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Abstract

Recently, an emerging research direction called Evolutionary
Reinforcement Learning (ERL) is proposed, which combines
evolutionary algorithm into reinforcement learning (RL) for
tackling the tasks of sequential decision making. However,
the recently proposed ERL algorithms often suffer from two
challenges: the inaccuracy of policy estimation caused by the
overestimation bias in RL and the insufficience of exploration
caused by inefficient mutations. To alleviate these problems,
we propose an Evolutionary Reinforcement Learning algo-
rithm enhanced with Truncated variance and Distillation mu-
tation, called ERL-TD. We utilize multiple Q-networks to
evaluate state-action pairs, so that multiple networks can pro-
vide more accurate evaluations for state-action pairs, in which
the variance of evaluations can be adopted to control the over-
estimation bias in RL. Moreover, we propose a new distil-
lation mutation to provide a promising mutation direction,
which is different from traditional mutation generating a large
number of random solutions. We evaluate ERL-TD on the
continuous control benchmarks from the OpenAl Gym and
DeepMind Control Suite. The experiments show that ERL-
TD shows excellent performance and outperforms all base-
line RL algorithms on the test suites.

Introduction

Reinforcement Learning (RL) is a branch of machine learn-
ing that focuses on teaching an agent how to make decisions
through trial and error interactions with an environment. It
is inspired by the way that human learns from feedback and
rewards, which has been applied in various domains (Grin-
sztajn, Furelos-Blanco, and Barrett 2022; Zhao et al. 2022;
Rey, Hammad, and Saberi 2023), including robotics (Luo
et al. 2023), game playing (Vinyals et al. 2019), autonomous
driving (Sallab et al. 2017), and resource management (Ni
et al. 2021). Although RL demonstrates impressive capabil-
ities in solving the tasks of sequential decision-making, it
still suffers from weak exploration and the sensitivity of hy-
perparameters. On the other hand, Evolutionary Algorithm
(EA) is a kind of computational intelligence methods, which
simulates the natural evolutionary process by maintaining a
population and iteratively searching for superior solutions.
In each iteration, individuals with high fitness are selected
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to produce offspring through genetic crossover and muta-
tion, while individuals with low fitness are eliminated. EA
shows advantages such as strong search capability, robust-
ness, and stable convergence. Even though EA has achieved
some success in training deep neural networks for RL (Such
et al. 2018), it is obviously less sample-efficient than the RL
methods like Deep Q-Learning (Mnih et al. 2015).

Since RL and EA have complementary advantages, a
natural idea is to integrate them for designing better pol-
icy optimization algorithms. In this exciting direction, there
are many novel ideas emerging in recent years (Gangwani
and Peng 2018; Khadka and Tumer 2018). A first work is
Evolutionary Reinforcement Learning (ERL) proposed in
(Khadka and Tumer 2018), which is an innovative frame-
work integrating Genetic Algorithm (GA) (Mitchell 1998)
with Deep Deterministic Policy Gradien (DDPG) (Lilli-
crap et al. 2015). This method maintains an RL agent and
multiple actor networks, which coexist and interact with
each other. By this way, it facilitates the sharing of knowl-
edge among populations, which allows efficient informa-
tion transfer and accelerates the learning process. However,
the integration of EA and RL is still rudimentary. As a re-
sult, many variants of ERL (Sigaud 2022) are subsequently
proposed, which are improved from two aspects: enhanc-
ing the communication between RL policy and EA poli-
cies (Khadka et al. 2019; Li et al. 2022), and improving
the crossover and mutation operators (Gangwani and Peng
2018; Bodnar, Day, and Li6 2020). However, the above ERL
algorithms still suffer from low efficiency and poor stability,
which are mainly induced by inaccuracy of Q-values evalu-
ation and randomness of evolution. Generally, Q-values are
used to guide the direction of actions in RL, while evolu-
tionary operators will generate promising candidates in EA.
Thus, without accurate Q-values estimation in RL and effi-
cient evolutionary operators in EA, the population of actor
networks would generate a large number of meaningless ex-
periences, leading to inefficiency and poor stability.

