
Image Content Generation with Causal Reasoning
Xiaochuan Li1,4, Baoyu Fan2,1,*, Runze Zhang1, Liang Jin1, Di Wang1

Zhenhua Guo1, Yaqian Zhao1, Rengang Li3,1

1Inspur Electronic Information Industry Co.,Ltd.
2Nankai University

3Tsinghua University
4Shandong Massive Information Technology Research Institute

lixiaochuan2088@gmail.com, fanbaoyu@foxmail.com, {zhangrunze, jinliang, wangdi11, guozhenhua}@ieisystem.com
zhaoyaqian@ieee.org, lirengang.hsslab@gmail.com

Abstract

The emergence of ChatGPT has once again sparked research
in generative artificial intelligence (GAI). While people have
been amazed by the generated results, they have also no-
ticed the reasoning potential reflected in the generated tex-
tual content. However, this current ability for causal reason-
ing is primarily limited to the domain of language genera-
tion, such as in models like GPT-3. In visual modality, there
is currently no equivalent research. Considering causal rea-
soning in visual content generation is significant. This is be-
cause visual information contains infinite granularity. Particu-
larly, images can provide more intuitive and specific demon-
strations for certain reasoning tasks, especially when com-
pared to coarse-grained text. Hence, we propose a new im-
age generation task called visual question answering with
image (VQAI) and establish a dataset of the same name
based on the classic Tom and Jerry animated series. Ad-
ditionally, we develop a new paradigm for image genera-
tion to tackle the challenges of this task. Finally, we per-
form extensive experiments and analyses, including visual-
izations of the generated content and discussions on the po-
tentials and limitations. The code and data are publicly avail-
able under the license of CC BY-NC-SA 4.0 for academic
and non-commercial usage at: https://github.com/IEIT-AGI/
MIX-Shannon/blob/main/projects/VQAI/lgd vqai.md.

Introduction
AI-generated content (AIGC), also known as generative AI
(GAI), recently gained a surge of development (Zhang et al.
2023a,b; Cao et al. 2023; Balaji et al. 2022), covering several
areas such as image (Ramesh et al. 2021, 2022; Saharia et al.
2022; Yu et al. 2022; Rombach et al. 2022), text (Raffel et al.
2020; Radford et al. 2018, 2019; Brown et al. 2020; Ope-
nAI 2023; Vinyals et al. 2015), 3D (Fu et al. 2022; Jahan,
Guan, and Van Kaick 2021; Liu et al. 2022; Mildenhall et al.
2021), and speech (Qian et al. 2014; Ze, Senior, and Schus-
ter 2013; Zen and Sak 2015). Since ChatGPT emerged, peo-
ple have been amazed by its performance while recognizing
the reasoning potential in the generated text content (Bang
et al. 2023). In particular, some recent studies have started
to delve into the text’s reasoning ability (Kojima et al. 2022;
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Wang et al. 2023; Wei et al. 2022; Shum, Diao, and Zhang
2023), including causal reasoning (Wang et al. 2022; IDEA-
CCNL 2021), in GAI.

A glass falls to the floor and breaks. A glass filled with orange juice falls 
to the floor and breaks.

A glass filled with orange juice falls 
to the floor and breaks, and the juice 
inside spills out.

A glass filled with orange juice falls 
to the floor.

Figure 1: Generated results of Stable Diffusion v2.1. The
generated results strictly follow the guidance of the text, ig-
noring other content caused by the implied conditions.

However, majority of these works have primarily focused
on text content generation, with only a limited number of
studies exploring other modalities like images. Although
some studies have tried to use images as input and achieved
good output results, except for some scalable vector graph-
ics (SVG) representation for sketches or doodles (OpenAI
2023), this field has been scarcely studied. AIGC is currently
evolving towards making the generated content more real-
istic. More specifically, these generated contents cover as
many requirements as possible in the guidance and present
more realistic details that amaze the human eye or ear. How-
ever, these generative models are difficult to follow when
underlying cause-and-effect logic is implicit in prompts like
an implied condition or relationship between objects.

