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Abstract

Deep learning methods on graph data have achieved re-
markable efficacy across a variety of real-world applications,
such as social network analysis and transaction risk detec-
tion. Nevertheless, recent studies have illuminated a concern-
ing fact: even the most expressive Graph Neural Networks
(GNNs) are vulnerable to graph adversarial attacks. While
several methods have been proposed to enhance the robust-
ness of GNN models against adversarial attacks, few have
focused on a simple yet realistic approach: valuing the ad-
versarial risks and focused safeguards at the node level. This
empowers defenders to allocate heightened security level to
vulnerable nodes, while lower to robust nodes. With this
new perspective, we propose a novel graph defense strat-
egy RisKeeper, such that the adversarial risk can be directly
kept in the input graph. We start at valuing the adversarial
risk, by introducing a cost-aware gradient-based graph ad-
versarial attack that takes into account not only cost avoid-
ance and compliance with cost budgets but also addresses the
challenges posed by discrete graph data. Subsequently, we
present a learnable approach to ascertain the ideal security
level for each individual node by solving a bi-level optimiza-
tion problem. Through extensive experiments on four real-
world datasets, we demonstrate that our method achieves su-
perior performance surpassing state-of-the-art methods. Our
in-depth case studies provide further insights into vulnerable
and robust structural patterns, serving as inspiration for prac-
titioners to exercise heightened vigilance.

Introduction
Graph-structured data has gained significant prevalence
across diverse domains, such as social networks (Wu et al.
2022), financial transactions (Dou et al. 2020), knowledge
graphs (Zhang et al. 2022) and drug molecular topology de-
sign (Jiang et al. 2020). Analyzing such data often involves
the utilization of graph neural networks (GNNs). However,
the effectiveness and reliability of GNNs can be compro-
mised by adversarial attacks in various forms.

For instance, in financial transaction networks, adversar-
ial accounts can inject deceptive transactions to poison the
training data of GNN to pretend legitimacy (Dou et al.
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2020). In social networks, spammers can camouflage their
social links to evade detection algorithms (Waniek et al.
2018). Such attacks can undermine the performance of
GNNs, resulting in severe financial losses and deteriorated
user experience. Therefore, ensuring the robustness of GNN
models against attacks is a crucial concern for graph-based
learning.

Approaching safer and more reliable GNNs, existing ef-
forts to improve robustness mainly fall into two categories.
The first line of research focuses on enhancing the GNN
model itself, aiming to learn more robust GNNs through ad-
versarial or constrained training (Arghal, Lei, and Bidokhti
2022; Dai et al. 2019; Xu et al. 2019, 2022b) or modifying
GNN architectures (Geisler, Zügner, and Günnemann 2020;
Zhang and Zitnik 2020; Chen et al. 2021). The second line of
research centers on pre-processing input graphs before feed-
ing them to the GNN model (Said, De Luca, and Albayrak
2010; Entezari et al. 2020).

However, few extant works consider the fact that, in real-
world scenarios, nodes and edges in graphs are naturally
protected in a sense that attacking them incurs certain costs.
In practice, defenders can intervene in attacks by assigning
customized levels of protection to each node or edge based
on their importance or vulnerability. If the cost of proceed-
ing with such actions is prohibitively high due to customized
protection for each user, the attacker’s efforts could fail. For
example, in a communication network, where nodes repre-
sent devices, and an edge is created if two devices have com-
munication traffic. Defenders can allocate varying levels of
protection measures on each device in the network to pre-
vent attacks, e.g., (1) firewalls with stringent rules such as
permitting access only from trusted IP addresses, and (2)
access control measures like role-based access control or
multi-factor authentication.

In this manner, we are among the first to view the de-
fense problem from a cost-aware perspective: assigning se-
curity levels to nodes and edges in a way that maximizes
the costs borne by attackers. Methods from this perspective
ideally prevent attacks from occurring if costs are properly
assigned, which differs from the existing defensive methods
that react to attacks after they occur.

An imminent yet significant challenge is how to allocate
proper costs to each node of an input graph. There are some
heuristic methods for cost allocations: Since research sug-
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gests that both high node degrees (Zou et al. 2021) and large
entries in eigenvectors corresponding to the largest eigen-
values of the raw adjacency matrix (Chen and Hero 2015)
indicate high node robustness, one can simply assign higher
costs to nodes with lower degrees or smaller entries in eigen-
vectors for protection, and vice versa. However, the design
of such heuristic costs requires extensive prior knowledge
and is specific to given graphs. Consequently, their efficacy
may diminish when applied to other networks. To overcome
these limitations, we introduce a robust Cost-Aware Graph
Defense Strategy (RisKeeper) to identify vulnerable nodes
and automatically assign costs to input graphs.