Here, we discuss ERL from the perspectives of Q-values
estimation and population evolution. As it is described in
(Thrun and Schwartz 1993), off-policy RL often suffers
from overestimation bias, which also exists in ERL. To ad-
dress this issue, we use the mean of multiple networks mi-
nus the exponential of their variance as the target to update
Q-networks. Since each network has a different initializa-
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Figure 1: This curve represents the changes of the variance
of Q-values in multiple Q-networks, which are obtained by
sampling 500 states randomly from the buffer.

tion state, the variance of Q-values for untrained state-action
pairs is larger than that for trained state-action pairs. There-
fore, the variance of Q-values estimation can roughly rep-
resent its uncertainty in RL. Thus, it can be used to control
the overestimation bias in RL. However, as shown in Fig-
ure 1, even training with the same experience pool for many
times, the Q-values of multiple networks are still different
and their variance won’t converge to 0, as they have differ-
ent initialization states. Thus, if the target consistently uses
the mean of multiple networks minus the exponential of their
variances, there will exist underestimation bias that may lead
the networks to get trapped in local optima. To solve this is-
sue, we use the mean of multiple networks as the update tar-
get after their variance becomes stable, otherwise we reduce
overestimation by using the mean of multiple networks mi-
nus the exponential of their variance as the target. Moreover,
it is also important in ERL to control the direction of muta-
tion in policy networks. All policy networks should explore
near the policy that is considered optimal by the current
Q-networks. This is because we cannot verify whether the
Q-values estimation is correct or not if the experience pool
doesn’t contain the actions that are considerred optimal by
the current Q-networks. Thus, ERL-TD distills the popula-
tion by the existing best policy before mutation, so the policy
generated by distillation mutation won’t be overly random.
Finally, we summarize the contributions of this work:

* We propose a truncated variance Bellman backup to
control the overestimation bias of Q-values in ERL,
which can improve the accuracy of Q-values estimation
in ERL.

We propose a distillation mutation, which can provide
an excellent direction for mutation and generate more
meaningful experiences, so as to enhance the efficiency
and stability of ERL.

The proposed method ERL-TD sets a new state-of-the-
art in terms of data efficiency and asymptotic perfor-
mance compared to the existing ERL algorithms on the
Gym environments. Also, ERL-TD achieves superior
performance on the DMC environments.
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Background

ERL is a framework integrating EA into RL, which lever-
ages EA to enhance the exploration of RL. To validate
our performance on the Gym environments, we integrate
EA into Soft Actor-Critic (SAC) (Haarnoja et al. 2018) to
form ERL-TD. Moreover, to validate our performance in a
pixel-input environment, we combine ERL-TD with Data-
regularized Q (DrQ) (Kostrikov, Yarats, and Fergus 2020),
which can be run on the DMC environments. Thus, in this
section, we introduce some background of our used RL and
EA separately.

Reinforcement Learning RL is a branch of machine
learning that deals with decision-making problems. The goal
of RL is to learn an optimal policy that maximizes the cu-
mulative discounted rewards. Formally, RL problems are
often modeled as Markov Decision Processes (MDP). The
MDP is defined by the tuple (S, A, P, R,~y). The goal of the
agent is to learn an optimal policy 7* that maximizes the ex-
pected cumulative reward (also called the return) from the

starting state. The return is defined as: G; = ZiT:t ~ityy,
where 0 < v < 1 is the discount factor and 7" is the max-
imum episode horizon. The interactive process of RL can
be summarized as a dynamic cycle of observation, action,
and learning. To improve its exploration, SAC integrates the
ideas of maximum entropy and off-policy learning in RL.
The core idea of SAC is to optimize a stochastic policy by
maximizing both the expected cumulative reward and the en-
tropy of the policy distribution. This entropy regularization
encourages exploration and helps to prevent premature con-
vergence to suboptimal policies. Moreover, the high dimen-
sionality of pixel-input is one of the key challenges in RL.
To enhance the performance in pixel-input environments,
DrQ introduces the techniques of data augmentation based
on SAC. Specifically, DrQ applies edge padding and random
cropping to the input images, which are commonly used in
computer vision.

Evolutionary Algorithm EA (Béck and Schwefel 1993)
is a kind of optimization algorithms as inspired by natural
selection, which maintains a population and runs iterative
search for solving complex problems (Fogel 2006; Spears
etal. 1993). Generally, EA starts with creating an initial pop-
ulation of candidate solutions (also called individuals). Each
individual in the population is evaluated and assigned a fit-
ness value based on how well it solves the problem. Individ-
uals with higher fitness values have a higher chance of being
selected for reproduction, which will generate offspring. In
ERL, each individual of EA represents a policy network in
RL, where the crossover and mutation are implemented as
changes to the neural network weights (Floreano, Diirr, and
Mattiussi 2008; Liiders et al. 2017; Risi and Togelius 2015;
Stanley and Miikkulainen 2002).

