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Abstract

This paper studies the problem of continual learning in an
open-world scenario, referred to as Open-world Continual
Learning (OwCL). OwCL is increasingly rising while it is
highly challenging in two-fold: i) learning a sequence of
tasks without forgetting knowns in the past, and ii) identi-
fying unknowns (novel objects/classes) in the future. Exist-
ing OwCL methods suffer from the adaptability of task-aware
boundaries between knowns and unknowns, and do not con-
sider the mechanism of knowledge transfer. In this work,
we propose Pro-KT, a novel prompt-enhanced knowledge
transfer model for OwCL. Pro-KT includes two key compo-
nents: (1) a prompt bank to encode and transfer both task-
generic and task-specific knowledge, and (2) a task-aware
open-set boundary to identify unknowns in the new tasks.
Experimental results using two real-world datasets demon-
strate that the proposed Pro-KT outperforms the state-of-the-
art counterparts in both the detection of unknowns and the
classification of knowns markedly. Code released at https:
//github.com/YujieLi42/Pro-KT.

Introduction
Continual learning (CL, a.k.a lifelong learning) is a new
paradigm of machine learning that typically learns a large
number of tasks sequentially without forgetting knowledge
gained in the past and uses the knowledge to help new task
learning (Wang et al. 2019; Ke, Liu, and Huang 2020). This
paper concerns the problem of CL for a sequence of clas-
sification tasks, where each task involves a set of classes to
classify. To date, most existing methods, even the most re-
cent counterparts such as (Guo, Liu, and Zhao 2023; Smith
et al. 2023), assume that the sets of training classes and test
classes are the same in the past or future tasks, referred to as
closed-world assumption (Fei and Liu 2016). However, the
closed-world assumption is often invalid in practice as the
real world is an open environment where it frequently hap-
pens that some tasks contain new classes that are unseen in
past tasks. For example, the previous task had only learned
cats and dogs, but now a new task is to classify a set of
birds. In this work, we study CL with open-world assump-
tion, where test data include unknowns or novel classes.
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Figure 1: An example of our motivation. Top: A setting of
OwCL that learns a sequence of tasks, where the training
data of Task n have new classes versus Task 1 and the test
data of each task may have unknowns versus its training
data. Bottom: Evaluation results of MAS (a typical CL base-
line) and Pro-KT (ours) on Task 1 and Task n, respectively.
The evaluation is to evaluate all test data after learning each
task. Note, the x-axis shows the unscaled class-maximum
logits of samples, and the y-axis shows the number of sam-
ples. The area of overlap denotes the performance of parti-
tioning knowns and unknowns (less is better).

Continual learning in an open world or simply Open-
world Continual Learning (OwCL) is appealing yet chal-
lenging in recent years. Fig. 1 illustrates an example of our
motivation. Specifically, the scenario refers to an OwCL set-
ting, assuming the training data of Task n have new classes
(i.e., rose and bus) and both the test data of Task 1 and
Task n have novel objects (e.g., bus in Task 1 and motorbike
in Task n) that are not seen in the training data. As shown
in Fig. 1 (a1) and (b1), both MAS (Aljundi et al. 2018) (a
typical CL baseline) and our method can distinguish the un-
knowns from knowns in Task 1 (the first task). However, as
shown in Fig. 1(a2) and (b2), MAS fails to exploit previous
unknowns (e.g., bus in Task 1) to help Task n, leading to the
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issue of performance degradation on Task n. Our method
can separate the knowns from unknowns for Task n. Our
main motivation here is to learn knowledge for both knowns
and unknowns from previous tasks and later use the knowl-
edge to formulate an open-set boundary between knowns
and unknowns for new tasks.

