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Abstract

Solving Singularly Perturbed Differential Equations (SPDEs)
poses computational challenges arising from the rapid transi-
tions in their solutions within thin regions. The effectiveness
of deep learning in addressing differential equations moti-
vates us to employ these methods for solving SPDEs. In this
manuscript, we introduce Component Fourier Neural Opera-
tor (ComFNO), an innovative operator learning method that
builds upon Fourier Neural Operator (FNO), while simul-
taneously incorporating valuable prior knowledge obtained
from asymptotic analysis. Our approach is not limited to FNO
and can be applied to other neural network frameworks, such
as Deep Operator Network (DeepONet), leading to potential
similar SPDEs solvers. Experimental results across diverse
classes of SPDEs demonstrate that ComFNO significantly
improves accuracy compared to vanilla FNO. Furthermore,
ComFNO exhibits natural adaptability to diverse data distri-
butions and performs well in few-shot scenarios, showcasing
its excellent generalization ability in practical situations.

Introduction
Singularly perturbed differential equations (SPDEs) serve as
fundamental mathematical models in diverse physical phe-
nomena, including fluid flows and material sciences (Roos,
Stynes, and Tobiska 2008). Formally, SPDEs can be re-
garded as a distinct class of differential equations with a
small positive parameter ε appearing before the highest
order derivative. These equations yield solutions that un-
dergo rapid changes in thin regions, commonly referred to
as boundary layers or inner layers, depending on their re-
spective locations. Consequently, solving SPDEs poses sig-
nificant challenges, both analytically and numerically.

With the surge of deep learning, efforts have been di-
rected toward employing artificial neural networks for solv-
ing partial differential equations (PDEs) (Roos, Stynes, and
Tobiska 2008), particularly in the field of physics-informed
machine learning (Bar-Sinai et al. 2019; Greenfeld et al.
2019; Karniadakis et al. 2021). Notably, operator learning
techniques like FNO (Li et al. 2020) and DeepONet (Lu
et al. 2021) have gained attention for their ability to learn
operators between infinite-dimensional functional spaces.
However, when addressing SPDEs, standard methods like
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vanilla FNO/DeepONet, and other neural network-based
PDE solvers, face challenges. The occurrence of thin layers
within SPDE solutions introduces stiffness-related features
in neural network models.

In this study, we present the Component Fourier Neural
Operator (ComFNO) for SPDEs. ComFNO extends FNO,
tailored to boundary or inner layer phenomena. Unlike the
explicit inclusion of physical equations, our method inte-
grates prior knowledge from asymptotic analysis directly
into the neural network architecture. ComFNO inherently
differentiates between smooth and layer parts of SPDE so-
lutions, enabling separate implicit learning. Our demon-
strations reveal enhanced predictive accuracy, even in few-
shot cases, and adaptability across diverse data distributions.
ComFNO’s versatility positions it as a promising tool. Our
contributions are threefold:

• We propose ComFNO, integrating asymptotic analysis
insights into vanilla FNO’s architecture.

• Our approach is not limited to FNO, offering a flexible
framework applicable to SPDEs and compatible with al-
ternative neural network architectures, like DeepONet.

• Experimental results across various SPDEs, encom-
passing one-dimensional, two-dimensional, and time-
dependent equations, demonstrate significant reductions
in mean, infinity norm, and residual error variance.
This underscores the improved accuracy of ComFNO
in addressing SPDEs, while its robustness is confirmed
through empirical investigations involving multiple data
distributions and few-shot cases.

Related Work
Physics-Informed Machine Learning
While pure data-driven machine learning has achieved
breakthroughs in many fields, researchers have attempted to
combine physical knowledge with machine learning to im-
prove performance. Physics-informed machine learning in-
tegrating seamlessly data and mathematical physics mod-
els (e.g., PDEs), has been one of the hotspots in current
researches (Karniadakis et al. 2021; Markidis 2021). This
development, stemming from physics-informed neural net-
works (PINNs) and other neural network-based PDE solvers
(Raissi, Perdikaris, and Karniadakis 2019; E and Yu 2018;
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Bar-Sinai et al. 2019; Rackauckas et al. 2020; Yadav and
Ganesan 2021), signifies a noteworthy evolution.

PINNs employ tailored objective functions for diverse dif-
ferential equations, utilizing limited datasets and even unsu-
pervised learning. They harness inherent physical insights
but may lack thorough data distribution analysis. However,
PINN training presents unique challenges compared to con-
ventional supervised learning.(Krishnapriyan et al. 2021;
Wang, Yu, and Perdikaris 2022).