Motivation

The off-policy RL suffers from the problem of Q-values
overestimation bias. The issue of overestimation can be con-
structed as Jensen’s inequality (Thrun and Schwartz 1993).
Specifically, we use Q“PP"° to denote the Q-values evaluated
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by the function approximation and Q"¢ to denote the true
Q-value. Suppose that QPP is equal to Q'"“¢ corrupted by
anoise term U (a), where Va Ey [U(a)] = 0,

max QWP (s,a) = max Ey[Q"¢(s,a) + Ul(a)]
ey
< Ey [max{Q""(s,0) + U(a)}]

In practice, the stochasticity of state transitions, the ran-
domness of rewards, and the spontaneous errors of function
approximation can generate noise. The overestimation bias
caused by the U(a) propagates backward and accumulates
over the learning process. To further clarify the overestima-
tion phenomenon, we randomly sample over 500 states from
the buffer on the Hopper-v2 environment. Starting from the
sampled states, we used the accumulated discount rewards
of the current policy as the true Q-values and the mean eval-
uations of the Q-networks as the estimated Q-values. The
results, as shown in Figure 2, indicate that the overestima-
tion of Q-values seriously impairs the evaluation process of
RL. Furthermore, the overestimation phenomenon does not
disappear, despite the Q-values estimation becoming gradu-
ally stable.
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Figure 2: The true Q-values (grey) are estimated by using
the average discounted return over 500 states sampled from
the replay buffer, following the current policy. The evaluated
Q-values (red) are estimated by current Q-networks.

In ERL, the process of evolution mainly involves
crossover and mutation, the randomness of which is a cru-
cial issue. To search for solutions, traditional mutations in
EA introduce Gaussian noise in the solution space, while
crossover involves exchanging fragments of elite solutions.
Howeyver, if crossover and mutation are not controlled, the
policy network will diverge in an unpredictable direction.

Related Work

Recently, integrating EA into RL has emerged as a promis-
ing method. A number of ERL algorithms (Ma et al. 2022;
Zhou et al. 2023; Li et al. 2023) have been proposed to en-
hance the performance of RL. The first ERL framework was
proposed by (Khadka and Tumer 2018), which utilizes the
EA population to provide diverse data for training the DDPG
algorithm (Lillicrap et al. 2015). Periodically, the RL agent
is reinserted into the EA population to inject gradient in-
formation. This method inherits the credit assignment capa-
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bility of RL and effectively explores different sets of poli-
cies. In parallel, CEM-RL (Pourchot and Sigaud 2019) in-
tegrates Cross-Entropy Method (CEM) into Twin Delayed
Deep Deterministic policy gradient algorithm (TD3) (Fu-
jimoto, Hoof, and Meger 2018). CEM is an optimization
algorithm used to solve stochastic optimization problems,
which iteratively updates a population of candidate solu-
tions by cross-entropy based on the given objective func-
tion. In the setting of CEM-RL, TD3 provides the gradient
of Temporal Difference (TD) errors for half of the individ-
uals in the population. After that, a number of ERL vari-
ants are subsequently proposed, which focus on enhancing
the communication between the RL and EA policies or/and
improving the crossover and mutation operators. For ex-
ample, Collaborative Evolutionary Reinforcement Learning
(CERL) (Khadka et al. 2019) extends a single RL agent to
multiple agents with different hyperparameter settings. At
the same time, all learners use a shared replay buffer to
achieve high sample efficiency. The entire process is bound
by the EA to explore the parameter space and integrate the
best policy. Although the above mentioned ERL methods
are innovative, their used crossover and mutation operators
in EA are destructive. Thus, Proximal Distilled Evolution-
ary Reinforcement Learning (PDERL) (Bodnar, Day, and
Li6 2020) proposes the distillation crossover and proximal
mutation to alleviate the policy collapse at the parameter
level. Q-filtered behavior distillation crossover merges two
parent policies in the phenotype space to form a child pol-
icy, while proximal mutation ensures that there is no signif-
icant difference between the new policy and the old policy.
Similarly, to address the catastrophic destruction of tradi-
tional crossover and mutation in neural network parameter,
Genetic Policy Optimization (GPO) (Gangwani and Peng
2018) employs imitation learning for policy crossover in the
state space and utilizes policy gradient methods for muta-
tion. State space crossover effectively combines two parent
policies into an offspring or sub-policy, which attempts to
mimic its best parent policy while generating similar state
distributions. The mutation operator is more effective than
random parameter perturbation, while it also maintains ge-
netic diversity (Parker-Holder et al. 2020). Evolutionary Re-
inforcement Learning with Two-scale State Representation
and Policy Representation (ERL-Re?) (Li et al. 2022) points
out that the common knowledge between EA and RL pol-
icy networks should not be neglected. Therefore, all EA
and RL policies in ERL-Re? share the same nonlinear state
representation while maintaining their respective linear pol-
icy representations. Furthermore, to ensure alignment be-
tween the current Q-values and the experiences generated
by the policies, the mutation of ERL-Re? occurs at the be-
havioral level rather than across all parameters. Inspired by
the above-mentioned method, we propose distillation muta-
tion to alleviate the destruction of crossover and mutation.
Distillation mutation initially guides the student policy to-
wards minimizing the distance from the teacher policy. After
distilling, it mutates by using the magnitude of gradients ob-
tained from the last distillation as the variance for Gaussian
mutation, and the direction of the gradients as the direction
for Gaussian mutation. In addition, RACE (Li et al. 2023)
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Figure 3: Illustration of ERL-TD. Multiple Q-networks are used to evaluate the value of the state-action pairs. The RL actor
network is updated according to the direction of Q-values improvement. The EA actor networks learn from the RL actor network
or the elite actor network in the population. Moreover, the experiences generated by all actor networks are shared.