In this work, we aim at designing an OwCL model that
accumulates the knowledge gained in the past and uses the
knowledge to help divide the test data into knowns and un-
knowns/opens, especially for enlarging the open-set bound-
ary between knowns and unknowns. After learning each
new task, the newly seen classes are subsequently treated
as knowns for new tasks. Our main ideas are knowledge
transfer and prompt learning. However, there are two ma-
jor challenges. (1) Knowledge Stability: When a new task
is largely dissimilar from the previous tasks, the newly ac-
quired knowledge might contradict the existing knowledge.
(2) Knowledge Plasticity: Once the ground-truth data of un-
knowns appear in the subsequent tasks, the model needs to
update the corresponding unknown samples as knowns.

To address the aforementioned challenges, we propose
a novel Prompt-enhanced Knowledge Transfer (Pro-KT)
method. Pro-KT delineates an innovation of prompt learning
for OwCL, a novel plug-and-play prompt bank for knowl-
edge transfer, and two adaptive threshold selection strate-
gies for determining the open-set boundary. Specifically, to
address challenge (1), we create a prompt bank designed
to encode knowledge through the use of prompts. These
prompts serve as instructions for directing the model in task
execution. By flexibly selecting prompts from the proposed
prompt bank, Pro-KT can facilitate effective knowledge
transfer with both task-generic and task-specific knowledge
across diverse tasks. To address challenge (2), we design
two adaptive threshold-selection strategies for determining
the open-set detection boundary. Through these strategies,
the open-set decision boundary will be updated according
to the newly learned knowledge continually so as to handle
knowledge plasticity.

Our main contributions are summarized as follows:
• This paper delves into knowledge transfer via prompt

learning for OwCL. We propose a novel prompt bank for
rehearsal-free knowledge transfer that delineates a new
paradigm for representing, accumulating and transferring
knowledge.

• We propose a novel task-aware open-set boundary to dis-
tinguish unknowns from knowns, based on two adaptive
threshold-selection strategies. Thus, the model is able to
accumulate and revise the knowledge learned from un-
knowns, ensuring knowledge plasticity for OwCL.

• Extensive experiments on two sets of real-world datasets
demonstrate that the proposed Pro-KT outperforms base-
line methods markedly on a large range of evaluation
tasks. Case study and visualization results further show
Pro-KT’s effectiveness in tackling OwCL.

Related Work
There are two closely related research topics: Open-world
Continual Learning and Prompt Learning.

Open-world Continual Learning. OwCL is a synergistic
integration of continual learning (Zenke, Poole, and Gan-
guli 2017) and open-world learning (Bendale and Boult
2015). In a nutshell, OwCL aims at learning on the job
in the open world with the goal of recognizing unknowns
and incrementally learning them without catastrophic for-
getting so that a model will become more and more knowl-
edgeable for future learning. There are mainly two OwCL
settings: 1) Task-incremental OwCL, where the classes (if
any) in the tasks may or may not be disjoint, and 2) Class-
incremental OwCL, where each task has a set of non-
overlapping classes. In this work, we concern about the set-
ting of class-incremental OwCL.

Dang et al. (2019) designed an open-set classifier for
identifying new classes based on the extreme value theory
and further proposed an ensemble classifier for open-set in-
cremental learning. Joseph et al. (2021) presented a solu-
tion for identifying unknown categories without forgetting
learned classes based on contrastive clustering and energy-
based unknown identification. Kim et al. (2023) theoreti-
cally demonstrated the necessity of novelty detection for
class-incremental continual learning. Liu et al. (2023a) in-
troduced a prospective framework, SOLA, to facilitate au-
tonomous continual learning through steps including nov-
elty detection, adapting new tasks on the fly, and incremental
learning.

However, the above-mentioned methods do not con-
sider knowledge representation and integration schemes for
OwCL. In addition, there is a lack of effective methods
concerning the representation, accumulation, and update of
knowledge for unknowns.
Prompt Learning. With the development of large-scale
pre-trained models, prompt learning (Zhou et al. 2022; Khat-
tak et al. 2023; Gu et al. 2022; Wang et al. 2022b) is an
emerging technique that deploys pre-trained models in a
parameter-efficient and data-efficient way (Liu et al. 2023b).
It applies a fixed function to guide a pre-trained model so
that the pre-trained model achieves additional instructions
to perform downstream tasks (Lester, Al-Rfou, and Con-
stant 2021; Li and Liang 2021). Owing to the advantages
of prompts, prompt-based continual learning methods show
strong protection against forgetting by learning insertable
prompts rather than modifying or constraining encoder pa-
rameters directly (Smith et al. 2023).

