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Abstract

Offline reinforcement learning (RL) aims to learn a policy
using only pre-collected and fixed data. Although avoiding
the time-consuming online interactions in RL, it poses chal-
lenges for out-of-distribution (OOD) state actions and often
suffers from data inefficiency for training. Despite many ef-
forts being devoted to addressing OOD state actions, the lat-
ter (data inefficiency) receives little attention in offline RL.
To address this, this paper proposes the cross-domain of-
fline RL, which assumes offline data incorporate additional
source-domain data from varying transition dynamics (envi-
ronments), and expects it to contribute to the offline data effi-
ciency. To do so, we identify a new challenge of OOD transi-
tion dynamics, beyond the common OOD state actions issue,
when utilizing cross-domain offline data. Then, we propose
our method BOSA, which employs two support-constrained
objectives to address the above OOD issues. Through ex-
tensive experiments in the cross-domain offline RL setting,
we demonstrate BOSA can greatly improve offline data ef-
ficiency: using only 10% of the target data, BOSA could
achieve 74.4% of the SOTA offline RL performance that uses
100% of the target data. Additionally, we also show BOSA
can be effortlessly plugged into model-based offline RL and
noising data augmentation techniques (used for generating
source-domain data), which naturally avoids the potential dy-
namics mismatch between target-domain data and newly gen-
erated source-domain data.

Introduction
Data-driven offline reinforcement learning (RL) holds the
promise to learn a control policy from fixed and static
dataset [Levine et al. 2020] while avoiding the costly and
time-consuming online data acquisition in standard RL.
Nevertheless, a notorious challenge in offline RL is the pres-
ence of extrapolation error, which tends to drive the learn-
ing policy towards OOD state actions and yields collapsed
behaviors [Fujimoto, Meger, and Precup 2019]. Many re-
cent works have been dedicated to tackling this challenge,
leveraging policy regularization, value conservation, or su-
pervised regression [Chen et al. 2021, Kostrikov, Nair, and
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Figure 1: (left) The vanilla single-domain offline RL setting.
(right) Our cross-domain offline RL, which learns a policy
from offline cross-domain data, consists of limited target-
domain data and plenty of source-domain data. Scores in
this diagram are averaged over 9 D4RL Mujoco tasks, which
serve as the target domain.

Levine 2021, Fujimoto and Gu 2021]. Yet, such offline so-
lutions tend to perform well when plenty of pre-collected
training data is available and the testing environment keeps
consistent with the data-collecting environment. However,
collecting large-scale offline data for a domain-specific en-
vironment is still labor-intensive and expensive. Addition-
ally, once we reduce the offline training data, the final per-
formance drops quickly (Figure 1 left and Figure 2). Thus,
although that advanced offline RL methods tend to be satu-
rated with abundant data, the underlying offline data ineffi-
ciency makes them difficult to use for data-scarce scenarios.

Motivated by the sample-efficient domain adaptation, this
paper investigates the cross-domain offline RL. Specifically,
we assume the agent can access a large amount of source-
domain offline data from one or multiple separate source
environments, and we are interested in adapting the learn-
ing policy with limited target-domain offline data (as shown
in Figure 1 right). We also emphasize that such an additional
source-domain data assumption can be naturally satisfied in
practice. For example, it is common to have a large amount
of data on driving behaviors in city roads (source domain),
while only having a few samples in mountain environments
(target domain) for autonomous driving tasks.

However, prior offline RL methods often work poorly
in the cross-domain setting, particularly for source-domain
data with large transition dynamics differences. As we show
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Figure 2: Performance difference between single-domain and cross-domain offline RL settings, where different colors represent
different data qualities (blue: *-medium, green: *-medium-replay, orange: *-medium-expert) and multiple dots with the same
color represent scores on multiple cross-domain tasks. We take D4RL [Fu et al. 2020] as the target domain, and take a modified
D4RL (with transition dynamics shift) as the source domain. The x-axis represents the normalized performance improvement
when only 10% of D4RL data (target) is available, and the y-axis represents the performance difference between learning with
cross-domain offline data (10%target + 100%source) and learning with abundant target-domain offline data (100%target). We
can observe that when we reduce the offline training data size, most offline RL methods suffer a clear drop in performance
(i.e., values on the x-axis is less than 0). Further, introducing additional source-domain data also does not bring any significant
performance benefits (i.e., below the dashed line), with the exception of our BOSA.

in Figure 2, simply combing the cross-domain data does not
bring a positive performance improvement to that using only
the limited target data. In fact, it can even result in a decline
in performance for several tasks and offline baselines. In this
paper, we attribute this transfer failure to the presence of
OOD transition dynamics beyond those (OOD state actions)
commonly encountered in single-domain offline RL setting.
Intuitively, the presence of source-domain data can bias the
agent’s policy to visit transitions in source environments as
long as they receive high values. Thus, cross-domain data
easily lead the policy overfits to the source environment and
hinders its transfer ability to the target domain.