believes that there should be the same hidden feature repre-
sentation in all policies space to improve the efficiency of
search in multi-agent reinforcement learning (MARL).

At the same time, off-policy RL faces a critical issue of
overestimation. To address the issue of overestimation, TD3
utilizes the minimum evaluation value of two target net-
works as the update target. MeanQ (Liang et al. 2022) fo-
cuses on addressing the issue of the overestimation for dis-
crete actions by using the mean evaluation values of multi-
ple networks as the update target. Randomized Ensembled
Double Q-Learning (REDQ) (Chen et al. 2020) randomly
selects two out of ten target networks for target evaluation
and chooses the lowest evaluation value as the target value.
Additionally, REDQ increases its update frequency (UTD
ratio) to 20 times, resulting in running slowly. In contrast,
our approach uses the mean of multiple networks minus their
variance as the target value to reduce overestimation, and it
switches to using the mean evaluation directly as the target
value once the evaluation stabilizes.

Proposed Algorithm

In this section, we provide an framework diagram of ERL-
TD to understand the overview intuitively in Figure 3. Addi-
tionally, we introduce the details of each component in this
work.
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Overview

Based on the ERL framework, ERL-TD is designed by in-
tegrating EA into SAC algorithm. Our framework consists
of an interactive environment, an experience buffer, an RL
actor network, multiple Q-networks, and multiple EA actor
networks. As shown in Algorithm 1, the first step is to ini-
tialize the components mentioned above. We utilize the actor
networks to select action a based on the state s, and feed the
actions to the environment. The environment returns the re-
ward r and the next state s’. The data at time ¢ consisting of
(8¢, at, T, Se+1) is stored in the replay buffer D. The RL side
including Q-networks and actor network keeps updating at
every step, while the EA side including the actor networks
executes distillation mutation after all the EA actor networks
have completed multiple episodes.