Prompt learning has been investigated recently for contin-
ual learning, such as L2P (Wang et al. 2022b), DualPrompt
(Wang et al. 2022a) and CODA (Smith et al. 2023). How-
ever, the existing prompt learning-based methods have cer-
tain limitations. For example, L2P requires a single prompt
pool to be updated after every new task, resulting in perfor-
mance degradation for a long sequence of tasks. DualPrompt
learns a set of task-specific prompts and a unique global
prompt without considering knowledge transfer across tasks.
CODA includes an end-to-end attention mechanism to de-
compose prompts, while learning a large number of prompts
and increasing the prompt length to achieve effective re-
sults. What’s more, existing prompt-based methods follow
the closed-world assumption, thereby lacking the capability
to identify unknowns within an open-world context.
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Figure 2: Illustration of the overall framework (Left: Training phase, and Right: Test phase). [Best viewed in color]

Remarks. As aforementioned, typical continual learning
makes the closed-world assumption, which is often invalid
in practice as the real world is an open environment that is
full of unknowns or novel objects. Although there are sev-
eral attempts with the open-world assumption, OwCL is still
a highly challenging research problem. Most existing OwCL
methods suffer from misinterpreting, assembling, or revising
incorrect knowledge, without focusing on knowledge trans-
fer. Our method, Pro-KT, addresses these limitations with
prompts to encode knowledge and learns to prompt knowl-
edge transfer for OwCL. Pro-KT buffers knowledge in a
more intelligent and succinct rehearsal-free mechanism. The
details of the proposed method will be clear shortly.

Methodology
In this section, we first clarify the research problem and the
overall framework. Then we elaborate on two key compo-
nents of the proposed Pro-KT: (1) prompt bank, and (2) task-
aware open-set boundary. Finally, we conclude the overall
objective function. Before going further, let us make a nota-
tional convention used throughout the paper. We will use su-
perscripts to denote task identifiers (task IDs) for a sequence
of tasks (e.g., T 1, ..., Tn).
Problem Statement. Given a sequence (possibly never-
ending) of tasks, our OwCL problem is that during contin-
ual learning if a learner encounters any novel objects in the
test, the learner should detect them as ‘unknowns’. Then,
suppose the learner approaches the ground truths for these
‘unknowns’ in a new task, the ‘unknowns’ will be evolved
as knowns. What’s more, the learner should incrementally
learn on the job – namely, recognizing unknowns and incre-
mentally learning them without catastrophic forgetting for
new task learning. Note that the training data from the previ-
ous tasks may be not accessible again for training new tasks.
Briefly, we define our problem as follows:
Problem Definition. At any point in time, the learner has
learned n tasks. Each task Tn has its training data Dn

tr.
When faced with a new task Tn+1 with its training data

Dn+1
tr , the purpose of our OwCL problem is that the learner

1) detects unknows from new tasks, 2) annotates unknowns
as knowns along with time, and 3) classifies previous classes
without forgetting.
Architecture. Fig. 2 illustrates the overall framework of the
proposed Pro-KT, comprising the training and test phases.

In the training, samples are first projected with a query
function. Pro-KT then learns a new set of prompts and accu-
mulates them into the prompt bank. Next, each training sam-
ple is enhanced by chosen prompts, and all these prompt-
enhanced embeddings are fed into the pre-trained backbone.
The prompt-enhanced final representations are then fed into
a trainable classifier. After that, we learn an adaptive thresh-
old for the task-aware open-set boundary, based on the soft-
max entropy of the prompt-enhanced final representation.
During the testing phase, after the projection of test sam-
ples, prompts are drawn from the prompt bank employing
a sample-wise matching mechanism. This mechanism fa-
cilitates the transfer of both task-specific and task-generic
knowledge. The enriched embeddings are then forwarded to
the unified classifier, yielding unscaled logits scores. Pro-
KT then detects samples as either [known] or [unknown]
based on the task-aware open-set boundary, guided by adap-
tive thresholds.