To address this issue, we present BOSA (Beyond OOD
State Actions) for the cross-domain offline RL. Simply,
BOSA aims to leverage cross-domain offline data (plenty
of source data and limited target data) to improve the data
efficiency for offline RL. The key idea behind BOSA is
that we substantiate the inherent offline extrapolation error
through OOD state actions and OOD transition dynamics,
and try to filter out offline transitions that might cause state-
actions shift and transition dynamics mismatch. Specifically,
we propose a supported policy optimization for eliminating
OOD state actions and a supported value optimization for
addressing OOD transition dynamics. Additionally, to avoid
exploiting overestimated Q-values for policy optimization
over source-domain data, we introduce a conservation [Ku-
mar et al. 2020] over the value optimization objective.

We conduct experiments with a variety of source domains
that have transition dynamics mismatch and demonstrate
that BOSA contributes to significant gains on learning from
cross-domain offline data. Further, we show that BOSA can
be plugged into more general cross-domain offline settings:
model-based RL and (noising) data augmentation. Similarly,
augmenting the offline data by a pseudo-transition model or
random noise will also encounter OOD transitions that are
not consistent with the target environment. Thus, we can nat-
urally view the generated or noised data as a source domain,
and then apply BOSA for handling dynamics mismatch.

The primary contributions of this work are as follows:
1) We identify an OOD transition dynamics issue in cross-
domain offline RL and propose BOSA for handling it. 2)
We show BOSA can greatly improve offline data efficiency
and outperform prior state-of-the-art methods. 3) We show
BOSA can be naturally plugged into model-based RL and
(noising) data augmentation scenarios while eliminating the
commonly overlooked OOD transition dynamics and thus
facilitating positive transfer.

Related Work
Offline Reinforcement Learning. In standard (single do-
main) offline RL, the agent tries to learn a policy from static
and fixed data that are pre-collected from a (target) envi-
ronment [Levine et al. 2020, Fujimoto, Meger, and Precup
2019]. Yet, the overestimation of OOD state-action issues is
often identified as a major issue. To solve this, most model-
free offline methods typically augment existing off-policy
algorithms with a penalty [Geist, Scherrer, and Pietquin
2019] measuring a divergence between the learning policy
and the offline data (or the behavior policy). Recently, there
have been many offline RL methods proposed to implement
such a penalty, by introducing support constrains [Fujimoto,
Meger, and Precup 2019, Ghasemipour, Schuurmans, and
Gu 2021, Wu et al. 2022] or policy regularization [Kostrikov,
Nair, and Levine 2021, Fujimoto and Gu 2021, Peng et al.
2019, Wu, Tucker, and Nachum 2019, Kumar et al. 2019a,
Nachum et al. 2019]. Alternatively, some offline RL meth-
ods introduce the uncertainty estimation [Rezaeifar et al.
2021, An et al. 2021, Wu et al. 2021, Ma, Jayaraman, and
Bastani 2021, Bai et al. 2022] or the conservation [Kumar
et al. 2020, Lyu et al. 2022] over values to overcome the po-
tential overestimation for OOD state actions. In the same
spirit, model-based offline RL methods similarly employ
the distribution (correcting) regularization [Hishinuma and
Senda 2021, Zhang et al. 2022, Yang et al. 2022], uncertain
estimation [Kidambi et al. 2020, Lu et al. 2021], and value
conservation [Yu et al. 2021] to eliminate the OOD issues.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13946



Cross-Domain Reinforcement Learning. To improve
the sample efficiency, cross-domain RL introduces an ad-
ditional source domain and regards the original task as the
target domain. In this work, we assume source and tar-
get domains differ in their transition dynamics. This cross-
dynamics setting has also helped improve the training effi-
ciency for online RL [Wulfmeier, Posner, and Abbeel 2017,
Eysenbach et al. 2020, 2021], reward-free RL [Liu et al.
2021], and reverse RL (imitation learning) [Fickinger et al.
2021, Viano et al. 2021, Franzmeyer, Torr, and Henriques
2022]. In the offline RL setting, our BOSA method bears a
resemblance to that in DARA [Liu, Zhang, and Wang 2022],
but a crucial algorithmic difference is that DARA explicitly
models both the source-domain and target-domain transi-
tions while we only model target-domain transitions and do
not model the source-domain transitions, and also lead to
improved performance empirically.