During the update process on the RL side, we dynami-
cally adjust the batch size of the samples based on the num-
ber of the data in replay buffer. Because the experience pool
only contains a few data in the early stage, updating it fre-
quently will lead to the primacy bias (Nikishin et al. 2022).
After sampling the data, the Q-networks are updated by the
truncated variance Bellman backup, while the actor network
is improved along the directions of Q-values and policy en-
tropy. Generally, the evaluation function of an EA actor net-
work is based on either the cumulative rewards in a episode
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Algorithm 1: ERL-TD

1: Initialize K Q-networks @, fork =1,..., K

2: Initialize K target Q-networks Qék’ ék <« 0, for k =
1,....K

Initialize RL policy network 7,.; with weights 1,
Initialize a population of M policy networks 7., with
weights Y7 form =1,..., M

5: Initialize replay buffer D to capacity N

6: fort =1toT do

7: Sample action a; according to policy my,

8: Input action a; into the environment
9
0

W

Get next state s, from the environment
Initialize two lists of length L with all values set to
zero for storing historical Q) _var®

11: Store transition (s, at, r¢, S¢41, list(Q-var®) in D
12: forn =1to N do
13: Sample K batch transitions B(s, at, ¢, St+1)
14: Calculate the target Q-values by Formula (2)
for K x B transition
15: Calculate and update the current QQ_var®
16: Calculate the standard deviation of the
Q_var® list in a transition
17: for k =1to K do
18: Update g, with B transition by minimiz-
ing Jo(0) = 3(T"Q — QF,,,)?, where the

T™Q is the truncated variance bellman back-
up in Formula (3)

19: end for

20: Calculate policy update value with K x B
transitions

21: Update policy my, by maximizing J,(v)) =

Eat~7rw [Qmean(8t7 Ty (St)) - OélOQ?T¢ (at ‘St)]’
where Qpean(St, Ty (s¢)) is the mean of multi-
ple Q-values

22: end for

23: fitness = Evaluate(mo,, D, P)

24: Rank the population based on fitness scores

25: Select the first e policy network 7¢ € ., as elites
26: Teq = DistillationMutation(7,.;, 7€)

27: end for

or the estimated values from the Q-network. In our method,
both evaluation methods are used simultaneously to balance
bias and variance (Schulman et al. 2015). If only reward
values are used, acquiring an accurate policy evaluation re-
quires a significant amount of data. As only a limited number
of sample data are available for evaluating the policy, there
will be high evaluation variance for the return. On the other
hand, if only the evaluation values from the Q-networks are
used, there is a bias introduced by inaccurate fitting. After
evaluation, the policy with the highest value is selected as
the elite policy. The elite policy or RL policy serves as the
teacher, while the policies in the population except the elite
policy are treated as students for distillation mutation.

Walker2d-v2 Hopper-v2
400 400 .
£300 300 e
= =) /
g 200 g 200 —o— mean of true Q
& & mean of evaluated Q
100 100 —+— variance of true Q
—— variance of evaluated Q
0 0 200 400 0 0 200 400
step(x2000) step(x2000)
(@ (b)

Figure 4: The overestimation of mean Q-values and variance
of Q-values on the (a) Walker2d-v2 and (b) Hopper-v2 envi-
ronments.

Truncated Variance Bellman Backup

Formally, we consider K networks Qg, fork =1,..., K,
where 6;, denotes the parameters of the k-th Q-network.
Each Q-network is randomly initialized to ensure fairness
for the state-action pairs. The traditional off-policy RL up-
dates the Q-networks by minimizing the TD error. However,
some experiments in (Thrun and Schwartz 1993; Fox, Pak-
man, and Tishby 2015) show that the update way of off-
policy RL suffers from the overestimation bias, which is
caused by the stochasticity of Q-values estimation and the
improvement of policy. Therefore, we propose the truncated
variance Bellman backup to address the above issue. As
shown in Figure 1, the variance of multiple Q-values does
not converge to zero, but the change of variance tends to sta-
bilize over time. Therefore, to avoid introducing new bias
in the later stage of training, we use the mean of different
networks as the Bellman update target when ) _var is sta-
ble, otherwise we use the mean of different networks minus
the o power of the variance as the Bellman update target.
To demonstrate the accuracy of the Q-values estimation in
ERL-TD, we plot the estimated value of mean Q-values and
truncated variance Q-values in Figure 4(a) and 4(b). The es-
timated Q-values calculated by the current Q-networks with
500 states are compared with the true Q-values, which are
represented by the mean of discounted return generated by
the current policy. The curves are learnt from the Hopper-v2
and Walker2d-v2 environments. It is evident that ERL-TD
with truncated variance alleviates the overestimation bias.
Formally, we use a formula to describe the truncated vari-
ance Bellman backup, as follows:

Tﬂ—Q(shat) = r(staat) +’7E5t+1~p[v(st+1)]a (2)
where
V(5t+1) = Eﬂ'[QnLean(st-‘rla Clt+1) - Q—OU@T(St-s-la at+1)]7

3)

where
Q over = 0, STDhistory [QJUG’I"Q] <
) B QJ}GTG? STDhistory[QJUa/l"a] > U

where Qean and @Q_var respectively represent the
mean and variance of multiple Q-networks, and
ST Dpistory[@-var®] is the standard deviation of the
historical Q_var® list. « is an exponent used to control
temperature. ¢ is the threshold used to determine the
stability of Q_var.