Prompt Bank

We propose to use a prompt bank for knowledge transfer.
Specifically speaking, we use prompts to encode both task-
generic and task-specific knowledge and retain the prompts
in a prompt bank. The prompts stored in the prompt bank
are later transferred to new tasks for problem-solving, which
further assures knowledge stability in OwCL. Given the cur-
rent task Tn with its training data Dn

tr = {(Xn,Yn)}, the
learner achieves a prompt set (pn1 , ..., p

n
i , ...) for this task.

Then, the learner stores this portion of knowledge together
with the knowledge learned from previous tasks into the
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prompt bank:

P =
N⋂

n=1

(p1, ...,pn, ...,pN )

= {(p11, p12, ..., p1M ), ...,

(pn1 , p
n
2 , ..., p

n
M ), ..., (pN1 , pN2 , ..., pNM )},

(1)

where N is the total number of tasks, and M is the number of
prompts learned from each task. pji ∈ RLp×De×NM denotes
the i-th prompt in task j, where LP is the token length, and
De is the embedding dimension. The prompt bank encour-
ages comprehensive knowledge transfer with task-specific
knowledge and task-generic knowledge.

However, a critical problem is how to encode and select
the most useful prompting knowledge. Inspired by the key-
value pair-based query strategy in L2P (Wang et al. 2022b),
we propose to associate each prompt as a value with a learn-
able key. Specifically, given the task Tn, we perform a key-
query pair for the sample-wise prompt matching:

(kn,pn) = (kn1 , p
n
1 ), ..., (k

n
M , pnM ), (2)

where pn = {pnm}M and ki = {knm}M . Then, after learning
task TN , the key-query pairs stored in the prompt bank can
be formulated as:

(K,P) = {(k1,p1), (k2,p2), ..., (kN ,pN )}. (3)

Next, we devise a more automatic knowledge transfer
protocol via a sample-wise prompt matching mechanism,
where the sample itself elects the most valuable/appropri-
ate prompts as auxiliary knowledge from the prompt bank.
Given an arbitrary input xi

n from task Tn, we first apply the
pre-trained projection layer Qx to map the initial input to a
new feature space RDe :

hn
i = Qx · xi

n. (4)

Then, we apply the pre-trained projection layer as the query
function Qx to lookup the top-K keys by solving the follow-
ing optimization problem:

argmin
[1,K]

N∑
j=1

dis(hn
i ,k

j),with kj = {kjm}M . (5)

In such a method, the encoded input sample hn
i can find top-

K keys by searching the top-K minimum distance (we use
cosine similarity in this work) between prompt keys with-
out any task identifier. After this, the input embedding hn

i is
thus extended by the subset PSK

⊂ P of prompt knowledge
from the prompt bank:

h′n
i = hn

i ⊕PSK
, (6)

where ⊕ denotes the dimension-wise concatenation. The
size of the subset PSK

is K, which is smaller than M .
Since unknown samples may appear in the test, these

enhanced embeddings will then be exploited to learn an
adaptive detection boundary to distinguish knowns and un-
knowns for each task.

Task-Aware Open-Set Boundary
In this section, we elaborate on how to formulate a bound-
ary between the knowns and unknowns and its adaptability
to each task during the OwCL process. To address this issue,
we devise two adaptive open-set detection threshold selec-
tion schemes for determining such a boundary.

In training, the prompting knowledge stored in the prompt
bank is learned from the training data of each task with
ground-truth labels. However, it is essential to use the
knowledge gained from knowns to identify unknown sam-
ples. We propose to learn a threshold on the softmax en-
tropy of the prompt-enhanced embeddings and then utilize
the knowledge acquired from the known entities to deter-
mine an open-set boundary between knowns and unknowns.