Another concern for ideal cost allocation is that such
strategy should be effective against any structural attack
available under a given budget, assuming attackers are con-
cerned about costs. This essentially becomes a worst-case
defense problem, as the method should be able to handle
the strongest attack. The second challenge is therefore how
to approximate the worst-case attack. Moreover, the struc-
tural attack of perturbing edges manifests as a discrete oper-
ation over the graph adjacency matrix, which poses difficul-
ties for optimization problems since algorithms like gradient
descent cannot operate on discrete domains. As a solution,
we first formulate the attack optimization goal with a dis-
crete domain and propose two approaches to solve it under
poisoning and evasion settings, respectively.

In light of the above, as defenders, we respond to a given
perturbation by updating cost allocations, while also consid-
ering attackers will optimize their strategy under a defensive
cost scheme. This interaction between defenders and attack-
ers gives rise to a bi-level problem. By iteratively finding
the worst-case attack under the updated cost scheme and op-
timizing cost allocation based on the new attack strategy,
both parties can essentially evolve together through adver-
sarial dynamics. Consequently, the final challenge for us is
to formulate this bi-level adversarial evolution problem, and
determine the defensive cost allocations. To tackle this chal-
lenge, we formulate a minimax bi-level optimization prob-
lem, where the inner level represents attacking phase and the
outer level represents the defending phase. We then employ
robust training methods to solve this problem effectively.

We summarize our main contributions as follows:

• Novel perspective: We are among the first to consider
attacking costs in our GNN defense method. This per-
spective is advantageous as it has the potential to deter
attacks rather than passively reacting to them.

• Novel method: We propose RisKeeper, a cost-aware
graph defense strategy through robust learning, which
can accommodate various untargeted structural attacks.

• Extensive evaluation: Extensive experiment results
demonstrate the effectiveness of our learned cost alloca-
tion in weakening attacks across multiple settings. Our
method outperforms mainstream defense methods.

• Implications: Our cost allocation shed light on vulnera-
ble and robust graphlets discovery. Our case study with
learned costs suggest that 3-star , 4-circle and tailed-
triangle are the most vulnerable graphlets in graphs,
which can inspire scholars and practitioners to develop

more tailored strategies on these structures in future
works regarding graph robustness.

Proposed Method
In this section, we present our proposed graph defense strat-
egy, RisKeeper, with the primary objective of directly miti-
gating adversarial risk within the input graph. We first value
the adversarial risk by introducing a novel cost-aware graph
adversarial attack. Then, we propose our defense strategy
that entails the acquisition of security levels for individual
nodes via a learnable process.

Cost-Aware Graph Adversarial Attack
When solving for graph adversarial attacks, existing works

often overlook the economic feasibility of attacks, poten-
tially resulting in unrealistic attack strategies that exhibit
high costs and low benefits. This section intends to introduce
a cost-aware graph adversarial attack, that meets economic
feasibility requirements of minimizing costs of executing at-
tacks and is subject to a budget of cost.

Optimization Problem of Attacker. Let G = (V,E) rep-
resent an undirected, unweighted graph, where the set of
nodes is denoted as V = {v1, v2, ..., vN} and the set of
edges is E ⊆ V × V . The adjacency matrix A of graph
G is an N × N symmetric matrix, where the elements are
defined as Aij = 1 if i, j ∈ E or if i = j, and Aij = 0 other-
wise. In cases where nodes possess attributes, the graph G is
augmented to include the node attribute matrix X ∈ RN×D.

Considering the cost associated with attacking a node vi
represented as ci, and perturbing an edge associated to the
node incurs this cost. It follows that the cost of perturbing an
edge equals to the cost sum of the two nodes. For example,
when an edge (vi, vj) is perturbed, the total cost of execut-
ing this attack is given by ci + cj . The primary objective of
a cost-aware graph adversarial attack is to identify a set of
edges to perturb E′, resulting in a perturbed adjacency ma-
trix A′, that maximizes the classification loss L while mini-
mizing the execution costs. This can be formulated into the
following optimization problem:

maxA′ L(A′)− λ
∑

(vm,vn)∈E′(cm + cn)
s.t.

∑
(vm,vn)∈E′(cm + cn) ≤ ϵ,

A′
ii = 1, i = 1, . . . , N,

A′
ij ∈ {0, 1} for i ̸= j,

(1)

where the optimization variable is the N × N symmetric
matrix A′ (or E′ equivalently), and we simplify the classi-
fication loss L(g(A′, X), Y ) as L(A′). The first inequality
constraint shows the budget of total cost ϵ > 0. The hyper-
parameter λ quantifies the attacker’s sensitivity (or level of
importance) towards costs. If the attacker demonstrates a
higher degree of sensitivity towards the costs, λ can be set as
a larger value. Conversely, if the attacker is less sensitive to
the costs involved in the attack, λ takes on a smaller value.