Regarding the image AIGC solely, popular models do not
exhibit satisfying reasoning abilities. As shown in Figure 1,
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What will happen if this hand pulls down the rope?

→

Initial Image Answer Image

Figure 2: Task definition of VQAI.

the model is competent when we ask for a broken glass.
Once the “filled with orange juice” condition is added, a hid-
den fact is that “the juice will be spilled out” since “the glass
breaks”. Unfortunately, the generation fails. However, it can
be generated smoothly if we write this fact obviously into
the guidance, as shown in the lower left corner. Finally, we
give only the events without any prompts of possible out-
comes. The generated image does not even include the “bro-
ken” statement.

In the field of visual content generation, it is valuable to
consider the ability of causal reasoning during image gener-
ation. Specifically, since images contain information at infi-
nite granularity, images can give a more intuitive and spe-
cific demonstration for some inference tasks, especially in
comparison with the coarse-grained text. In this study, we
consider image content generation with causal reasoning.
Thus, we propose a new task as shown in Figure 2.

In particular, this task is somewhat similar to the image-
editing task in terms of the form of input and output. More
specifically, the difference is that we do not provide an exact
description of the differences used to edit, but rather a text
question containing a condition. Furthermore, models need
to generate appropriate image content based on the implicit
cues in the text and initial image. From this perspective, our
work can also be seen as an extension of the classical mul-
timodal task visual question answering (VQA) (Antol et al.
2015) in terms of output modality. Thus we also refer to this
task as visual question answering with image (VQAI).

Accordingly, we make a new dataset for this task based
on the classic Tom and Jerry cartoon series for two main rea-
sons. First, Tom and Jerry has a more straightforward world-
view than the natural scenarios, meaning that the causal re-
lationship between characters is more straightforward and
clear, with very few indirect causal events like emotional
hiding and complex strategies. Second, it gives more promi-
nence to the visual aspect of behaviors. Particularly, it weak-
ens speech as much as possible and describes relationships
through visual states like movements and expressions. Be-
sides, due to the animation, the variations of objects and
backgrounds are relatively controllable, facilitating our first
attempt at this task.

Particularly, we develop a new method for this task. An
obvious idea is concatenating a multimodal comprehension
module and a visual generator. While the former is used
to generate sensible text, the latter performs image editing
based on the former’s output. The text acts as a bridge in
this pipeline. However, this exposes a considerable risk -
there is so much less information in text than in an image.

Consequently, it would take an enormous amount of text to
replace the content in the image. This is most likely beyond
the comprehension capability of the editing model and even
beyond the token length limit. Moreover, making the lan-
guage model generate long enough text is complex. There-
fore, we propose a hidden space-guided causal image gen-
eration method and conduct extensive experiments on the
proposed dataset to demonstrate the scheme’s effectiveness.

We summarize our main contributions as follows:

• We rethink image AIGC with causal reasoning and pro-
pose a new task called VQAI.

• Additionally, a new dataset is proposed to support the
study of causal image generation.

• Furthermore, we analyze the challenges of this task and
propose a new approach to solve it. Extensive experi-
ments demonstrate the effectiveness of our method.

Related Work
Image AIGC: Image generation is an important research
area of visual AIGC that drawn huge interest among re-
searchers (Zhang et al. 2023a,b; Cao et al. 2023; Balaji et al.
2022). In recent years, underlying generative models have
been continuously proposed to promote development in this
field. Variational auto-encoder (VAE) (Kingma and Welling
2013) is an auto-encoder that learns data distribution from
latent space, and it can change the generated image by ver-
ifying the input encoding. The generative adversarial net-
work (GAN) (Goodfellow et al. 2020; Dhariwal and Nichol
2021) trains a discriminator and a generator, respectively,
based on the deep network to achieve automatic image gen-
eration, driving a wave of research trends. PixelRNN (Van
Den Oord, Kalchbrenner, and Kavukcuoglu 2016) gener-
ates reasonable visual patches based on prior pixel sequence.
More recently, the diffusion model (Ho, Jain, and Abbeel
2020) learns information degradation due to noise and gen-
erates images systematically using the learned patterns.