After training task Tn, the prompt-enhanced training
sample h′n

i is fed into a pre-trained backbone fpr. The fi-
nal representation is fed into a trainable classifier fθn :

probni = fθn(fpr(h
′n
i )), (7)

where the probni is the maximum value of unscaled softmax
entropy of the training sample h′n

i .
Then, we determine the open-set detection threshold

µ by computing the mean of all the training samples
{probn1 , ..., probni , ...} from task Tn:

µn = r · 1

|Xn|

|Xn|∑
i=1

probni , (8)

where |Xn| denotes the total number of training samples
and r denotes the deviation degree. Subsequently, the ob-
tained open-set detection threshold of task Tn is stored with
the previously learned thresholds. In such a manner, the
model has the ability to deliver a suitable threshold from
[µ1, ..., µn] for the testing phase.

During the test phase, to determine whether a test sample
xj
i from an arbitrary task T j is known or not, we design two

simple but efficient strategies to choose the most appropriate
threshold for the open-set detection boundary.

There are two scenarios. The first scenario is that the task
identifiers (task IDs) are available in the test. Therefore, the
model directly adapts the corresponding threshold via its
task ID j:

xj
i : fθn(h′j

i ) ≤ µj → [unknown],

otherwise, → [known].
(9)

The second scenario is that the task IDs are unavailable
in the test. During OwCL, the model is incrementally learn-
ing new tasks, resulting in an accumulation of knowledge in
the prompt bank. Hence, in this scenario, our model alter-
natively selects the latest threshold learned from the current
task Tn for the open-set detection boundary:

xj
i : fθn(h′j

i ) ≤ µn → [unknown],

otherwise, → [known].
(10)

After this, if a sample is detected as an unknown object,
the model then annotates the sample with [unknown] for
future tasks. If a sample is detected as one of the [known]
objects, the model then classifies the sample with one of the
known classes.
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Objective Function
In the training of task Tn, the prompt bank first learns M
prompts in total with the corresponding keys. The prompt
bank (K,P) stores all the prompt knowledge learned from
T 1 to Tn. Then, the known samples link to top-K prompt
keys by Eq. (5) and extend with auxiliary knowledge by
Eq. (6). The open-set detection boundary is also updated
through the proposed threshold-setting strategies.

Finally, we formally formulate the overall objective func-
tion as follows:

min
θn,(kn,pn)

{L(fθn(fpr(h
′n),yn)+

λ
M∑
i=0

dis(hn, kni )},
(11)

where the hn refers to the set of training samples projected
embeddings. The first term is the softmax cross-entropy loss,
and the second term is a surrogate loss to pull the selected
keys closer to the corresponding query features. λ is a trade-
off parameter to balance the two terms. As previously noted,
during the training phase of task Tn, we exclusively update
the prompt set pn, and during the testing, we select prompts
from the entire prompt bank P.

Experiments
Experimental Setup
Implementations. In our experiments, we remove the la-
bels of the classes in the training set of the next task (i.e.,
T (n+1)) and treat them as unknowns in the test set for the
current task (i.e., Tn). Besides, we followed the general set-
ting in the CL community, i.e., randomly shuffled the task
order five times for both Split CIFAR100 (with 10 tasks) and
5-datasets (with 5 tasks). The results presented throughout
this manuscript are the mean results of five random shuffles.
Datasets. We experiment on two commonly-used
and publicly-available datasets, namely Split CIFAR100
(Krizhevsky, Hinton et al. 2009) and 5-datasets (Ebrahimi
et al. 2020). The Split CIFAR100 dataset is sampled from the
CIFAR100 by dividing the original CIFAR100 into 10 tasks,
where each task contains 10 disjoint classes. Since the 10
tasks are sampled from the same dataset, they exhibit certain
similarities. The 5-datasets comprises five distinct image
classification datasets: TinyImagenet, NotMNIST, CUB200,
Fashion-MNIST and CIFAR10. Each dataset represents an
individual task.
Baselines. Since OwCL involves continual learning with
novelty detection (Kim et al. 2023), we evaluate two tasks:
(1) Unknown Detection and (2) Known Classification.