Neural Operators

Research into operator learning has recently surged, aim-
ing to approximate mappings between infinite-dimensional
functional spaces (Goswami et al. 2022). This innovation
eliminates the need for repetitive equation-solving with
varying parameters, such as coefficients or source terms,
promising significant speed-up compared to vanilla PINNs
and traditional solvers. Contributions from the introduction
of Deep Operator Network (DeepONet) (Lu et al. 2021) and
Fourier Neural Operator (FNO) (Li et al. 2020) are notewor-
thy. DeepONet harnesses the universal approximation theo-
rem for operators (Chen and Chen 1995), accompanied by
rigorous convergence analyses (Deng et al. 2022; Lanthaler,
Mishra, and Karniadakis 2022; De Ryck and Mishra 2022)
and diverse applications (Lu et al. 2022; Wang, Wang, and
Perdikaris 2021; Jin, Meng, and Lu 2022; Haghighat et al.
2021). However, it often demands an extensive dataset to en-
hance predictive performance. FNO boasts theoretical error
estimates (Kovachki, Lanthaler, and Mishra 2021) and the
capability to simulate various physical phenomena, includ-
ing fluid flows (Li et al. 2021; Rosofsky and Huerta 2022),
seismic waves (Yang et al. 2021), and material modeling
(You et al. 2022). Although DeepONet and FNO perform
comparably across several crucial PDEs (Lu et al. 2022),
FNO is chosen in this study due to its superior cost-accuracy
trade-off (De Hoop et al. 2022).

Numerical and Neural Networks for Solving
SPDEs

Addressing SPDEs is a key concern in applied mathematics.
Classical numerical techniques, including finite difference
and finite element methods, have been extensively studied
for such purposes (Roos, Stynes, and Tobiska 2008; Roos
2022). Yet, these methods require predefined grids, with ac-
curacy tied to grid density. The rise of deep learning has
led to the use of neural networks in tackling SPDEs (Tawfiq
and Al-Abrahemee 2014). Improvements in network archi-
tectures and training strategies have enhanced SPDE-solving
capabilities (Liu et al. 2020; Greenfeld et al. 2019; Simos
and Famelis 2022; Beguinet et al. 2022). Nevertheless, neu-
ral network solvers for SPDEs reveal limitations in physics-
informed machine learning methods like PINNs. Further-
more, these methods focus on equation solutions rather than
solution operators. Developing operator solvers for SPDEs
is particularly challenging due to the rapid transitions in so-
lutions within thin regions.

Problem Settings and Preliminaries
Singularly Perturbed Differential Equations
Singularly perturbed differential equations (SPDEs) involve
a small positive parameter, usually denoted as ε, which typ-
ically appears ahead of the highest-order derivative term.
As ε approaches 0, the solution’s derivative (or higher-order
derivatives) can tend towards infinity within specific regions.
Meanwhile, the solution (or its derivative) undergoes signif-
icant changes in these regions, while displaying regular be-
havior away from them. These regions are termed boundary
layers or inner layers, depending on their relative positions.

We illustrate the concept using the one-dimensional
convection-diffusion equation as an example—a straightfor-
ward yet highly significant category of SPDEs—presented
in the following form:{

− εu′′ + b(x)u′ + c(x)u = f(x), x ∈ (0, 1) ,

u(0) = u(1) = 0,
(1)

where ε is a very small positive parameter. The higher-order
term u′′ delineates diffusion, while the first-order term u′

signifies convection. Owing to the existence of this small
parameter ε, the solution to such an equation tends to exhibit
singular behavior, as demonstrated in Figure 1.

Figure 1: (left) Ground truth and predictions for FNO and
ComFNO. Here we have b(x) = x + 1, c(x) = 0 and ε =
0.001 in Eq. (1). We take 900 distinct f(x) for training and
a random f(x) for testing. (right) Zoomed in curves near the
boundary layer. We can see that, the true solution of Eq. (1)
has a boundary layer at x = 1.

Fourier Neural Operator
Fourier neural operator (FNO) is derived from the kernel
neural operator, which replaces the operator with the Fourier
operator (Li et al. 2020). The Fourier layer, constituting
a fundamental building block of FNO, drives the updates
vt 7→ vt+1 as follows:

vt+1(x) := σ (Wvt(x) + (K(a; θ)vt) (x)) .