Background
Reinforcement Learning. We consider reinforcement
learning (RL) in the Markov decision process (MDP) de-
fined by a tupleM := (S,A, T, r, γ, p0), where S denotes
the state space,A denotes the action space, T : S×A×S →
R+ is the transition (dynamics) probability, r : S × A → R
is the reward function, γ ∈ [0, 1] is the discount factor, and
p0 is the distribution of initial states. The goal of RL is to find
a policy π : S × A → R+ that maximizes the expected dis-
counted cumulative return J(π) = Eτ∼π(τ)

[∑T
t=0 γ

trt

]
,

where τ := (s0,a0, s1,a1 · · · ) denotes the rollout trajectory
and rt := r(st,at) denotes the reward of transition (st,at).
Here we sightly abuse the notation π(τ) to denote the trajec-
tory distribution induced by executing policy π(a|s) inM,
i.e., s0 ∼ p0(s0), at ∼ π(at|st), and st+1 ∼ T (st+1|st,at).

To optimize the above objective J(π), off-policy RL
methods introduce a Q-function defined by Qπ(s, a) =

Eτ∼π(τ)

[∑T
t=0 γ

trt|s0 = st,a0 = a
]
. One property of

such a Q-value function is that it satisfies the Bellman con-
sistency criterion given by T πQπ(s, a) = Qπ(s, a) ∀(s, a),
where T πQ(s, a) := r(s, a) + γEs′∼T (s′|s,a),a′∼π(a′|s′)
[Q(s′,a′)] is the Bellman operator. Given an experience re-
play buffer B := {(s, a, r, s′)} (that will be updated by exe-
cuting the learning policy in the environment), standard ap-
proximate dynamic programming and actor-critic methods
use this (Bellman consistency) criterion to iteratively learn a
parametric Q-function Qϕ by minimizing,

LB(Qϕ) := E(s,a,s′)∼B
[
Qϕ(s, a)− T πθQϕ̄(s, a)

]2
, (1)

and, following the deterministic policy gradient theorem,
learn a parametric policy πθ by maximizing:

JB(πθ) := Es∼B,a∼πθ(a|s) [Qϕ(s, a)] , (2)

where ϕ and θ are the parameters of the Q-function and the
policy respectively, ϕ̄ is an EMA (exponential moving aver-
age) of ϕ: ϕ̄← αϕ̄+ (1− α)ϕ, and α is the target network
EMA parameter. For simplicity of notation, we drop the sub-
script t and use s′ to denote the state at the next time step.

Offline Reinforcement Learning. In offline RL [Levine
et al. 2020], we can not execute the learning policy in the en-
vironment to collect new online transitions, but rather have
access to a fixed offline dataset D := {(s, a, r, s′)}, col-
lected by an unknown behavior policy (or by multiple be-
haviors) πβ(a|s) in the environmentM.

However, naively performing policy evaluation (Equa-
tion 1) and taking the expectation over fixed offline data D
will inevitably require the Q-function to extrapolate to OOD
state-action pairs. Iterating the offline policy improvement
and policy evaluation i.e., maxJD(πθ) and minLD(Qϕ),
the potential extrapolation error will be further amplified,
biasing the learned Q-value towards erroneously overesti-
mated values and further biasing the learned policy towards
unconfident actions. Unlike the online RL formulation, such
an induced extrapolation error and the unconfident action
will never be corrected due to the inability to collect new
interaction data over the task environment.

Problem Formulation
Cross-Domain Offline RL
Problem statement. In our cross-domain offline RL setting,
we assume the static offline data are collected from a set of
environments/MDPs with varying transition dynamics (and
different data-collecting behavior policies), rather than from
a single fixed environment like the vanilla single-domain of-
fline RL formulation in Levine et al. [2020].

Formally, considering a target offline RL task specified
through Mtarget, we define the mixed cross-domain offline
dataDmix := Dtarget∪Dsource, whereDtarget denotes the (lim-
ited) target data collected from the target MDPMtarget and
Dsource denotes the source data collected from a set of source
MDPs {M1

source, · · · ,Mn
source}. We also assume that all of

these MDPs share the same state space, action space, and re-
ward function, while differing in their transition dynamics.
The goal of cross-domain offline RL is to learn a policy that
maximizes the expected return over the target environment
Mtarget using the static cross-domain offline data Dmix.