Meanwhile, in the past two years, text-guided image gen-
eration (text-to-image) has become popular with the rise of
multimodal research. DALL-E (Ramesh et al. 2021) uses a
pre-trained discrete variational auto-encoder (dVAE) to ex-
tract tokens for the image and an auto-regressive transformer
to generate the image. Stable/Latent Diffusion (Rombach
et al. 2022) replaces the image with encoded features as a
supervised signal and restores them to images via a visual
decoder. Furthermore, eDiffi (Balaji et al. 2022) generates
better images by integrating expert denoisers in the diffu-
sion model, using both CLIP (Radford et al. 2021) and T5
(Raffel et al. 2020) as text encoders.

Meanwhile, some other tasks for image content genera-
tion are also derived. Image editing aims to edit an image
according to a given text or another description form. Imagic
(Kawar et al. 2022) performs various text-based semantic
editing on a single image, including highly complex non-
rigid changes like pose changes and editing multiple objects.
InstructPix2Pix (Brooks, Holynski, and Efros 2022) intro-
duces small structural changes to the diffusion model and
fine-tunes it to gain editing capabilities. More so, the story
continuation task generates subsequent images based on the
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initial image and plot synopsis. StoryDALL-E (Maharana,
Hannan, and Bansal 2022) uses a pre-trained text-to-image
transformer to make the plot of the generated content more
coherent. AR-LDM (Pan et al. 2022) trains a hidden diffu-
sion model to improve the generated images’ story continu-
ity and content consistency.

These works promote research in visual AIGC, where im-
age content becomes increasingly controllable and realistic.
However, these tasks require images to be generated strictly
following text guidance, ignoring the ability to reason dur-
ing generation. Therefore, this work aims to develop such a
topic and investigate causal image content generation.
Reasoning in GAI: Recently, with the birth of ChatGPT,
the research for large language models (LLMs) continued
to grow in popularity. Particularly, many researchers have
started to explore the reasoning abilities embedded in LLMs.
It is found that adding encouragement to prompts drives rea-
soning in the generated text (Wei et al. 2022). Zero-Shot-
CoT (Kojima et al. 2022) concatenates “Let’s think step
by step” after a question to get a more detailed reasoning
step and achieves better performance on question answer-
ing (QA) tasks. Manual-CoT (Wei et al. 2022) manually de-
signs a few question-answer samples to guide the language
model to continue the chain of thoughts. Automatic-CoT
(Shum, Diao, and Zhang 2023) constructs a candidate pool
of rationale chains based on a small-labeled dataset and se-
lects the best combination for CoT prompting by employing
a variance-reduced policy gradient strategy. Besides, some
researchers have started to analyze the causal/counterfac-
tual reasoning ability embodied in LLMs, such as Randeng-
Deduction (Wang et al. 2022; IDEA-CCNL 2021). These
works illustrate that LLM-based GAI exhibits interesting
reasoning capabilities, at least in text generation.

In the multimodal domain, MM-CoT (Zhang et al. 2023c)
transfers the CoT to image-text samples and enables de-
tailed rationale and answer generation by fine-tuning an LM.
GPT4 (OpenAI 2023) demonstrates the results of causal rea-
soning with images and can even generate scribbles of sim-
ple images in SVG representation. However, although these
works considered images in GAI, they did not include im-
ages as outputs. This study refers to related works in the field
of LLM and multimodality to further investigate the causal
capabilities in image generation.

Visual Question Answering with Image
This section presents the dataset for the proposed task
VQAI. We make the code to access the dataset publicly
available under a CC BY-SA 4.0 license. More details are
released in Supplementary Material (Li et al. 2023b).