Here, W represents a linear transformation, and σ denotes a
nonlinear activation function. The parameterized neural net-
work K(a; θ) is characterized by the subsequent formula-
tion:

(K(ϕ)vt) (x) = F−1 (Rθ · (Fvt)) (x).

In this context, F stands for the Fourier transform, while
F−1 signifies its inverse. These transformations are detailed
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as:

(Ff) (k) =

∫
D

f(x)e−2iπ⟨x,k⟩dx,(
F−1f

)
(x) =

∫
D

f(k)e2iπ⟨x,k⟩dx.

Method
Asymptotic Analysis
Our framework builds upon the principles of singular pertur-
bation theory and asymptotic expansion methods. The func-
tion uas represents an asymptotic expansion of order m of
u if there exists a constant C such that for all x ∈ [0, 1] and
sufficiently small ε, the following inequality holds:

|u(x)− uas(x)| ≤ Cεm+1.

In numerous classes of SPDEs, their solutions or asymp-
totic expansions often exhibit a decomposition into two dis-
tinct components. One part characterizes the solution’s be-
havior within boundary or inner layers referred to as the
“layer part”—while the other part pertains to the solu-
tion’s behavior outside these regions, termed the “smooth
part.” Within this manuscript, our focus primarily centers
on exponential-type layers, which occur frequently and exert
substantial influence on the solution. For these exponential-
type layers, the layer part shares a significant relationship
with exponential functions, thereby furnishing pivotal in-
sights that underpin our innovative framework.

Extensive research has focused on the asymptotic analy-
sis of SPDEs (Roos, Stynes, and Tobiska 2008; Becher and
Roos 2015). We will now present some notable contributions
in this domain, with illustrative examples further elucidating
boundary and inner layer phenomena in SPDEs available in
the Appendix.

Ordinary Differential Equations To begin, we assume
that all the forthcoming equations involve sufficiently
smooth coefficient functions and source terms. The term ”re-
duced solutions” refers to solutions of the reduced problems
obtained by setting ε = 0 in the SPDEs.

Let’s commence with a simple convection-diffusion equa-
tion:{

−εu′′ + b(x)u′ + c(x)u = f(x), x ∈ (0, 1),
u(0) = u(1) = 0.

(2)

The solution of Eq. (2) typically exhibits an exponential
boundary layer at x = 1 when b(x) > 0 on [0, 1], and a
similar layer at x = 0 when b(x) < 0. In cases where b(x)
has zeros on [0, 1], we refer to it as the turning point prob-
lem, which will be addressed separately later. The conditions
b < 0 and b > 0 are mutually equivalent, as the change of
variable x 7→ 1−x transforms the problem from one formu-
lation to the other. Focusing on the case when b(x) ≥ β > 0,
the solution u has an asymptotic expansion of order m in the
following form:

uas(x) =
m∑

ν=0

ενuν(x) +

m∑
µ=0

εµvµ

(
1− x

ε

)
. (3)

The functions uν (ν = 0, 1, . . . ,m) and vµ (µ =
0, 1, . . . ,m) in Eq. (3) are obtained through matched asymp-
totic expansion (Eckhaus 2011), a widely-used technique in
asymptotic analysis. This method identifies u0 as the re-
duced solution, and v0

(
1−x
ε

)
= −u0(1) exp

(
−b(1) 1−x

ε

)
,

yielding an asymptotic expansion with the following esti-
mate:

|u(x)− (u0 + v0)| ≤ Cε, (4)
prompting the integration of exponential operations in FNO.

In Eq. (4), u0 represents the smooth part of the asymptotic
expansion, capturing the function’s smooth behavior across
most regions except the boundary layer, while v0 serves as
the the layer part, acting as a correction within the boundary
layer region. Beyond the asymptotic expansion, the solution
u to Eq. (2) can be further decomposed into two parts: the
smooth part denoted by S, which satisfies

|S(x)| ≤ C,

and the layer part denoted by E, which satisfies

|E(x)| ≤ Cε−l exp

(
−β(1− x)

ε

)
.