4)



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

0.1
NI
@ 0.0
[l
I

0.75 1.00

state_1

1.25

Distillation
<”
Gaussian N
lII!!!!!!IIl E§§2§£§§§§§E§;

NI
£ 0.0
=
@

0.75

355

1.00
state_1

1.25

0.2

0.1
o~

i
2 0.0

sta

—-0.1

’

1.2
state_1

=0.2

1.0 1.4

Figure 5: The figure illustrates that the state distributions of the policies with Gaussian mutation and distillation mutation com-
pare with the state distribution of the policy network considered highly valuable. The density distribution plot is computed from
the first and second dimensions of the states, which are generated by running multiple episodes on the Hopper-v2 environment
using the policy networks. The policy network that the current Q-network considers high value is plotted in the left side. Specif-
ically, it can be the RL policy network or the elite policy network. The policy networks after distillation mutation and Gaussian

mutation are plotted in the right side, respectively.

Distillation Mutation

To address the issue of generating a large number of random
solutions by traditional mutations, we propose the distilla-
tion mutation. In our approach, distillation brings the policy
in the population close to the highly valuable policy and pro-
vides guidance for mutation. We select either the elite policy
or the RL policy as the teacher. All policies in the popu-
lation except the elite policy act as students learning from
the teacher. Specifically, the process of distillation involves
sampling data from the replay buffer D, using the output of
the teacher network as the target and the output of the stu-
dent networks as the estimate, calculating the gradient g of
the loss function to update the student networks. Note that
the gradient g of the last distillation is not used to update
the weights, but to guide mutation. We construct a Gaussian
model N(0, |g|) and sample from this model to obtain the
magnitude of mutation. The direction of the gradient g de-
termines the direction of mutation. The distillation mutation
produces a policy network that is close to the highly valuable
policy networks while still maintaining exploration. The dis-
tributions of the state generated by the policy networks us-
ing distillation mutation and Gaussian mutation are plotted
in Figure 5. It is evident that the policy network with distil-
lation mutation is closer to the teacher network compared to
the policy network with Gaussian mutation.

Experimental Results

We evaluate ERL-TD on several continuous control bench-
marks, which include OpenAl Gym (Brockman et al. 2016)
and DeepMind Control Suite (DMC) (Tassa et al. 2018).
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Setups

OpenAl Gym For the OpenAl Gym experiments with
proprioceptive inputs (e.g., positions and velocities), we
compare ERL-TD with several competitive RL algorithms,
including ERL-Re? (Li et al. 2022), PDERL (Bodnar, Day,
and Li6 2020), CERL (Khadka et al. 2019), CEM-RL (Pour-
chot and Sigaud 2019), ERL (Khadka and Tumer 2018),
SAC (Haarnoja et al. 2018), and TD3 (Fujimoto, Hoof,
and Meger 2018). Specifically, ERL-Re? is a state-of-the-art
ERL variant. To compare their performance, we report their
learning curves on six complex environments (HalfCheetah-
v2, Walker2d-v2, Hopper-v2, Ant-v2, Humanoid-v2, and
Swimmer-v2) in OpenAl Gym, each of which is run with
five different seeds for 1000k steps.