Task Definition
Syllogism (Smiley 1973) is a basic unit of causal reasoning
and is divided into three parts: major premise, minor premise
and conclusion. The major premise is the statement of a gen-
eral or universal nature. The minor premise is the statement
about a particular case. The conclusion is a corollary to ac-
cepting the premises. To study causal reasoning in the visual
task, we use this syllogism form to formulate the task.

In particular, as shown in Figure 3 (a), we construct a sam-
ple comprising three parts: i) an initial image as the major
premise, which is used to describe the relationship between
the current scene and the objects; ii) an interrogative/ques-
tion as the minor premise, containing a causal condition in
the current scenario; and iii) an answer image as the con-
clusion describing a reasonable result considering both con-
straints. This formulation is like a sample of VQA; thus, our
work can also be seen as an extension of VQA considering
causal reasoning on the output modality.

Data Collection

Initial Image Answer Image

Question: What will Jerry do if he does not like the foot of the dog?

Q AB

C

D E

Variations Multimodal Causal Chain

A. Jerry jumps up

B. Jerry kicks dog’s foot

C. the dog feels pain

D. the dog shows painful expression on its face

E. the dog scratch limbs

(a)
(b)

Figure 3: A sample from the VQAI dataset.

For the prompt VQAI task, we produce a new dataset. All
pictures used in the dataset are sampled from the Tom and
Jerry cartoon series. We adopt this cartoon for several main
reasons. First, compared to the complex scenes of nature,
the worldview of cartoons is often simplified. Specifically,
the relationships between different entities are greatly sim-
plified in the world of Tom and Jerry, and there are very
few overly complex events such as “emotional hiding” and
“complex strategies”. Instead, the exaggerated drawing style
usually highlights or emphasizes the character’s reaction to
a particular condition. This means that the cause-and-effect
relationship between characters is more straightforward and
clear, facilitating our analysis and study of the task. Second,
Tom and Jerry attaches great importance to the presentation
of visuals. Compared with some other animated films, this
cartoon ignores the necessity of language as much as possi-
ble. Particularly, it tends to convey the moods and reactions
of its characters through expressions, movements, or states.
This is beneficial to our exploration of image causal gen-
eration. Besides, as an animated film, the changes in back-
grounds, characters, and objects are relatively controllable.
This facilitates our first attempt at this novel task. Mean-
while, it reduces the difficulty of data collection.

Specifically, we download 755 episodes of Tom and Jerry
from public sources, hand-crop pairs of images where causal
relationships exist, and label the interrogative sentences that
contain the conditions.

Annotations
Causal Questions: The annotators are asked to annotate a
causal question of the text on each pair of causal images.
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Scenery Variation

What would the night turn into 
if the time had passed 12 hours?

More Entities

What will Tom do if he wants to 
eat his pet bird if he finds no 
one around?

If he‘s done throwing trash, 
what will happen to the scene as 
a result of what he’s going to do?

What will the mouse do if it sees 
the worm he is trying to catch 
and has a cup in its hand?

If Tom is coming for them, what 
expressions would Jerry and 
Taffy show?

Fewer Entities Entities Variation Emotion Variation

Scenery Variation

More Entities

Less Entities

Entities Variation

Emotion Variation
(a) (b)

Figure 4: Demonstration and proportion of the five categories of samples in the dataset.

Particularly, the question needs to give conditions under
which an initial image evolves rationally, and the answer
image must be a reasonable result of the evolution of the
initial image under this condition. An example is shown in
Figure 3 (a). In detail, each image pair is first checked by the
annotator for the existence of valid causal relationships, and
then these relationships are summarized in a single question,
such as “What happens if [condition]?”, “What will it do if
[condition]?” and so on.
Causal Chain: The annotation of causal questions com-
pletes the syllogism. However, this task is still challenging,
especially as some events develop, requiring multiple rea-
soning steps. It is indeed difficult for image generation mod-
els to answer complex causal questions (which is analyzed
further in Section ). Moreover, models cannot be assessed
whether they truly learn causal reasoning capabilities or just
fit the statistical bias on the dataset. Therefore, we annotate
the steps of reasoning, called causal chains, for a part of the
samples. It shows how the first image develops systemati-
cally into the second under the conditions given in the causal
question. In the causal chain, each edge represents one infer-
ence step, and each node represents a variation of the event
development, as shown in Figure 3 (b).