Compared to the vanilla single-domain offline RL, the
cross-domain formulation naturally preserves the benefit of
offline data transfer. Incorporating source-domain data can
alleviate the challenge of offline RL data efficiency, which
often requires a large number of target offline samples and
demands substantial data collection efforts on target envi-
ronment. Thus, we expect that cross-domain offline RL for-
mulation can reduce the demanding requirements on target.

OOD Issues in Cross-Domain Offline RL
Before discussing the OOD issues in the cross-domain set-
ting, we first review the extrapolation error and take a deeper
look at how to eliminate it with support constraints.

OOD state actions. In typical single-domain offline RL
(learning with offline data D), performing the offline pol-
icy evaluation will suffer from the empirical extrapolation
error Eµπ(s)π(a|s)|ϵ(s, a)|, where ϵ(s, a) = T πQ(s, a) −
T̂ πQ(s, a), and T̂ denotes the empirical Bellman operator
implicitly defined by the offline transition dynamics T̂ by
randomly sampling transitions (a, s, r, s′) from D.
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Thus, to evaluate a policy π exactly, we are required to en-
sure Eµπ(s)π(a|s)|ϵ(s, a)| = 0 at relevant state-action transi-
tions. For this purpose, BCQ [Fujimoto, Meger, and Precup
2019] (or BEAR [Kumar et al. 2019b]) identifies OOD state
actions as the key source of the extrapolation error and thus
proposes the following theorem.
Theorem 1. Under deterministic environment dynamics, if
we can ensure all possible state actions are contained in of-
fline data D, we can guarantee T (s′|s, a) − T̂ (s′|s, a) = 0
for all s′ ∈ S and (s, a) such that µπ(s)π(a|s) > 0. Then,
Eµπ(s)π(a|s)|ϵ(s, a)| = 0 will be naturally satisfied.

Based on such a theorem, BCQ suggests that one can
eliminate the extrapolation error by instantiating offline RL
over a support-constrained paradigm which constraints the
learned policy (actions) within the support set of the offline
dataset [Ghasemipour, Schuurmans, and Gu 2021].

OOD transition dynamics. We can observe that the
above support-constrained derivation relies on the identifi-
cation that if we can ensure (s, πθ(s)) ∈ D for all s ∈ D,
then we can achieve zero extrapolation error. However, such
an identification is only limited to the single-domain offline
RL. The main reason is that in the cross-domain setting, it is
easy to find a transition (s, a, s′) such that (s, a, s′) ∈ Dmix

and Ttarget(s
′|s, a) ̸= T̂mix(s

′|s, a). Thus, we can not guaran-
tee Ttarget(s

′|s, a) − T̂mix(s
′|s, a) = 0 for all (s, a) ∈ Dmix

and s′ ∈ S like Theorem 1. Even though we can restrict
state actions (s, πθ(s)) to lie in the support set of the offline
dataDmix, performing policy evaluation will still accumulate
non-zero extrapolation errors due to the transition dynamics
mismatch (between the target and source MDPs).
Lemma 2. Under the cross-domain offline RL setting, con-
straining the policy within the support of cross-domain data
Dmix can not guarantee zero extrapolation error for the tar-
get environment when performing offline policy evaluation.

Thus, beyond the common OOD state actions issue identi-
fied in previous offline works, cross-domain offline RL also
suffers from OOD transition dynamics (transition dynamics
mismatch). In the next section, we will describe how our
method, BOSA, addresses both of these issues jointly by in-
troducing supported policy and value optimization.

Supported Policy and Value Optimization
In this section, we present BOSA (beyond OOD state ac-
tions). As aforementioned, cross-domain offline RL suf-
fers from both OOD state actions and OOD dynamics is-
sues. BOSA tackles these two issues jointly: considering the
actor-critic framework, BOSA eliminates OOD state actions
through a supported policy optimization and addresses OOD
dynamics through a supported value optimization.

Supported Policy Optimization
Following the same spirit of BCQ [Fujimoto, Meger, and
Precup 2019], we first introduce the supported policy opti-
mization to address the OOD state actions issue. Note that
the naive BCQ algorithm formulates the supported policy
optimization over the Q-learning algorithm, utilizing the op-
timal Bellman operator. Here we rewrite it on top of the

actor-critic methods, separating the policy improvement and
the policy evaluation (value optimization). Specifically, con-
sidering a parametric Q-function Qϕ and a policy πθ, we can
perform offline support-constrained policy optimization by

max
πθ

JDmix(πθ) := Es∼Dmix,a∼πθ(a|s) [Qϕ(s, a)] ,

s.t. (s, πθ(s)) ∈ Dmix, ∀s ∈ Dmix, (3)

where Equation 3 constraints the learned policy (actions)
within the support set of the offline dataset, thus eliminat-
ing the OOD state actions issue as specified by Theorem 1.