Gradient-based Solution. Solving Problem (1) is a chal-
lenging task. Firstly, the discrete nature of graph data renders
the utilization of conventional optimization methods, such as
gradient descent invalid. Secondly, the inclusion of the cost
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budget constraint adds to the complexity of the optimization
problem.

Before introducing our solution. We first define some no-
tations used throughout the paper. We introduce an N × N
mask matrix to record the edge perturbation, the entries of
which form a binary vector denoted as s ∈ {0, 1}n where
n = N2. Specifically, if the edge between node vi and vj is
modified, sij = sji = 1, otherwise sij = sji = 0. Thereby,
L(A′) can be equivilantly denoted as L(A, s). We also in-
troduce an N × N edge cost matrix, whose entries form a
vector denoted as c. Specifically, cij = ci + cj , indicating
that edge cost equals the cost of two end nodes. In this way,
the attacking cost can be written as cT s.

Our gradient-based solution is given below. We first relax
variables s ∈ {0, 1}n into a convex hull s ∈ [0, 1]n, and then
maximize the modeled attack loss on the convex set:

maxs f(s) = L(A, s)− λcT s

subject to s ∈ S,
(2)

where S is the feasible set S = {s | cT s ≤ ϵ, s ∈ [0, 1]n}.
We can solve this using projected gradient descent (PGD)
algorithm (Madry et al. 2017), with the update rule as fol-
lows:

s(t) = ΠS
(
s(t−1) + ηtĝt

)
, (3)

where ηt is the learning rate at epoch t, ĝt = ∇f(st−1) is
the gradient of the attack objective with respect to s at epoch
t− 1, and ΠS(a) is the projection function:

ΠS(a) = argmin
s∈S
∥s− a∥22. (4)

Below, we demonstrate that projection function ΠS yields
the closed-form solution in Proposition.
Proposition 1 Let S be feasible set S = {s | cT s ≤ ϵ, s ∈
[0, 1]n}, the projection operator with respect to S is:

ΠS(a) =


P[0,1](a− µc), if µ > 0 and

cT P[0,1](a− µc) = ϵ,

P[0,1](a), if cT P[0,1](a) ≤ ϵ,
(5)

where P[0,1](x) = x if x ∈ [0, 1], 0 if x < 0, and 1 if x > 1.
Detailed proofs can be found in Appendix A.

In the projection function 5, the value of Lagrange mul-
tiplier µ as root of cT P[0,1](a − µc) = ϵ could be obtained
through bisection method (Boyd and Vandenberghe 2004)
over range [

amin − 1

cmax
,
amax

cmin

]
,

where cmin = min{c | c ̸= 0, c ∈ c} is the smallest nonzero
value in c.

After getting s under the relaxed convex hull, we can
obtain the binary solution through a random sampling
using learned parameter s as probabilities for independent
Bernoulli trials: si ∼ Bern(si), and repeat until we find a
binary solution that complies with the constraint, as stated
in Xu et al. (2019). This generates a near optimal solution
for the perturbation under original constraint.

Defense Problem
In this subsection, we model the defense problem and pro-

pose a GNN model to learn cost allocation. Then we sum-
marize the overall adversarial training algorithm.

Optimization Problem of the Defender. For defenders to
achieve an effective graph defense strategy, their primary
goal is to quantify the node/edge value at adversarial risk.
They can simulate the means of attackers to find vulnerable
edges. By optimizing the cost allocation over time, the final
costs should make attackers as difficult to find a reasonable
attack strategy as possible. We formulate the bi-level prob-
lem as follows:

min{c1,··· ,cN} maxA′ L(A′)− λ
∑

(vm,vn)∈E′(cm + cn)
subject to

∑
(vm,vn)∈E′(cm + cn) ≤ ϵ,

A′
ii = 1, i = 1, . . . , N,

A′
ij ∈ {0, 1} for i ̸= j.

(6)

Learnable Cost. The problem of designing costs is non-
trivial. A common approach to cost design typically relies
on manually crafted costs by taking into account specific as-
pects of the properties in the graph, such as degree-based
costs. However, it is difficult to identify consistently effec-
tive properties, given that different graphs have different
characteristics. To tackle this issue, our goal is to quantify
and optimize the cost allocation in a learnable manner.

Specifically, we seek to maximize the costs associated
with perturbing vulnerable edges, with the intention of dis-
rupting future attacks and redirecting the attacker’s focus
towards modifying less important unimportant edges. To
achieve this objective, we consider the edges modified in
attacks prior to the defense as vulnerable, and our goal is to
increase the costs associated with modifying these perturbed
edges in the future. It is important to note that the total per-
turbing costs that defenders can impose are inevitably lim-
ited, thus efficient cost allocation is rather important under
such constraints.

