets. Unlimited communications are allowed for centralized algorithms.

We compare Fed-PNE with centralized X -armed bandit
algorithm HCT (Azar, Lazaric, and Brunskill 2014), cen-
tralized kernelized bandit algorithm KernelTS (Chowd-
hury and Gopalan 2017), federated multi-armed bandit algo-
rithm Fed1-UCB (Shi and Shen 2021a), and federated neu-
ral bandit algorithm FN-UCB (Dai et al. 2023). Additional
details of algorithm implementations and more compar-
isons against other blackbox optimization algorithms such
as Bayesian Optimization and Batched Bayesian Optimiza-
tion algorithms, are provided in the Appendix.
Remark 10. For the federated algorithms (Fed-PNE,
Fed1-UCB, FN-UCB), we plot the average cumulative re-
gret per client against the rounds. For the centralized al-
gorithms (HCT, KernelTS), we plot the cumulative re-
gret on the global objective of each task against the number
of evaluations. Such a comparison is fair in terms of over-
all computation resource, since the global objective itself is
not directly accessible, and we can view one evaluation of
global objective as the result of instant public communica-
tions of all local objective evaluations in one round. For all
the curves presented in this section (and the numerical re-
sults in the appendix), they are averaged over 10 independent
runs with shaded area standing for the 1 standard deviation.
Synthetic Dataset. We evaluate the algorithms on two

synthetic functions that are commonly used inX -armed ban-
dit problem, which are the Garland function and the Double-
Sine function, both defined on X = [0, 1]. These two func-
tions are well-known for their large number of local opti-
mums. The randomly perturbed versions of these two func-
tions are used as the local objective while the averages of
the local objectives are used as the global objective. The av-
erage cumulative regret of different algorithms are provided
in Figure 2(a) and 2(b). As can be observed in the figures,
Fed-PNE has the smallest cumulative regret.
Landmine Detection. We federatedly tune the hyper-

parameters of machine learning models fitted on the Land-
mine dataset (Liu, Liao, and Carin 2007), where the features
of different locations on multiple landmine fields extracted
from radar images are used to detect the landmines. Follow-
ing the setting of Dai, Low, and Jaillet (2020), each client
only has the access to the data of one random field, and
trains a support vector machine with the RBF kernel pa-
rameter chosen from [0.01, 10] and the L2 regularization
parameter chosen from [10�4, 10]. The local objectives and

the global objective are the AUC-ROC scores on the local
landmine field and all the landmine fields respectively. The
average cumulative regret of different algorithms are pro-
vided in Figure 2(c). As can be observed in the figures, our
algorithm achieved smallest cumulative regret and thus the
best performance.
COVID-19 Vaccine Dosage Optimization. In combat to

the pandemic, we optimize the vaccine dosage in epidemi-
ological models of COVID-19 to find the best fractional
dosage for the overall population following Wiecek et al.
(2022). Using fractional dosage of the vaccines will make
them less effective, but at the same time more people get
the chance of vaccination and thus can possibly accelerate
the process of herd immunity. In our experimental setting,
the local objectives are the final infectious rate of different
countries/regions. Different countries have different param-
eters such as population size and the number of ICU units,
and thus make the objectives heterogeneous. The results are
shown in Figure 2(d). Our algorithm also achieves the fastest
convergence.

Discussions and Conclusions
In this work, we establish the framework of federated X -

armed bandit problem and propose the first algorithm for
such problems. The proposed Fed-PNE algorithm utilizes
the intrinsic structure of the global objective inside the hi-
erarchical partitioning and achieves desirable regret bounds
in terms of both the number of clients and the evaluation
budget. Meanwhile it requires only logarithmic communica-
tions between the server and the clients, protecting the pri-
vacy of the clients. Both theoretical analysis and the exper-
imental results show the advantage of Fed-PNE over cen-
tralized algorithms and prior federated multi-armed bandit
algorithms. Many interesting future directions can be ex-
plored based on the framework proposed in this work. For
example, other summary statistics of the client-wise data can
potentially accelerate the proposed algorithm, such as the
usage of empirical variance in Li et al. (2023b). Moreover,
the current algorithm still needs a the weak lipschitzness as-
sumption. Whether the weakest assumption in the literature
of X -armed bandit, i.e., the local smooth without a metric
assumption proposed by Grill et al. (2015) can be used to
prove similar regret guarantees remains challenging.
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