In the context of turning point problems, isolated points
where the coefficient of u′ vanishes are referred to as turn-
ing points. In this study, we focus on the scenario of a sin-
gle turning point located within the interior of the domain,
without loss of generality, where the differential equation is
defined on the interval (−1, 1) with the turning point situ-
ated at x = 0. Thus, we investigate the following equation
by assuming b(x) ̸= 0:{

− εu′′ + xb(x)u′ + c(x)u = f(x), x ∈ (−1, 1) ,

u(−1) = u(1) = 0.
(5)

It is crucial to emphasize that the solution u(x) may
demonstrate singular behavior at the turning point x = 0
and the boundary points x = −1 and x = 1 (for further de-
tails, refer to the Appendix). For our analysis, we consider
the case where b(x) ≥ β > 0 on [−1, 1], resulting in the
emergence of two distinct boundary layers at x = −1 and
x = 1. For this particular case, the solution’s asymptotic
expansion is given by

uas = u0 + v0 + w0, with |u(x)− uas(x)| ≤ Cε,

where u0 is the reduced solution, v0 and w0 are defined as
follows:

v0(x) = (u(1)− u0(1)) exp

(
−b(1)

1− x

ε

)
,

w0(x) = (u(−1)− u0(−1)) exp

(
b(−1)

1 + x

ε

)
.

Partial Differential Equations In the context of parabolic
partial differential equations in the space-time domain Q =
(0, 1) × (0, T ], the initial-boundary value problem is de-
scribed by the following equation:
ut − εuxx + b(x, t)ux + d(x, t)u = f(x, t), (x, t) ∈ Q,

u(x, 0) = s(x), 0 ≤ x ≤ 1,

u(0, t) = q0(t), 0 < t ≤ T,

u(1, t) = q1(t), 0 < t ≤ T.
(6)
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In cases where b > 0, the solution u displays smooth be-
havior across most of domain Q. However, near the bound-
ary x = 1 of Q, the solution typically manifests a boundary
layer. For fixed t > 0, this layer’s behavior relative to x re-
sembles that in Eq. (2). In this context, the solution u(x, t)
can be decomposed as:

u(x, t) = u0(x, t)− ũ0(1, t)e
−b(1,t)(1−x)/ε + w(x, t).

Here, u0 is the reduced solution, |ũ0| = O(1), and
|w(x, t)| ≤ Cε1/2.

For a boundary value problem of an elliptic partial differ-
ential equation in the spatial domain Ω = (0, 1) × (0, 1),
given by{− ε∆u+ b(x, y) · ∇u+ c(x, y)u = f(x, y), in Ω,

u(x, y) = 0, on ∂Ω.
(7)

Under the assumption of b = (b1, b2) > 0 (specifically,
with b1 > 0 and b2 > 0), the emergence of two exponen-
tial boundary layers is evident, situated at both x = 1 and
y = 1. The interplay of these two boundary layers at the co-
ordinate (1, 1) necessitates the introduction of a corner layer
correction. The asymptotic expansion of u is formulated as:

uas(x, y) := u∗
as(x, y) + v∗as(x, y),

u∗
as(x, y) := u0(x, y)− u0(1, y)e

−b1(1,y)
1−x
ε

− u0(x, 1)e
−b2(x,1)

1−y
ε .

v∗as(x, y) := u0(1, 1)e
−b1(1,1)b2(1,1)

1−x
ε

1−y
ε .

(8)

Here, u0 is the reduced solution and the following estimation
holds:

|u(x)− uas(x)| ≤ Cε.

Improved Network Structure
In the preceding section, we introduced asymptotic expan-
sions and solution decompositions for diverse classes of
SPDEs. These solutions, including their asymptotic expan-
sions, can be partitioned into two components: the smooth
part and the layer part. Remarkably, their solutions exhibit
exponential boundary layers, with the layer parts linked to
exponential functions. Specifically, it is evident that in cases
where the spatial dimension is one-dimensional, encompass-
ing ordinary differential equations (ODEs) such as Eq. (2),
(5), and partial differential equations (PDEs) like Eq. (6), the
layer part demonstrates behavior akin to exp(−c(x0−x)/ε)
as x approaches x0. Here, x0 signifies the location of a
boundary or inner layer, and c represents a constant for
ODEs and a function for PDEs. For instance, in Eq. (5), the
solution reveals two exponential boundary layers at x = −1
and x = 1, with the layer parts exhibiting behavior resem-
bling exp(c(1 − x)/ε) near x = 1 and exp(c(−1 − x)/ε)
near x = −1, respectively.