In allow the inference process to be better structured,
we classify edges and nodes separately. Specifically, edges
are classified into two types: i) to express causal reasoning,
for example, “Jerry kicks dog’s foot” causes “the dog feels
pain”, which is conventional forward reasoning; ii) to ex-
press the condition or need, for example, “Jerry kicks dog’s
foot” needs “Jerry jumps up”, which looks more like a re-
verse thinking process out the necessary conditions. In ad-
dition, nodes are also divided into two types, which are i)
visible and ii) invisible in the image. For example, “feeling
pain” is actually a mental activity that is not visible. How-
ever, it leads to a “painful expression”, which is visible.

Quality Control
We follow strict control rules to ensure the quality of the
dataset, reflected in two main aspects – annotation guidance
and annotation checking. In particular, this quality control
procedure applies to the causal questions since this part of
the data is labeled by an external worker due to its large vol-

ume. Conversely, the causal chains are all labeled by three
experienced researchers.
Annotation Guidance: We provide annotators with five
strict templates to select image pairs from the video and
write causal questions. In short, given an image pair, it is
valid when and only if it satisfies one of the following rules:
• Scenery Variation: the scene or environment is modi-

fied, such as changes in weather, brightness, and season.
• More Entities: the scene has not been modified, but one

or more entities have been added.
• Fewer Entities: the scene has not been modified, but one

or more entities have been reduced.
• Entities Variation: the modifications to the scenario are

minor with no additions or subtractions of entities.
• Emotion Variation: one or more characters’ emotions

change, accompanied by expressions or movements.
Figure 4 (a) shows specific examples of these five sample

categories, whose proportions are represented as shown in
Figure 4 (b).
Annotation Checking: The researchers review each causal
question label upon submission consistent with the above
criteria, and samples with unreasonable causal questions
are rejected. Ultimately, VQAI contains 17,524 samples, of
which 3,809 sets include causal chain annotations.

Latent Guided Diffusion Model via Frozen
Large Language Model

Latent Guided Image Generation
We think about causal reasoning and image content gen-
eration. Specifically, one of the most straightforward solu-
tions is to use an off-the-shelf image editing model, such as
InstructPix2Pix, if only the matching of the model to the
data structure is considered. We refer to this approach as
question-guided generation, as shown in Figure 5 (a). How-
ever, since the input text does not contain explicit informa-
tion for modification, it is risky to use only an image editor.
It may not be able to causal reason. Therefore, we consider
cascading a reasoning module before the generator.

The reasoning ability of large language models (LLMs)
is widely recognized. In the multimodal domain, some ap-
proaches have inserted adapters in LLM and verified that
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Image Question

(b) Answer-Guided
Generation

Image
Generator

LLM

Answer Image

Adapter

Answer

(a) Question-Guided
Generation

Image
Generator

Answer Image

Image Question

(c) Latent-Guided
Generation

Image Question

Image
Generator

LLM

Answer Image

Adapter

Latent Feature

Figure 5: Three paradigms for causal image generation.

LLM maintains reasoning ability over multimodality on
tasks such as VQA and image captioning (Li et al. 2023a).
Therefore, it is worth borrowing the inference capability of
LLM in the causal image generation process. In this work,
we consider two different paradigms, as shown in Figure
5 (b) and (c), and refer to them as answer-guided genera-
tion and latent-guided generation, respectively. One is to use
LLM to reason about the textual output for multimodal in-
puts and use that answer to guide the editing model. How-
ever, since images are far more information-rich than text,
this may introduce new risks. It requires considerable textual
description to replace the equivalent amount of information
in an image. This may exceed the editing model’s compre-
hension capability and even the token length limit. In this
study, we propose a new generative paradigm that uses the
encoding features of LLM to guide the generation model.