• Unknown Detection: We compare Pro-KT against the
following seven baseline methods: OpenMax (Bendale
and Boult 2015), MSP (Hendrycks and Gimpel 2016),
MCD (Yu and Aizawa 2019), EnergyBased (Liu et al.
2020), Entropy (Chan, Rottmann, and Gottschalk 2021),
MaxLogits (Basart et al. 2022) and ODIN (Liang, Li, and
Srikant 2018).

• Known Classification: We compare Pro-KT with the
following nine continual learning methods: EWC (Kirk-
patrick et al. 2017), MAS (Aljundi et al. 2018), DER++
(Buzzega et al. 2020), GEM (Lopez-Paz and Ranzato
2017), LwF (Li and Hoiem 2017), HAT (Serra et al. 2018),
UCL (Ahn et al. 2019), L2P (Wang et al. 2022b) and Du-
alPrompt (Wang et al. 2022a).

Metrics. For unknown detection, we use the average area
under the curve (AUCN ) and average false positive rate
(FPRN ) (Chan, Rottmann, and Gottschalk 2021) as met-
rics. AUCN is the average area under the receiver operating
characteristic (ROC) curve across all past tasks, providing a
comprehensive measure of open detection performance over
N tasks. FPRN reports the average error rate of misclassi-
fying unknown samples into known categories.

For known classification, we employ average final accu-
racy (AN ) and average forgetting rate (FN ) (Wang et al.
2022b) as metrics. AN is the average final accuracy con-
cerning all past classes over N tasks. FN measures the per-
formance drop across N tasks, offering valuable information
about plasticity and stability during OwCL.

Main Results

Dataset Methods AUCN FPRN

Split CIFAR100
(10 tasks)

OpenMax 49.99 50.06
MSP 50.29 52.18
MCD 50.17 70.37

EnergyBased 49.66 71.86
Entropy 49.56 51.17

MaxLogits 52.63 74.99
ODIN 50.81 52.64

Pro-KT w/o task IDs 91.01 41.31
Pro-KT 92.69 39.71

5-datasets
(5tasks)

OpenMax 60.09 84.23
MSP 51.22 87.96
MCD 50.60 98.62

EnergyBased 49.38 87.99
Entropy 39.49 96.34

MaxLogits 66.78 73.12
ODIN 49.63 97.91

Pro-KT w/o task IDs 82.76 50.05
Pro-KT 88.60 45.70

Table 1: Results(%) regarding unknown detection. We report
the results over 10 tasks for Split CIFAR100 (10 classes per
task) and 5 tasks for 5-datasets.

Results on Unknown Detection. Table 1 shows the results
of unknown detection. From the results, we can see that the
baselines perform poorly on the OwCL problem, indicating
that these algorithms struggle to maintain satisfactory open
detection performance after learning a sequence of tasks.
In contrast, Pro-KT consistently outperforms all compared
methods across various configurations, as evident from both
the AUCN (increased) and FPRN (decreased). Moreover,
we examine the performance under different open detection
threshold learning strategies. By comparing the AUCN for
Pro-KT without task IDs, we observe a performance drop of
the basic Pro-KT when task identifiers are agnostic in the
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Backbone Method Split CIFAR100 (10 tasks) 5-datasets (5 tasks)
AN (↑) Diff (↓) FN (↓) AN (↑) Diff (↓) FN (↓)

ResNet32

Upper-bound 72.99 - - 93.59 - -
EWC 34.16 38.83 36.20 51.25 42.34 42.06
GEM 24.93 48.06 42.04 39.06 54.53 56.47
LwF 16.73 56.26 51.62 36.18 57.41 59.19