This insight prompts the extension of vanilla FNO to
the construction of the Component Fourier Neural Opera-
tor (ComFNO) illustrated in Fig. 2. By incorporating expo-
nential operations and the coordinate transformation x 7→
ξ = (x0 − x)/ε to account for scaling in layers, ComFNO
integrates prior knowledge of layer locations and types,

thereby enhancing the existing operator learning frame-
work. This approach involves two steps: (1) employing the
“FNO” block to capture the smooth parts, and (2) employing
layer blocks to learn specific layer-related information. For
ComFNO with N layer blocks, the model can be succinctly
represented by the equation:

ComFNO = FNO0 +
N∑
i=1

NNi ∗ exp(FNOi). (9)

Here, FNOi (i=0,1,. . . ,N) signifies the FNO model, while
NNi (i=1,2,. . . ,N) represents shallow neural networks.
FNO0 corresponds to the “FNO” block in Fig. 2, while
NNi ∗ exp(FNOi) corresponds to the N layer blocks in
ComFNO, where NNi corresponds to the “Dense” block and
FNOi corresponds to the “extra FNO” block.

For problems with spatial dimensions not less than 2, such
as the two-dimensional PDE Eq. (7), the solution exhibits
two exponential boundary layers along x = 1 and y = 1,
displaying similar behavior to exp(c(1− x)/ε) near x = 1
and exp(c(1− y)/ε) near y = 1. However, their overlap-
ping at the coordinate (1, 1) gives rise to a corner layer. In
theory, one could incorporate a layer block in ComFNO to
rectify inaccuracies near the corner (1, 1). Yet, each addition
of a layer block results in an increase in network complex-
ity, necessitating a trade-off. Interestingly, we observe that
the corner layer part v∗as in Eq. (8) can also be expressed as
exp(c(1− x)/ε) or exp(c(1− y)/ε) with c as a function.
Hence, the corner treatment is omitted, as the incorporation
of two layer blocks is anticipated to rectify inaccuracies near
the corner (1, 1). The subsequent section’s experiment will
demonstrate its effectiveness.

Experiments
In this section, we apply ComFNO to a wide range of
SPDEs, including both ordinary and partial differential
equations, as well as scenarios involving multiple data dis-
tributions and few-shot cases. Furthermore, we conduct a
comparative analysis of the experimental results with those
obtained using FNO.

Subsequently, we detail the default experimental setup,
where, unless explicitly stated, experiment parameters are
established as follows. The parameter ε in SPDEs remains
set at 1 × 10−3. Our aim is to learn the mapping f 7→ u,
where f represents the source term. The training dataset
consists of 900 × 201 tuples (f, u), with 900 f samples in-
dependently drawn from Gaussian random fields and used
as inputs. Resolution on [0, 1] or [−1, 1] is fixed at 201.
To derive u, we use high-precision numerical methods. For
steady-state problems, which are independent of time, the
upwind scheme on the Shishkin mesh is employed. For time-
dependent problems, the Crank–Nicolson scheme on the
Shishkin mesh is used (Roos, Stynes, and Tobiska 2008).
More detailed configurations can be found in the Appendix.

After training the models, we will assess their perfor-
mance on 100 different f samples outside the training set,
maintaining a resolution of 201. In the exposition of exper-
imental findings, we will designate the high-precision nu-
merical results as the ground truth, denoted by ug , while the
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Figure 2: Architecture of ComFNO. a(x) and u(x) represent the input of model and solution of the problem, respectively.
Both “FNO” and “extra FNO” represent Fourier Neural Operators, with the latter being smaller. An “exp” function follows
“extra FNO,” indicating an exponential operation applied to its output. “Dense” corresponds to a shallow neural network that
learns the coefficients of the exponential function. The layer block’s input comprises both a(x) and a(ξ), the latter involving
a coordinate transformation to accommodate scaling in layers. For instance, when encountering a boundary or inner layer at
x = x0, the use of ξ = (x0 − x)/ε is advantageous.

model predictions will be represented as up. Throughout this
manuscript, we will visualize the prediction residuals of both
FNO and ComFNO, namely, up −ug . Detailed ground truth
and prediction results will be presented in the Appendix.

Ordinary Differential Equations

Figure 3: Performance of both FNO and ComFNO on
Eq.(10) with ε = 0.001. Both trained models are evaluated
on 100 f samples, and their resulting residual curves are de-
picted. (Subfigure): Zoomed-in view.