We propose a new method based on LLM with a diffu-
sion model called latent guided diffusion (LGD), and the
method structure is shown in Figure 6. For the use of LLM,
we introduce the Q-Former in the BLIP2 (Li et al. 2023a).
Q-Former initializes a set of fixed-length query tokens and
translates the image information into features that the LLM
encoder can read by making cross attention to the image fea-
tures. These features are concatenated together with the em-
beddings of language prompts (interrogatives or other forms
of instances) to implement different downstream tasks. As
shown in the figure, we use the same form of extracting mul-
timodal features for images and causal interrogatives and
use them to guide image decoding. On the image decoding
side, we refer to the related work of Stable Diffusion (Rom-
bach et al. 2022) and InstructPix2Pix (Brooks, Holynski, and
Efros 2022) to fuse the features used for guidance into dif-
ferent stages of UNet through the attention mechanism.

However, this brings new challenges. First, the diffusion
model does not recognize the output features of LLM. Since
it is costly to construct a large causal dataset, we intend to
refrain from training either of them from sketch. Therefore, a
space translation for latent features is necessary. It adapts the
feature’s dimensionality and semantics of the feature. In the
structure, we add a fully connected layer in front of the latent
diffusion model to translate the distribution of its input.

Moreover, for causal content generation, the output image
is essentially a prediction of the subsequent of the initial im-
age under a particular condition. In other words, the features

used for guidance need to express the information after be-
ing predicted. Unfortunately, we cannot be certain that the
output of the LLM encoder can explicitly contain this. Usu-
ally, these features are inputted into the LLM decoder, and
the prediction is made gradually by autoregression. There-
fore, we add a new module for predictive encoding to predict
the subsequent steps triggered by causal interrogatives. We
realize this through the inspiration of predictive coding (PC)
(Aitchison and Lengyel 2017; Huang and Rao 2011; Oord,
Li, and Vinyals 2018). In sequence-prediction tasks such as
speech, ordered image, and video, PC predicts the prediction
space after a given moment based on a given sequence by
adding a new series of fully connected layer combinations.
This is very similar to the task of causal image prediction,
so we transform the output of the LLM encoder into pre-
dicted information by setting up fully connected layers and
encoding the prediction.

Contrast Causal Predictive Coding

Contrast predictive coding (CPC) (Oord, Li, and Vinyals
2018) takes the speech or other ordered fragments as input to
the encoder to extract ordered features. The features are in-
put to multiple isomorphic predictive coding networks with
different weights to obtain predictive features for multiple
moments after that fragment. This approach induces poten-
tial space to capture valuable information to predict future
samples. Ultimately, CPC optimizes the model parameters
by constraining the predictive features to the ground truth of
the corresponding batch’s corresponding moments.

We refer to this form because causal image generation can
also be seen as a prediction task. Moreover, the labeled form
of the causal chain appears to satisfy the conditions to con-
struct the loss function. However, two risks arise. First, the
time-series samples to which this predictive encoding ap-
plies are uniform. In other words, the distance between any
adjacent frames in the sequence is the same as in a speech
or video sequence with a fixed time interval. However, such
uniformity does not exist in causal inference. In particular,
it is not guaranteed that all neighboring nodes of a causal
chain express an equal number of inference steps between
them. As in Figure 3 (b), we consider that “mouse kicks
dog’s foot” (node B) causes “dog feels pain” (node C), fol-
lowed by “dog shows a painful expression”(nodeD). How-
ever, it seems reasonable to derive D directly from B. Peo-
ple express the inference differently, so the causal chain is
not uniform. Moreover, the annotation of causal chains has
a significant long-tail effect. This may lead to insufficient
training of the latter fully-connected layers in traditional PC.

Therefore, we propose contrast causal predictive coding
(CCPC). First, we replace several FCs in CPC with one,
which is only used to encode whether there is a causal re-
lationship between the two. Specifically, while calculating
the loss, we take positive samples from the causal chain of
the current sample and select several nodes from other sam-
ples as negatives, and optimize the model parameters using
contrast learning.
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What will Jerry do if he
does not like the foot of the
dog?