Unfortunately, directly optimizing Equation 3 is often
computationally expensive and requires a tabular representa-
tion for the state actions, which can quickly become imprac-
tical for large problems. Instead, we approximate it through
an alternative objective by using a behavior policy π̂βmix :

max
πθ

JDmix(πθ) := Es∼Dmix,a∼πθ(a|s) [Qϕ(s, a)] ,

s.t. Es∼Dmix [π̂βmix(πθ(s)|s)] > ϵth, (4)

where π̂βmix = argmaxβmix
E(s,a)∼Dmix [log π̂βmix(a|s)] and

ϵth denotes the threshold above which we retain the (state-
action) support constrains. Note that compared to the com-
mon policy distribution matching regularization in prior of-
fline methods (e.g., restricting KL(πθ(a|s)||πβ(a|s)) ≤ ϵth),
Equation 4 is essentially performing support constraints in-
stead of distribution matching, which thus avoids the diffi-
culty to trade off mode-covering and mode-seeking issues in
distribution matching objective.

Supported Value Optimization
Next, we discuss how to tackle OOD transition dynamics.
Similar to the above support-constrained policy optimiza-
tion, the key idea is to constrain the value optimization (pol-
icy evaluation) over the transitions that do not expose the dy-
namics mismatch. As an example, one can directly use only
the target-domain offline data Dtarget to perform value opti-
mization by minimizing Ltarget(Qϕ), where Ltarget(Qϕ) :=

E(s,a,r,s′)∼Dtarget,a′∼πθ(a′|s′)
[
Qϕ(s, a)− r −Qϕ̄(s

′,a′)
]2

.
However, this naive method tends to suffer from low data
efficiency and struggles with scarce (target-domain) offline
data, especially in data-expensive offline RL tasks.

To facilitate data-efficient value optimization, leveraging
the source-domain data Dsource is thus essential in the cross-
domain setting. Following the same spirit of policy support
constraints, we introduce the supported value optimization:

min
Qϕ

Lmix(Qϕ) :=E(s,a,r,s′)∼Dmix,a′∼πθ(a′|s′)

[
δ(Qϕ) · 1(T̂target(s

′|s, a) > ϵ′th)
]

+ E(s,a)∼Dsource [Qϕ(s, a)] , (5)

where δ(Qϕ) :=
(
Qϕ(s, a)− r −Qϕ̄(s

′,a′)
)2

, T̂target de-
notes the estimated target-domain transition dynamics, i.e.,
T̂target = argmaxT̂target

E(s,a,s′)∼Dtarget

[
log T̂target(s

′|s, a)
]
,

and 1(·) denotes the indicator function, which equals 1 if
the argument is true, and 0 otherwise. Intuitively, the in-
dicator function filters out OOD transitions that are likely
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single-domain setting (100% D4RL → 10% D4RL) cross-domain setting (10% D4RL + source data)

BCQ MOPO CQL SPOT BCQ CQL SPOT BOSA
m

as
s

ha-m 40.7→ 37.6 42.3→ 3.2 44.4→ 35.4 58.4→ 45.4 35.1 32.2 50.3 58.3 ± 2.5
ha-mr 38.2→ 1.1 53.1→−0.1 46.2→ 0.6 52.2→ 9.8 40.1 3.3 37.6 37.2 ± 0.7
ha-me 64.7→ 37.3 63.5→ 4.2 62.4→−3.3 86.9→ 46.2 26.4 12.9 33.8 51.6 ± 0.1
ho-m 54.5→ 37.1 28 → 4.1 58 → 43 86 → 62.5 25.7 44.9 85.9 82.4 ± 2.1
ho-mr 33.1→ 9.3 67.5→ 1 48.6→ 9.6 100.2→ 13.7 28.7 1.4 15.5 39.7 ± 0.1
ho-me 110.9→ 58 23.7→ 1.6 98.7→ 59.7 99.3→ 69 75.4 53.6 75.5 104.2± 0.5
wa-m 53.1→ 32.8 17.8→ 7 79.2→ 42.9 86.4→ 65.4 50.9 80 22.5 83 ± 2.9
wa-mr 15 → 6.9 39 → 5.1 26.7→ 4.6 91.6→ 18.6 14.9 0.8 16 21.4 ± 2
wa-me 57.5→ 32.5 44.6→ 5.3 111 → 49.5 112 → 84 55.2 63.5 14.3 86.5 ± 0.6