For ordinary differential equations, we examine cases
both with and without turning points. We begin with the fol-
lowing problem:{

− εu′′ + (x+ 1)u′ = f x ∈ (0, 1),

u(0) = u(1) = 0.
(10)

This problem’s solutions feature an exponential boundary

Figure 4: FNO and ComFNO performance on Eq.(11) with
ε = 0.001. Both trained models are evaluated on 100 f sam-
ples, and their resulting residual curves are depicted. (Sub-
figure): Zoomed-in view.

layer at x = 1, leading us to employ a single layer block and
incorporate a coordinate transformation ξ = (1 − x)/ε to
incorporate f(ξ) as one of the inputs to the layer block.

Li et al. (2020) emphasizes FNO’s resolution insensitiv-
ity, yielding improved results even at lower resolutions. Yet,
as shown in Figure 4, FNO residuals are notably larger near
x = 1 compared to other regions. This stems from limited
data near the boundary layer and significant solution varia-
tions as ε approaches zero, potentially causing underfitting
of the boundary layer.

Upon integrating a layer block, residuals decrease within
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the boundary layer. Surprisingly, this addition boosts accu-
racy near the boundary layer and reduces overall errors. Re-
markably, for this case, our layer block structure harmonizes
with the solution’s inherent differential equation configura-
tion.

Next we consider the case with turning point x = 0:{
− εu′′ + x(x+ 2)u′ + u = f, x ∈ (−1, 1),

u(−1) = u(1) = 0.
(11)

Given the exponential boundary layers at both x = −1
and x = 1, two layer blocks in ComFNO are essen-
tial. These blocks receive inputs (f(x), f((1 − x)/ε)) and
(f(x), f((−1−x)/ε)), respectively. Fig. 3 displays the pre-
diction residuals of ComFNO and FNO, revealing smaller
residuals for ComFNO across all regions. This highlights
ComFNO’s proficiency in effectively addressing turning
point problems.

Partial Differential Equations
Here we consider a parabolic differential equation in space-
time domain:{

ut − εuxx + ux + xu = 0 (x, t) ∈ (0, 1)× (0, 1]
u(x, 0) = f(x) x ∈ [0, 1]
u(0, t) = u(1, t) = 0, t ∈ [0, 1].

(12)
Our aim is to learn the mapping f 7→ u(·, 1). Incorporat-
ing a layer block with the input (f(x), f((1 − x)/ε)) into
ComFNO addresses the boundary layer near x = 1. Fig. 5
presents prediction residuals for both ComFNO and FNO.

Figure 5: Performance of both FNO and ComFNO on
Eq.(12) with ε = 0.001. Both trained models are evaluated
on 100 f samples, and their resulting residual curves are de-
picted. (Subfigure): Zoomed-in view.

Finally we consider an elliptic differential equation: −ε∆u+ ux + uy + u = f(x), (x, y) ∈ (0, 1)2,
u(0, y) = u(1, y) = 0, y ∈ [0, 1]
u(x, 0) = u(x, 1) = 0, x ∈ [0, 1].

(13)
The boundary layer for this equation is present at x = 1 and
y = 1. To address this, we utilize two layer blocks with in-
puts (f(x, y), f((1−x)/ε), y) and (f(x, y), f(x, (1−y)/ε))
in ComFNO. In Fig. 6(b), our approach’s efficacy through-
out the entire region, not just the boundary, is evident.

(a) predicts on both two methods

(b) absolute residuals on both two methods

Figure 6: Performance of FNO and ComFNO on Eq.(13)
with ε = 0.001. The training set consists of 900 × 51 ×
51 tuples (f, u), including 900 independent f samples, each
with a resolution of 51 × 51. Trained models are evaluated
using a randomly selected f sample. Absolute residuals for
both models are presented, calculated as |up−ug|, where ug

is the ground truth and up represents the model predictions.

Multiple Distributions
Vanilla FNO faces challenges when handling equations with
various distinct ε values concurrently, as differing ε can re-
sult in diverse data distributions. To tackle this, an effective
strategy is to include the parameter ε as input or a prominent
feature within the dataset, and the former method is used
here. Our model follows a multi-input design, requiring the
additional input ε for effective coordinate transformation.

Figure 7: Performance of both FNO and ComFNO on
Eq.(10). Both models are evaluated using 100 f samples
with varying ε, and the corresponding residual curves are
illustrated. (Subfigure): Zoomed-in view.