Image
Encoder

LLM
EncoderQ-Former Latent Space

Translation
Latent
Diffusion

Image Condition
Predictive Coding

Fully
Connected

Multimodal
CausalChain
Generation

Contrast Causal
Predictive
Coding

Image
Generation

Loss Functions
Frozen

Finetune

From scratch

Figure 6: Architecture of Latent Guided Diffusion Model via Frozen Large Language Model.

FC

FC

FC

… …

(a)

LLM
Encoder

Facts Sampling
the mouse ……
the cat ……

(b) (c)

from the image, we can
infer that the mouse kick the
foot of ……

LLM
Decoder

Fixed
Template
Guidance

Causal Chain

Figure 7: Structures of CPC (a), CCPC (b), and MCCS (c).

Multimodal Causal Chain Supervision
To enable better characterization of LLM-encoded features,
introduce the supervision of the causal chain text genera-
tion. Inspired by a work related to chain-of-thoughts (Ko-
jima et al. 2022; Wei et al. 2022; Zhang et al. 2022; Shum,
Diao, and Zhang 2023; Zhang et al. 2023c), we use text in
the form of causal chains to provide supervised signals. In
the training phase, we generate text labels for samples that
include causal chain annotations. In particular, a fixed tem-
plate guidance helps generate this part of the labels as shown
in Figure 7(c). Specifically, these text labels provide an aux-
iliary optimization for the trainable parameter part of the
model, as shown in Figure 7 (c).

Experiments
In this section, we show and analyze the experimental phe-
nomena. First, we compare the results of the three genera-
tive paradigms in Figure 5. After that, we block latent space
translation (LST), CCPC, and multimodal causal chain su-
pervision (MMCS) and analyze the results of the ablation
experiments. All experiments are run on an A100×8 server.
In the dataset, we divided 17,524 samples into 15,524, 1,000
and 1,000, corresponding to the training, validation and test-
ing sets. Among them, 3809 samples in the training set in-
clude causal chain annotations. Regarding the model, the
LLM in this work references T5-XXL, and the image de-
coder uses stable diffusion. In the training phase, we use
Flan-T5-XXL (Raffel et al. 2020; Chung et al. 2022) with
the original stable diffusion to initialize the parameters. All
initial learning rates are set to 3e-5. In the comparison ex-
periments, we use ADAM (Kingma and Ba 2014) as the op-
timizer. We set the batch size to 16 and the epoch to 20.

Additional, we show more details and analysis in Supple-

mentary Material(Li et al. 2023b).

Evaluation Metrics
We design CLIP-based (Gal et al. 2022; Radford et al.
2021) and human-based evaluation matrics, respectively.
Specifically, we compute the similarity of CLIP features be-
tween the generated image and the ground truth, denoted
as SimAvg . However, given the diversity that results from
causal reasoning, it is not reasonable to conclude that a result
different from GT is wrong. Thus, we propose SimBest@k

to compute the maximum value of similarity among the k
results generated. In our experiments, we set k to 9. Af-
ter that, we introduce AUC based on CLIP score to observe
the semantic accuracy of the generated pictures, denoted as
AUCAvg and AUCBest@k. In addition, we incorporate hu-
man evaluations in order to accommodate the diversity of
results. We invite 10 researchers to evaluate whether the gen-
erated images are semantically causally related to the input
to obtain the accuracy. In addition, we ask each evaluator to
subjectively select the one they think is the best to compare
the generative performance of the different methods, which
is denoted as ChosenRate.