DeepMind Control Suite (DMC) The DeepMind Control
Suite presents a great challenge due to its large dimension of
pixel-input. To demonstrate the robustness of our algorithm,
we integrate ERL-TD and DrQ (Kostrikov, Yarats, and Fer-
gus 2020), which are compared with some competitive
RL algorithms, including Deep Planning Network (PlaNet)
(Hafner et al. 2019b), Dreamer (Hafner et al. 2019a), Con-
trastive Unsupervised Representations for Reinforcement
Learning (CURL) (Laskin, Srinivas, and Abbeel 2020), Re-
inforcement Learning with Augmented Data (RAD) (Laskin
et al. 2020), Data-regularized Q (DrQ) (Kostrikov, Yarats,
and Fergus 2020), and SUNRISE (Lee et al. 2021). PlaNet
is a model-based RL algorithm, which improves efficiency
by training a dynamics model. Dreamer is an RL agent
that solves long-horizon tasks from images purely by latent
imagination. CURL extracts high-dimensional pixel features
by combining the idea of comparative learning. By em-
ploying data augmentation techniques, RAD and DrQ en-
hance the learning ability of RL for pixel input. SUNRISE
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Figure 6: Performance on the OpenAlI Gym. We plot the curves obtained from running five different seeds, where the solid lines
represent the mean and the shaded regions represent the standard deviation.
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100K step

finger-spin 1364216 341+£70  767+56 905457 8114146 | 9014104 907453
cartpole-swingup 297439 326427 582+146 591455 373190 | 759t92 789 £13
reacher-easy 20+50  314+155 5384233 722450 567454 | 6014213 983414
cheetah-run 138+s88 2354137  299+48 413+35 381479 | 344+e67 421 +53
walker-walk 224448  277+12 403424 667 £147  641%89 | 612+164 475 +54
ball_in_cup-catch 0+o 246+t174  769+43 6334241 6664181 | 913453 972427

Table 1: Performance on DeepMind Control Suite at 100k and 500k. The normal-sized font and smaller font respectively
indicate the mean and the standard deviation over 10 runs. Additionally, the bolded font represents the best results.

reweights the target Q-values based on the uncertainty of
Q-ensemble. In this experiment, we report scores for ERL-
TD and baseline methods by running 100k and 500k steps
on six environments (finger-spin, cartpole-swingup, reacher-
easy, cheetah-run, walker-walk, and ball in_cup-catch).

Comparative Evaluation

Performance on OpenAl Gym For the experiments in
OpenAl Gym, we evaluate the performance of ERL-TD
on six popular environments. Figure 6 displays the mean
and standard deviation of cumulative rewards from differ-
ent seeds. It is evident that ERL-TD achieves outstanding
results in all environments. For the maximum cumulative
reward, ERL-TD shows significant improvements on Ant-
v2 and HalfCheetah-v2. In particular, compared to all other
baselines, ERL-TD nearly doubled the maximum cumula-
tive reward on Ant-v2. In contrast, the scores within one mil-

lion steps on ERL and PDERL is almost none. Additionally,
ERL-TD achieves excellent efficiency on Ant-v2, Hopper-
v2, and Humanoid-v2. At 20k steps, the cumulative reward
of ERL-TD is twice as high as other algorithms on Ant-v2
and Hopper-v2. At 40k steps, the camulative reward of ERL-
TD on Humanoid-v2 and HalfCheetah-v2 are significantly
greater than baseline algorithms. Meanwhile, we utilize the
same setting of all hyperparameters on all environments, ex-
cept for the discount factor on swimmer-v2. Our parameters
setting is easier than ERL-Re?. ERL-Re? is the state-of-the-
art ERL algorithm, while tuning its hyperparameters is chal-
lenging.

Performance on DMC For the DMC experiments, our al-
gorithm ERL-TD with DrQ is compared with six baseline
RL algorithms on six environments in Table 1. At 100k
steps, COE-RAD achieves the highest scores on all envi-
ronments except for the walker-walk. In the reacher-easy
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Figure 7: (a) The curves respectively represent two types of mutations: distillation mutation (Distill-Mut) and Gaussian mutation
(Gaussian-Mut). (b) The experiment decomposes the truncated variance Bellman backup to separately demonstrate the effect
of each component. (c) The experiment is conducted to study the performance impact of the number of Q-networks.

and ball_in_cup-catch experiments, it performs better at 100k
steps than other baseline algorithms at 500k steps. This obvi-
ously illustrates the excellent sampling efficiency of our al-
gorithm. For 500k steps, our algorithm continues to achieve
state-of-the-art results in two environments: reacher-easy
and ball_in_cup-catch. For the scores on the remaining envi-
ronments, our algorithm is close to the other algorithms. In
conclusion, our algorithm demonstrates strong robustness.