The remaining problem is how to design the cost model.
Previous research (Dai et al. 2022) indicates that the robust-
ness of a node is related to its topological structure and fea-
tures. For example, the higher degree a node has, the less
affected it is by structural attack (Zou et al. 2021). The
ideal costs of nodes are closely related to their robustness.
A higher cost can be allocated to a vulnerable node, making
the edges around the node less susceptible to direct attacks.

Since ideal costs for nodes are related to their features
and structures, and nodes with similar features and structures
should have similar costs, it could be helpful to use a GNN
to obtain the cost for each node. At the end of the GNN
model, a fully connected layer should be attached to map
high-dimensional vectors to individual values for each node.
The parameterized costs can be represented as follows:

{ci}i∈{1,···N} ← MLP(GNN(A,X)),

where ci is parameterized cost for node vi, and the corre-
sponding cost for edge (vi, vj) is ci + cj .
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Algorithm 1: Robust training for learning costs

1: Input: G = (A,X), s(0), modification budget ϵ, learn-
ing rate βt and ηt, iterations T, T ′, labels y, budget ∆,

2: θ ← train surrogate model on the graph,
3: ȳ ← predict labels of unlabeled nodes using θ,
4: for t = 1, 2, ..., T do
5: for t′ = 1, 2, ..., T ′ do
6: a(t

′) = s(t
′−1) + ηt′∇sfθ(s

(t′−1)),
7: call projection operation in Eq. (5).
8: end for
9: output the resulting A′.

10: given s(T
′), obtain cost parameter ϕ(t) by running

gradient descent repeatly.
11: end for
12: use the ϕ(T ) to compute costs {ci}i∈{1,··· ,N},
13: if

∑N
i=1(ci) ≤ ∆ then

14: return {ci}i∈{1,··· ,N},
15: else
16: return{ ci∆∑N

j=1(cj)
}i∈{1,··· ,N}.

17: end if

Overall Algorithm. We employ the robust training
method (Song et al. 2023) to optimize the worst-case loss.
The problem is solved as follows. Firstly, we initiate the sur-
rogate model by training it on clean data. Subsequently, we
execute an attack on the trained surrogate model. Follow-
ing this, we assign costs to edges to minimize the objective
function of the current attack. We then iterate until conver-
gence is achieved. This process can be understood as iden-
tifying vulnerable nodes based on the attack outcomes and
subsequently protecting these nodes. More specifically, we
can use PGD method to solve the inner maximum (attack)
problem and use gradient descent to solve the outer mini-
mize (cost-allocation) problem. By utilizing the trained pa-
rameters, we can determine the corresponding cost for each
node and edge can be obtained. Our detailed algorithm is
presented in Algorithm 1.

The overall time complexity is O(N2 + |E|DHF ), com-
prising two main components: finding worst-case attack,
with a time complexity of O(N2), and cost allocation, with
a time complexity of O(|E|DHF ) (which is exactly the
complexity of our backbone GCN model) (Kipf and Welling
2017). Here, N and |E| are the number of nodes and edges,
H is the number of hidden units of GCN, F is the output di-
mension of representations, and D is the dimension of node
attributes.

Experiments
In this section, we assess the performance of the proposed
RisKeeper method on node classification tasks. We first
compare RisKeeper against heuristic cost allocation meth-
ods, followed by a comparison against several existing de-
fensive methods. We evaluate the effectiveness of the de-
fense strategy by examining the decrease in testing accuracy
resulting from the attack, which is mitigated through the de-
fense strategy. Furthermore, we conduct case studies based

on learned node costs, aiming to identify prevalent robust
and fragile structures in graphs.

Experimental Setup
Datasets. We use four commonly-used datasets to con-
duct our experiments, i.e., cora (Mccallum et al. 2000), cite-
seer (Sen et al. 2008), amazon computers and amazon photo
(Shchur et al. 2018). Cora and citeseer both belong to ci-
tation networks. Amazon computers and amazon photo are
segments of the amazon co-purchase graph, where nodes
represent goods, an edge between two nodes indicates that
two goods are frequently bought together, node features are
bag-of-words encoded product reviews, and class labels are
given by the product category. For cora and citeseer, we di-
vide the training set, validation set, and test set according
to the default setting (Sen et al. 2008). For amazon comput-
ers and amazon photo, the datasets are randomly split into
training set (10%), validation set (10%), test set (80%).

Baselines. To compare RisKeeper against other heuristic
cost allocation methods, we consider the following methods
as baselines.

• Raw: no cost protections.
• Avg.: assign equal costs to each node.
• Rand.: randomly assign costs to each node.
• Deg.: assign costs according to the exponential of nega-

tive node degrees.
• Cluster-Coef.: assign costs according to the exponential

of negative nodes clustering coefficient.