Causal Image Generation
We evaluate the three paradigms represented in Figure 5, as
shown in Figure 8. It can be clearly observed that the results
of the question-guided diffusion model (QGD) are confus-
ing. In particular, the image decoder may incorrectly add
something from the question into the image rather than un-
derstanding the result to which this question would lead. As
shown in the first row of Figure 8, QGD incorrectly gener-
ates the content of the word “biscuit” instead of the rat’s re-
action to losing it. This may be because the decoder does not
have the ability to reason. It can understand certain elements
or variations that appear in the text and present them in the
image modification process while ignoring those implicit in-
ferences from the text. More so, it makes this paradigm eas-
ily adaptable to tasks like image editing rather than causal
content generation. However, AGD is an improvement of
QGD. Since QGD lacks the ability of causal reasoning, a
possible solution is to cascade a text reasoning model before
the image decoder, whose duties are simultaneously reduced
to a single editing model. Fortunately, the examples in Fig-
ure 8 show that AGD is effective. Furthermore, The Latent-
guided diffusion model (LGD) is a further improvement on
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Question: If the cat runs a little fast, where will he stop?

Input Image Ground Truth QGD AGD LGD

Text Answer: He'll stop at the edge.
AGD doesn’t generate “almost falling”
detail (caused by “a little fast”).

Question: What will he do if he sees Tom stealing his 
cookies on the left side of the glass in front of him?

Text Answer: He'll be sad.It incorrectly generates the word 
“biscuit” in the question, instead 
of the mouse's reaction.

AGD and QGD generate reasonable situations although the contents 
are different from GT.

LGD shows a more 
comprehensive phenomenon 
caused by his “a little fast”.

Figure 8: Visualization of the results generated by QGD, AGD, and LGD.

Input Image LGD w/o LSTGround Truth w/o CCPC w/o MCCS

Question: What expression would he show if he sees something wonderful?

Question: If there is delicious food in front of them, what will be left in the scene in the next moment?

Figure 9: Visualization of the ablation results.

the AGD. This suggests that language does overlook some
imperceptible variations in images that may be preserved in
the hidden space, as shown in the second row of Figure 8.
In addition, we evaluate the three methods quantitatively, as
shown in Table 1. The results of all the experiments can be
seen in Table 1, where LGD is superior in all metrics.

Methods QGD AGD LGD
SimAvg (CLIP) 0.8361 0.8444 0.8589

SimBest@9 (CLIP) 0.8831 0.8867 0.9038
AUCAvg (CLIP) 0.8311 0.8394 0.8539

AUCBest@9 (CLIP) 0.8781 0.8819 0.8987
Acc (human) 0.1695 0.1852 0.3239

ChosenRate (human) 0.1601 0.2310 0.5135

Table 1: Quantitative comparison of three paradigms. CLIP
and human evaluations of the mentioned methods.

Ablation Study
We conduct experiments to analyze the effects of three
modules proposed before: latent space translation (LST),
contrast causal predictive coding (CCPC), and multimodal
causal chain supervision (MCCS). Figure 9 presents the ex-
perimental results obtained after removing these modules.
Precisely, the fourth, fifth, and sixth columns of Figure 9
correspond to the generated results when LST, CCPC, and
MCCS are removed, respectively. It can be observed that
the absence of LST significantly degrades the quality of the

generated images. A possible reason is that LST effectively
translates the output of the text encoder into features that the
stable diffusion (Rombach et al. 2022) understands, reduc-
ing the performance degradation caused by communication
gaps. Meanwhile, the lack of CCPC may cause the model to
generate content that is more similar to the original image,
supporting the notion that predictive coding is necessary for
a task that requires generating content that has not yet oc-
curred. Additionally, the absence of MCCS leads to a higher
likelihood of semantic errors in the generated content, which
is reasonable considering that MCCS provides supervision
for semantic understanding.

Conclusion
In this study, we rethink image content generation and pro-
pose the task of causal image content generation. To support
the task, we propose a dataset of VQAI based on the Tom and
Jerry cartoon series. Furthermore, we analyze the challenges
of the task and propose an LGD approach, which is experi-
mentally demonstrated in this paper. Finally, we further ob-
serve the experimental results of this task on several interest-
ing aspects and analyze some of its potential and drawbacks.
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