DER++ 31.03 41.96 22.63 45.59 48.00 47.82
HAT 30.43 42.56 36.73 37.00 56.59 51.35
UCL 29.77 43.22 31.99 31.71 61.88 58.89
MAS 29.58 43.41 22.14 49.59 44.00 33.90

ViT

Upper-bound 86.07 - - 80.59 - -
LwF 71.93 14.14 6.89 19.02 61.57 44.23
MAS 76.71 9.36 13.02 65.13 15.46 13.5
L2P 80.63 5.44 10.93 69.06 11.59 9.53

DualPrompt 83.18 2.89 8.42 70.14 10.45 10.11
Pro-KT 84.07 2.00 5.43 71.70 8.89 5.19

Table 2: Results(%) of known samples classification on Split CIFAR100 and 5-datasets. For the Split CIFAR100 dataset, we
report the results over 10 tasks with 10 classes per task. For the 5-datasets, we report the results over 5 tasks where each dataset
refers to a task. We used two backbones (i.e., ResNet32 and ViT) in the experiments.

test. This suggests that task-specific knowledge significantly
enhances test performance in OwCL, and the utilization of
task IDs further refines open detection boundaries.

The superior performance of our Pro-KT, especially in
transferring knowledge from open data across tasks, un-
derscores the success of our proposed prompt bank in ac-
cumulating and transferring knowledge. Overall, Pro-KT
demonstrates substantial improvements in open detection
performance, while effectively mitigating the selection of a
promising threshold with adaptive strategies.
Results on Known Samples Classification. In this experi-
ment, we evaluate the performance of known classification.
In particular, Pro-KT does not require task identifiers for the
classification of known samples, enabling its application in
task-agnostic class-incremental settings. We also report the
Upper-bound, i.e. the offline training of all tasks, which is
usually regarded as the upper-bound performance a method
can achieve (Wang et al. 2022b).

Table 2 shows the results on the Split CIFAR100 and
5-datasets, respectively. From the results, we can observe
that our Pro-KT consistently outperforms other methods and
yields SOTA performance. Besides, we observe that Pro-
KT achieves higher AN when ViT is the backbone com-
pared to ResNet32. This is attributed not only to the pow-
erful representation ability of large-scale pre-trained models
but also to the adaptability of our prompt learning method
for knowledge transfer to pre-trained models. Additionally,
a relatively modest performance gap between baseline meth-
ods and the upper-bound result has been reported, highlight-
ing the significant performance advantage of our method. It
is noted that Pro-KT exhibits the lowest forgetting rate (FN )
after learning a sequence of tasks.

Additional Results
Task Effect. As shown in Fig. 3, we illustrate AN and FN

as line plots to provide further insights into Pro-KT after
learning each new task. The results demonstrate the Pro-

KT’s consistently high performance across tasks and its su-
periority over baselines with the number of tasks increasing.
This demonstrates the effectiveness of our approach in miti-
gating performance decay and maintaining promising classi-
fication results compared to existing benchmarks. Thus, we
emphasize the crucial role of knowledge transfer in address-
ing the OwCL problem.

Unknown
Detection

Split CIFAR100 5-datasets
AUCN FPRN AUCN FPRN

w/o task IDs 91.01 41.31 82.76 50.05
w/o AODB 50.02 87.63 46.78 88.90

Pro-KT 92.69 39.71 88.60 45.70
Known

Classification
Split CIFAR100 5-datasets
AN FN AN FN

w/o prompt bank 40.49 17.21 15.42 40.19
Pro-KT 84.07 5.43 71.70 5.19

Table 3: Ablation study on the variants of Pro-KT.

Ablation Study. To show the importance of each key com-
ponent of Pro-KT, we conduct ablation studies on 1) task
identifiers in determining the threshold, 2) the whole task-
aware open-set boundary, and 3) the prompt bank. The re-
sults are shown in Table 3.