To ensure fairness, we normalize the handcrafted costs
(i.e., Avg., Rand., Deg. and Cluster-Coef.) to guarantee that
their summation is equal to a specified defense budget ∆.

For the comparison between RisKeeper and other defen-
sive methods, we adopt the following as baselines.

• GCN-SVD (Entezari et al. 2020): preprocesses the input
adjacency matrix using truncated SVD to get its low-rank
approximation.

• GCN-Jaccard (Wu et al. 2019): remove the edges in the
input adjacency matrix whose two end nodes have small
Jaccard similarity.

• GNN-Median (Chen et al. 2021): use median aggregation
as robust aggregation function for GNNs.

For these defensive methods, an average allocation of cost is
assigned that ensures equal total node costs as is learned by
RisKeeper.

Implementation Details. We use GCN for both surrogate
models and the cost model. The number of hidden units is
set to 32 for all hidden layers. A 1-layer MLP is attached
to the end of the cost model. We employ Adam algorithm
(Kingma and Ba 2014) with an initial learning rate of 0.01
to optimize models. For Cost-Aware PGD, the dropout rate
is set to 0.5. Cross-entropy loss is used for L. To balance
the differences between L and cost loss caused by varying
numbers of attacked edges in different datasets, λ is set to
0.001
|E| . Without loss of generalizability, the single node cost

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13766



cora citeseer amazon
computers

amazon
photo

Raw 0.290 ± 0.032 0.212 ± 0.041 0.427 ± 0.026 0.475 ± 0.004
Avg. 0.746 ± 0.004 0.659 ± 0.011 0.788 ± 0.005 0.854 ± 0.016

Rand. 0.573 ± 0.009 0.489±0.016 0.714 ± 0.014 0.801 ± 0.013
Deg. 0.743 ± 0.004 0.649±0.022 0.756 ± 0.023 0.826 ± 0.049

Cluster-Coef. 0.746 ± 0.011 0.589 ± 0.132 0.777 ± 0.013 0.842 ± 0.033
RisKeeper 0.795 ±0.004 0.707 ± 0.003 0.819 ± 0.017 0.874 ± 0.018
Unattacked 0.811 ± 0.004 0.716 ± 0.003 0.882 ± 0.003 0.927 ± 0.002

Table 1: The test accuracy under Cost-Aware PGD attack with different costs in evasion setting. Unattacked denotes the test
accuracy on the clean graph. Total attack cost budget is set to be 0.08|E|.

cora citeseer amazon
computers

amazon
photo

Raw 0.344 ± 0.264 0.196 ± 0.049 0.490 ± 0.030 0.528 ± 0.036
Avg. 0.698 ± 0.084 0.649 ± 0.008 0.798 ± 0.032 0.865 ± 0.016

Rand. 0.605 ± 0.083 0.423 ± 0.018 0.798 ± 0.007 0.832 ± 0.011
Deg. 0.736 ± 0.011 0.630 ± 0.027 0.809 ± 0.016 0.849 ± 0.025

Cluster-Coef. 0.728 ± 0.009 0.561 ± 0.169 0.808 ± 0.014 0.856 ± 0.015
RisKeeper 0.791 ± 0.004 0.708 ± 0.003 0.830 ± 0.008 0.875 ± 0.018
Unattacked 0.811 ± 0.004 0.716 ± 0.003 0.882 ± 0.003 0.927 ± 0.002

Table 2: The test accuracy under Cost-Aware PGD attack with different costs in poisoning setting. Unattacked denotes the test
accuracy on the clean graph. Total attack cost budget is set to be 0.08|E|.

budget is set to 1, and the total node cost budget ∆ is set to
0.995|V |.

We use Cost-Aware PGD to generate perturbed graphs, on
which different defensive models are then trained. We eval-
uate our model and baselines under different attacking cost
budget constraint (i.e., 0.08|E|, 0.16|E|, and 0.24|E|) and
under evasion and poisoning setting respectively. Our codes
are available at: https://github.com/songwdfu/RisKeeper.

Experiment Results
Performance Comparison against Cost Allocation Meth-
ods. In Tables 1 and 2, we present the test accuracy un-
der Cost-Aware PGD attack with different costs alloca-
tion schemes in evasion and poisoning settings. The re-
sults demonstrate that even if the defender invests the same
amount of costs to defend against the attack, different cost
allocations will lead to different results. The cost alloca-
tion obtained through robust training has the best defend-
ing effect. Average allocation of costs ranked second, while
degree-based allocations achieved slightly inferior perfor-
mance. It is noticeable that the performance of clustering-
coefficient-based cost allocation method deteriorated a lot
on the Citeseer dataset, we therefore severely doubt its ap-
plicability in general cases.