As an illustration, consider Eq. (10). The training dataset
is composed of 100×100×201 triplets (f, u). These triplets
encompass 100 unique random functions f , each paired with
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Experiment FNO ComFNO
mean ∥ · ∥L∞ var mean ∥ · ∥L∞ var

1D(no turning point) 5.0e-04 3.8e-03 1.1e-06 1.0e-04 6.0e-04 1.3e-08
1D(turning point) 1.6e-03 8.5e-03 6.1e-06 6.0e-04 2.1e-03 1.9e-07

1D(initial-boundary) 9.0e-05 1.7e-03 4.8e-08 4.2e-06 4.0e-05 3.3e-11
2D 5.0e-4 1.67e-02 8.2e-07 2.0e-04 3.0e-03 1.5e-07

multiple ε 7.0e-04 1.7e-02 7.5e-06 6.0e-04 2.1e-03 2.5e-07
few-shot 1.2e-03 4.5e-03 1.5e-06 3.0e-4 1.3e-03 1.0e-07

Table 1: Mean, infinity norm, and variance of residuals on test set of all experiments.

100 distinct ε values ranging from 0.001 to 0.1 in increments
of 0.001. The resolution is set at 201. Our main objective is
to evaluate the ability of the two models to effectively fit this
particular type of data.

We assess the model performance using 100 f samples
that beyond the training set. Each f sample is associated
with a distinct ε, ranging from 0.001 to 0.1. As shown in Fig.
7, the outcomes of FNO appear to lack certain data capturing
layer structures. Conversely, ComFNO’s results are more fa-
vorable, with minimal residuals observed in both boundary
layers and other regions.

Few-Shot Situation
In this subsection, we primarily showcase the robustness of
our method at varying sample sizes, highlighting the effec-
tiveness of layer blocks in preserving sufficient physical in-
formation for successful model training, even with reduced
data. We illustrate this using Eq. (10) as an example, where
the training set is scaled down to 100×101 tuples (f, u). The
prediction residuals of both models are displayed in Fig.8.

Figure 8: Residuals of FNO and ComFNO on Eq. (10) with
ε = 0.001. Trained on 100 samples and tested on 100 differ-
ent samples.

Metrics
In the previous experiments, we note that vanilla FNO’s
residuals display oscillations, mirroring the oscillatory na-
ture of its predictions. Despite optimal training and minimal
objective function values, these oscillations persist, compro-
mising the model’s reliability. For a more thorough compar-
ative analysis of the two models, we introduce the metrics of

mean, infinity norm, and variance for the residuals, as fol-
lows:

mean =
1

NM

N∑
i=1

M∑
j=1

|ûij − uij | ,

∥ · ∥∞ =
1

N

N∑
i=1

max
0≥j≥M

|ûij − uij | ,

var =
1

NM

N∑
i=1

M∑
j=1

|ûij − uij | −
1

M

M∑
j=1

|ûij − uij |

2

,

where N is the number of samples, M is the resolution. We
computed mean, infinity norm, and variance of residuals for
both FNO and ComFNO in all six experiments (Table 1),
where smaller values denote superior model performance.
Our innovative architecture demonstrates exceptional accu-
racy and effectively mitigates oscillations, as indicated by
the indicators approaching zero.

Conclusion
This study introduces ComFNO, an innovative neural opera-
tor model tailored for addressing singularly perturbed differ-
ential equations (SPDEs). We initiate by presenting asymp-
totic analysis findings for various classes of SPDEs. Sub-
sequently, we propose a unique layer block structure to en-
hance the training of conventional neural operators. Empiri-
cal results underscore the considerable improvement in pre-
diction accuracy across boundary layer and other regions
through the integration of layer blocks. Moreover, ComFNO
exhibits superiority over vanilla FNO in specific instances,
such as few-shot learning. Our model’s versatility is demon-
strated by testing it across multiple ε values, highlighting its
adaptability as a multi-input variant of FNO that can accom-
modate diverse distributions. Furthermore, our experiments
validate ComFNO’s capability to mitigate oscillations.

In our experiments, we specifically focused on the prob-
lem of exponential boundary layers. However, it is essen-
tial to underscore that our approach remains applicable to a
broader range of scenarios. Once we possess prior knowl-
edge about the location and type of layers, we can adapt the
local variables ξ accordingly and introduce additional opera-
tions within the layer blocks (e.g., incorporating exponential
operations for exponential layers). This adaptability ensures
the validity of our model for addressing inner layer problems
or other types of boundary layer problems.
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