First, we remove the task identifiers in determining the
threshold. The performance has a small drop (compared with
the intact Pro-KT), suggesting that when tasks are diverse,
adding task identifiers for the instruction of threshold choos-
ing indeed facilitates knowledge sharing and mitigates in-
terference between dissimilar tasks. Second, we eliminate
the whole open-set boundary. As a result, the model does
not have the ability of open detection, where the AUCN

value is only about 50, and the FPRN is the highest. Fi-
nally, we ablate the entire prompt bank and directly fine-tune
the pre-trained backbone and a trainable classifier for each
task. The significant decrease in performance suggests that
a naive fine-tuning suffers catastrophic forgetting in OwCL.
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(a) (b) (c) (d)

Figure 3: (a) and (b): Variation Curve of AN on Split CIFAR100 and 5-datasets, the x-axis indicates the task IDs. (c) and (d):
Variation Curve of FN on Split CIFAR100 and 5-datasets, the x-axis indicates the task IDs.

(a) t-SNE (b) UMAP

Figure 4: Visualization of the prompt bank via T-SNE and
UMAP after training on all tasks (Split CIFAR100 dataset).

Visualization. To understand the mechanism of knowledge
transfer and the different types of knowledge learned within
the prompt bank, we visualize all the prompts using t-SNE
(Van der Maaten and Hinton 2008) and UMAP (McInnes
et al. 2018) on the dataset Split CIFAR100.

Specifically, we obtain the prompt bank from the final
model after training on the sequence of all tasks T 1, ..., Tn.
The results are shown in Fig. 4, where each point repre-
sents a prompt. We observe that all the prompts are well-
separated with different colors, indicating the model has
learned task-specific knowledge. Besides, some prompts are
automatically gathered in the center and these prompts are
learned through different tasks, which indicates that the
model has also learned task-generic knowledge. Hence, both
task-specific knowledge and task-generic knowledge can be
transferred across all tasks with the proposed prompt bank.
Parameter Sensitivity Analysis. Recall that there are three
key parameters in our Pro-KT, i.e., M : the total number of
prompts learned from each task, Lp: the length of a single
prompt, and K: the selection size used to prepend the input.
Hence, M × N decides the total size of the prompt bank.
Fig. 5 shows the results on two datasets. We now analyze
the impact of different parameter settings that could affect
the proposed Pro-KT:

From the results in Fig. 5 (left-middle), we can see that an
oversized selection size K may introduce knowledge under-

fitting, while LP has little effect on performance. For the
total number of prompts for each task, we find that a reason-
able capacity of the prompt bank is essential for encoding
the task-common knowledge and task-specific knowledge.
From the results in Fig. 5 (right), it was observed that in
the Split CIFAR100 where the 10 tasks are similar, the ef-
fect of M on the performance was stable. However, in the
5-datasets where the 5 tasks were dissimilar, increasing M
introduced irrelevant prompts, resulting in a decline in per-
formance. Thereby, we safely conclude that when tasks are
more dissimilar, the M is more sensitive.
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Figure 5: Left and Middle: Heatmap of AN w.r.t prompt
length LP (y-axis) and prompt selection size K (x-axis) on
both two datasets with fixed M = 25. Right: Variation curve
of AN w.r.t. M (i.e., the total number of prompts of each
task) with LP = 5 and K = 3.

Conclusion
In this work, we proposed a prompt-based method (called
Pro-KT) that achieves knowledge transfer via a novel
prompt bank for open-world continual learning. Our Pro-
KT involves a unique approach to representing task-specific
and task-generic knowledge by attaching the complemen-
tary prompts to a pre-trained backbone. To determine a task-
aware open-set boundary, we design two adaptive threshold-
selection strategies, guided by the prompt bank. The exper-
imental results demonstrate the effectiveness of our Pro-KT
and its adaptability to different tasks.

Our future work includes: 1) integrating advanced cluster-
ing methods for the fine-grained classification of unknowns,
and 2) exploring the forms of knowledge for unknowns and
further using the knowledge to help future task learning.
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