Performance Comparison against Defensive Methods.
To the best of our knowledge, other state-of-the-art defen-
sive methods do not incorporate cost allocation. Hence, we
compare their performance under equal cost allocation, the
performance comparison results are shown in Table 3. The
results show that RisKeeper outperforms other models in
most of the settings for both evasion and poisoning attacks.

By allocating costs via our proposed method, the attack-
ers’ capability of reducing classification performance by se-
lectively perturbing edges is greatly undermined. For tradi-
tional defensive methods, experimental results have shown
that GCN-Jaccard is usually superior to the others, though
GNN-SVD can sometimes achieve optimal results when the
perturbed edges ratio is larger. We infer that since GCN-
SVD is designed mainly for the change of small singular
values of the adjacency matrix caused by Nettack, its perfor-
mance under untargeted attack with small numbers of pertur-
bations may not be the most ideal. In most cases, the perfor-
mance of GCN-Median is not the most ideal, in some cases
it is even worse than GCN. We infer the median aggrega-
tion function may only be effective under some specific cir-
cumstances. In summary, in both cases of evasion and poi-
soning attacks, the optimal defense effect can be achieved
by RisKeeper by learning a cost allocation when the attack-
ing budget is limited. In contrast with other defensive meth-
ods, RisKeeper proactively interfere the attack by allocating
costs to nodes and edges. This defense method does not de-
pend on specific preprocessings of graph data or designs of
specific robust GNN architectures, thereby fully lifting the
constraints on GCN models during defending, which could
be advantageous in various situations.

The results on the last column of Table 3 suggest that
RisKeeper would not undermine the performance on clean
data, as we do not modify GNNs or input data as baselines
do. In contrast, methods such as GCN-Jaccard and GCN-
SVD exhibit inferior performance when applied to clean
data. This decrease in performance is attributed to their in-
herent denoising process, which can be counterproductive
for clean data. GCN-Median shows a slight decline in per-
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Eva-0.08 Eva-0.16 Eva-0.24 Poi-0.08 Poi-0.16 Poi-0.24 Unattacked

co
ra

GCN 0.746 ± 0.004 0.703 ± 0.008 0.659 ± 0.032 0.739 ± 0.005 0.696 ± 0.010 0.650 ± 0.028 0.811 ± 0.004
GCN-SVD 0.754 ± 0.007 0.737 ± 0.006 0.706 ± 0.025 0.721 ± 0.009 0.707 ± 0.019 0.680 ± 0.033 0.765 ± 0.002

GCN-Jaccard 0.756 ± 0.004 0.737 ± 0.013 0.703 ± 0.022 0.744 ± 0.007 0.722 ± 0.011 0.701 ± 0.026 0.789 ± 0.007
GNN-Median 0.755 ± 0.004 0.722 ± 0.006 0.674 ± 0.026 0.756 ± 0.010 0.711 ± 0.018 0.662 ± 0.026 0.800 ± 0.002

Ours 0.795 ± 0.004 0.746 ± 0.014 0.680 ± 0.024 0.791 ± 0.004 0.733 ± 0.011 0.659 ± 0.021 0.811 ± 0.004

ci
te

se
er

GCN 0.659 ± 0.003 0.621 ± 0.014 0.594 ± 0.007 0.649 ± 0.003 0.604 ± 0.011 0.577 ± 0.011 0.716 ± 0.003
GCN-SVD 0.651 ± 0.008 0.647 ± 0.005 0.634 ± 0.010 0.645 ± 0.011 0.628 ± 0.007 0.617 ± 0.008 0.654 ± 0.002

GCN-Jaccard 0.680 ± 0.006 0.651 ± 0.009 0.622 ± 0.012 0.668 ± 0.007 0.635 ± 0.010 0.600 ± 0.019 0.716 ± 0.002
GNN-Median 0.662 ± 0.007 0.623 ± 0.007 0.599 ± 0.010 0.663 ± 0.017 0.617 ± 0.011 0.588 ± 0.019 0.703 ± 0.002

Ours 0.708 ± 0.003 0.671 ± 0.014 0.624 ± 0.007 0.708 ± 0.003 0.663 ± 0.011 0.605 ± 0.011 0.716 ± 0.003

co
m

pu
te

rs

GCN 0.788 ± 0.005 0.756 ± 0.010 0.712 ± 0.018 0.792 ± 0.032 0.798 ± 0.008 0.784 ± 0.005 0.882 ± 0.003
GCN-SVD 0.735 ± 0.003 0.709 ± 0.009 0.674 ± 0.016 0.785 ± 0.006 0.770 ± 0.009 0.753 ± 0.006 0.779 ± 0.006

GCN-Jaccard 0.788 ± 0.005 0.756 ± 0.010 0.708 ± 0.025 0.819 ± 0.006 0.802 ± 0.006 0.783 ± 0.003 0.882 ± 0.003
GNN-Median 0.788 ± 0.013 0.757 ± 0.010 0.711 ± 0.026 0.788 ± 0.007 0.748 ± 0.041 0.741 ± 0.016 0.869 ± 0.004