Ablation Study

To demonstrate the effectiveness of each component, we
conduct ablation experiments with one million steps on the
OpenAl Gym environments. Specifically, the ablation ex-
periments involve distillation mutation, truncated variance
Bellman backup, the number of Q-networks, the methods to
reduce overestimation, and setting of critic update a.

Distillation Mutation and Gaussian Mutation One of
our main contributions is distillation mutation. The distil-
lation mutation treats the policy considered with high Q-
values as the teacher. All policies in the population, ex-
cept for the elite policy, act as students learning from the
teacher. The gradient calculated by the final distillation pro-
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cess serves as the guidance for mutation. The Gaussian mu-
tation is a traditional mutation that adds Gaussian noise to all
policies except for the elite policy. It attempts to randomly
explore a better policy through this mutation, the advantage
of which is to maintain the diversity of policy. In Figure 7(a),
we compare the performance of these two methods on three
environments: Hopper-v2, Swimmer-v2, and Walker2d-v2.
We observe that distillation mutation significantly improves
the speed of convergence and obtains higher cumulative dis-
counted rewards than Gaussian mutation.

Truncated Variance Bellman Backup To show the per-
formance of Truncated Variance bellman backup (TV), we
compare the results of TV, NV, and NT. NV directly takes
the mean of Q-values as the target for updating the cur-
rent Q-networks, without considering the variance as the
target. NT adds the variance of the Q-values to the Bell-
man operator based on NV but without truncation. As shown
in Figure 7(b), we observe that NV obtains the worst per-
formance, which converges very slowly on the Hopper-v2
and Walker2d-v2 environments. It indicates that controlling
overestimation is extremely important. NT shows poor per-
formance in all three environments, especially in Swimmer-
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Figure 9: The performance of ERL-TD with different values of a.

v2. This shows that the truncation of variance is crucial, as
it can prevent the network from prematurely converging to
local optima.

Env SAC ERL | ERL-TD ERL-TD (REDQ)

534.52 47342 | 853.74 4520.63

Hopper

Table 2: Time measurements (in seconds) of training 10000
frames, executed on the NVIDIA Geforce RTX 3090.

Number of Q-networks To observe the impact of the
number of Q-networks, we conduct an ablation experiment
for the number of Q-networks. In Figure 7(c), we vary the
number of Q-networks K € {2,3,4,5}. ERL-TD shows in-
stability on Swimmer-v2 and Walk2d-v2 when K = 2. At
the same time, if K = 3 or 5, the performance of ERL-TD
is poor and unstable on Hopper-v2 and Swimmer-v2. There-
fore, considering the performance on multiple environments,
we recommend using four Q-networks to evaluate the value
of state-action pairs.

Methods to Reduce Overestimation In Figure 8, we
compared two methods for selecting the smaller value of
two target networks (DOUBLE-Q) and the method used by
REDQ, which randomly selects two networks out of 10 as
target values. The results show that REDQ performs simi-
larly to ours, but it requires 5 times the amount of time. As
shown in Table 2, ERL-TD runs for 10,000 frames on our
machine with 853.74 seconds, while our newly implemented
REDQ in ERL-TD method takes 4,520.63 seconds to run.
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Setting of Critic Update o The mean and standard devi-
ation are on the same scale, so our intuition suggests that
the value of a should be set around 0.5. The properties of
the exponential function change when the base is equal to
one. Therefore, we set different values for o« when the base
is greater than 1 and less than 1. The impact of « is demon-
strated in Figure 9. We use “a-x-y” to describe all legends,
where x and y represent the values of o when the base is
greater and less than 1, respectively.

Conclusion

In this paper, we propose the ERL-TD algorithm, which
leverages the variance of the ensemble networks to mitigate
the overestimation of Q-values while preventing underesti-
mation. To enhance the quality of exploration in the policy
network, we propose the distillation mutation. On the Gym
and DMC environments, we demonstrate that ERL-TD has
extremely powerful performance.

As shown in Table 2, the limitation of our algorithm is
long running time. The main reason is that using the variance
of multiple networks to calculate the gradient consumes a
lot of resources. How to use a Q-network to express the
Q-values accurately is an exciting research direction in the
future. For example, we can control the overestimation of
Q-values by utilizing the evaluation of populations in ERL,
which is on-policy and does not suffer from overestimation.
So it can be combined with off-policy to balance the bias
and variance in the estimation of Q-values.
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