Ours 0.819 ± 0.017 0.782 ± 0.014 0.728 ± 0.024 0.830 ± 0.008 0.798 ± 0.012 0.758 ± 0.013 0.882 ± 0.003

ph
ot

o

GCN 0.854 ± 0.016 0.832 ± 0.011 0.790 ± 0.048 0.865 ± 0.016 0.846 ± 0.013 0.825 ± 0.023 0.927 ± 0.002
GCN-SVD 0.829 ± 0.016 0.807 ± 0.011 0.770 ± 0.044 0.837 ± 0.016 0.826 ± 0.014 0.783 ± 0.020 0.878 ± 0.002

GCN-Jaccard 0.854 ± 0.016 0.831 ± 0.011 0.790 ± 0.048 0.864 ± 0.011 0.844 ± 0.014 0.824 ± 0.020 0.927 ± 0.002
GNN-Median 0.845 ± 0.015 0.822 ± 0.013 0.767 ± 0.053 0.851 ± 0.022 0.826 ± 0.013 0.783 ± 0.026 0.913 ± 0.004

Ours 0.874 ± 0.018 0.839 ± 0.018 0.809 ± 0.040 0.875 ± 0.018 0.851 ± 0.014 0.818 ± 0.014 0.927 ± 0.002

Table 3: The testing accuracy of defensive methods against Cost-Aware PGD attack in evasion and poisoning settings.
Unattacked represents model performance on clean data. Eva-0.08, Eva-0.16 and Eva-0.24 represents Cost-Aware PGD attack
with cost budget constraint 0.08|E|, 0.16|E|, and 0.24|E| under evasion setting. Poi-0.08, Poi-0.16 and Poi-0.24 represents
Cost-Aware PGD attack with cost budget constraint 0.08|E|, 0.16|E|, and 0.24|E| under poisoning setting.

Meta-0.01 Meta-0.02 Meta-0.03 Unattacked

GCN 0.797 ± 0.007 0.787 ± 0.005 0.781 ± 0.004 0.811 ± 0.004
GCN-Jaccard 0.779 ± 0.005 0.776 ± 0.008 0.769 ± 0.007 0.789 ± 0.007
GCN-SVD 0.716 ± 0.009 0.713 ± 0.003 0.710 ± 0.006 0.765 ± 0.002

GNN-Median 0.797 ± 0.010 0.787 ± 0.007 0.781 ± 0.005 0.800 ± 0.002
Ours 0.800 ± 0.010 0.789 ± 0.007 0.785 ± 0.005 0.811 ± 0.004

Table 4: The testing accuracy on GNNs Cost-Aware Meta attack under poisoning settings. Unattacked represents model per-
formance on clean data. Meta-0.01, Meta-0.02 and Meta-0.03 represents Cost-Aware Meta attack with cost budget constraint
0.01|E|, 0.02|E|, and 0.03|E| under poisoning setting.

formance on clean data, likely due to its robust aggregation
function which may not always align with the characteristics
of clean data.

The Budget Sensitivity. As shown in Table 3, RisKeeper
demonstrates a larger advantage under conditions of a
limited attacker’s budget. The performance gap between
RisKeeper and the baseline models narrows with increasing
budget. This is because when the attacker’s budget increases,
the attacker is more likely to ignore our assigned cost as any
perturbation would be within the budget. This finding is very
insightful as real-world attackers usually suffer from budget
constraint.

Transferability to Other Attacks. To evaluate the trans-
ferability of our method to other attacks, we further report
the performance of RisKeeper and baseline models under
Cost-Aware Meta Attack. The Cost-Aware Meta Attack is
identical to original Meta Attach (Zügner and Günnemann
2019) except for two aspects. Firstly, its objective function
has an additional term −λ

∑
(vm,vn)∈E′(cm + cn) that is

identical to the Cost-Aware PGD Attack. Secondly, the edge
perturbation steps are conducted until the cost of the cur-
rent perturbation meets the cost budget constraint, i.e., until∑

(vm,vn)∈E′(cm + cn) ≥ ϵ. The final step that caused the
cost to exceed the constraint is ignored. λ is set to be 0.0004

|E| .
The experiments are conducted on Cora dataset with differ-
ent cost budget constraints under poisoning settings.

The results are presented in Table 4. We find that
RisKeeper outperforms all baseline models under different
cost budget constraints, while causing no decrease in clean-
graph performances. This suggests that the costs learned by
our method are also effective when used against other untar-
geted attacks.

Case Study. Based on learned node cost from RisKeeper,
we can further analyze the robustness of specific substruc-
tures. We focus on graphlets, defined as small connected
sub-graphs of a large network (Pržulj, Corneil, and Jurisica
2004), with 2-4 nodes (as shown in Figure 1). We adopt Or-
bit Counting Algorithm (Orca) (Hočevar and Demšar 2014)
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Figure 1: Graphlets with 2–4 nodes and automorphism or-
bits.

cora citeseer amazon
computers

amazon
photo

G0 0.070 1 0 0.881
G1 0.648 0.803 0.322 0.961
G2 0 0.636 0.917 0.628
G3 0.715 0.665 0.299 0.991
G4 1 0.723 0.232 1
G5 0.954 0.400 0.927 0.977
G6 0.718 0.600 0.675 0.949
G7 0.483 0.236 0.979 0.835
G8 0.142 0 1 0

Table 5: Average node cost for each type of graphlets. The
costs of various graphlets have been normalized.

to count graphlets and orbit signatures of network nodes.
Given that costs are predominantly assigned to nodes identi-
fied as vulnerable, a higher total cost allocated to a particular
graphlet signifies its vulnerability. We calculate the average
node cost for each type of graphlet, and the presented in Ta-
ble 5. We find that defenders can allocate more resources and
efforts towards protecting structures of 3-star, 4-circle, and
tailed-triangle. In contrast, triangle and 4-clique are gener-
ally the most robust graphlets in many cases, as they exhibit
relatively low average node costs. These findings provide
valuable insights that appeal to managers to raise awareness
on 3-star, 4-circle, and tailed-triangle. Conversely, given the
relative robustness of triangle and 4-clique structures, man-
agers may consider deprioritizing these areas when resource
constraints necessitate a more focused approach.

Related Work
Attack method. In this paper, we focus on untargeted
structural attack, which aims to significantly degrade the
classification performance of GNNs by deleting existing
edges and adding non-existing edges (Xu et al. 2019; Zügner
and Günnemann 2019; Liu et al. 2023; Sun et al. 2020; Ma
et al. 2021; Xu et al. 2022a). For example, Xu et al. (2019)
introduces a topology attack framework based on edge per-
turbations from a first-order optimization perspective. This
method adopts a convex relaxation to overcome the chal-
lenge of attacking discrete graph structure data. Meta-attack

(Zügner and Günnemann 2019) also explores attacks on
GNNs by perturbing the discrete graph structure. Its core
principle involves using meta-gradients to solve the bi-level
problem underlying training-time attacks, essentially treat-
ing the graph as a hyperparameter for optimization.

Defense method. There are several methods that have
been proposed to enhance the robustness of GNNs (Xu et al.
2021, 2020, 2022c; Said, De Luca, and Albayrak 2010; En-
tezari et al. 2020; Jin et al. 2020; Chen et al. 2021). GCN-
Jaccard (Said, De Luca, and Albayrak 2010) addresses this
issue by eliminating edges between nodes with low Jaccard
similarity. GNN-SVD (Entezari et al. 2020) proposes purify-
ing the perturbed adjacency matrix by obtaining its low-rank
approximation through truncated SVD. Pro-GNN (Jin et al.
2020) takes a different approach by jointly learning the clean
graph structure and robust GNN parameters, while ensuring
important graph properties such as low-rank, sparsity, and
feature smoothness are maintained. Attention-based defense
methods penalize the model’s weights on adversarial edges
or nodes, resulting in the development of new GNNs. For in-
stance, median aggregation and trimmed mean aggregation
(Chen et al. 2021) are proposed as robust aggregation func-
tions in GNNs. In contrast to the aforementioned works, our
research focuses on the optimal allocation of costs to nodes
to achieve the most effective defense. Through effective cost
allocation, our method achieves state-of-the-art robustness
compared to existing approaches.

Conclusion
In this paper, we present RisKeeper, a novel and effective
cost allocation method designed to defend against graph at-
tacks. We introduce a fresh perspective that incorporates
cost considerations into both attack and defense of GNNs.
Specifically, we introduce a cost-aware PGD attack, and ap-
proach the cost allocation problem faced by defenders as the
task of quantifying the value of nodes/edges in terms of ad-
versarial risk. We formulate the problem as a bi-level op-
timization problem, representing a recursive game between
defenders and attackers. We theoretically analyze the opti-
mization problem and propose a robust training method to
solve it. Through extensive experiments, we demonstrate
that RisKeeper outperforms state-of-the-art defense meth-
ods, particularly when attackers have limited attack budget.
Additionally, our learned cost allocation can help identify
robust and vulnerable structures within graphs.

We contribute to the robust graph learning literature by
introducing of a novel perspective and an effective method.
This work opens up avenues for future research to explore
other variations of attacks, such as targeted attacks. By ex-
panding the scope of investigation, researchers can further
enhance the understanding and development of robust graph
learning techniques.
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