jo
in

ts

ha-m 40.7→ 37.6 42.3→ 3.2 44.4→ 35.4 58.4→ 45.4 40 40.7 50.1 56.2 ± 0.27
ha-mr 38.2→ 1.1 53.1→−0.1 46.2→ 0.6 52.2→ 9.8 39.4 2 41 51.3 ± 1.1
ha-me 64.7→ 37.3 63.5→ 4.2 62.4→−3.3 86.9→ 46.2 55.3 7.7 38.1 52.8 ± 0.45
ho-m 54.5→ 37.1 28 → 4.1 58 → 43 86 → 62.5 49 58 41.5 78 ± 7.3
ho-mr 33.1→ 9.3 67.5→ 1 48.6→ 9.6 100.2→ 13.7 23.8 2.6 23 32.7 ± 1.3
ho-me 110.9→ 58 23.7→ 1.6 98.7→ 59.7 99.3→ 69 96 73.4 52 96.4 ± 0.5
wa-m 53.1→ 32.8 17.8→ 7 79.2→ 42.9 86.4→ 65.4 44.9 73.2 38.8 86.5 ± 5.6
wa-mr 15 → 6.9 39 → 5.1 26.7→ 4.6 91.6→ 18.6 9.8 1.4 10.7 38.2 ± 4.7
wa-me 57.5→ 32.5 44.6→ 5.3 111 → 49.5 112 → 84 40.6 109.9 74.3 85.8 ± 0.3

Average† (%) −48.3% −88.7% −61.5% −47.1%
Average‡ (%) −50.1% −59.4% −50.9% −25.6%

Table 1: Results on the single-domain and cross-domain offline RL. We take the baseline results (single-domain setting with
100% D4RL) from their original papers. We average our results over 5 seeds and for each seed, we compute the normalized
average score using 10 episodes. In the cross-domain setting, the numbers to the left of the arrow (→) represent the scores
trained on 100% D4RL data, and the numbers to the right of that represent the scores trained on only 10% D4RL data. In
the left panel (single-domain setting), Average† represents the average performance change when the offline data is reduced
(100%→10%). In the right panel (cross-domain setting), Average‡ represents the average performance difference between the
cross-domain results and the best results among baselines that are trained with 100% D4RL. In each line, we bold the best
score among baselines that are trained with 10% D4RL data, i.e., including the single-domain 10% D4RL setting and the cross-
domain setting. (ha: halfcheetah. ho: hopper. wa: walker2d. m: medium. mr: medium-replay. me: medium-expert.)

to yield dynamics mismatching1. Further, we also introduce
a conservative regularization in Equation 5 that encourages
learning conservative Q values for source-domain data, thus
avoiding exploiting false and overestimated values when
performing policy optimization in Equation 4.

Comparison to dynamics-aware reward modification.
We also note that recent works propose to learn a dynamics-
aware reward modification for the cross-domain (cross-
dynamics) RL setting [Eysenbach et al. 2020], which mod-
ifies the reward by using two classifiers qsas(·|s, a, s′) and
qsa(·|s, a) that distinguish between the source-domain and
target-domain data, i.e., rmodified(s, a, s

′) = r(s, a) +

log qsas(target|s,a,s′)
qsas(source|s,a,s′)−log

qsa(target|s,a)
qsa(source|s,a) . Compared to such a re-

ward modification approach, our supported value optimiza-
tion only learns a single transition model T̂target that merely
fits the target-domain data, while does not explicitly fit the
source-domain data. As we will show in our experiment,
our support optimization enjoys more stable training and
achieves better performance especially when the source do-
main involves complex data distributions.

1In Figure 3, we also compare such a filter to a “soft” version.

Practical Implementation
We now describe our instantiation of BOSA for supported
policy and value optimization. First, instead of directly max-
imizing the log-likelihood objective for estimating π̂βmix and
T̂target, we opt to use the conditional variational auto-encoder
(CVAE [Sohn, Lee, and Yan 2015]) for density estimation
and likelihood inference (in Equations 4 and 5). Second, to
tackle the constrained objective for supported policy opti-
mization in Equation 4, we optimize it by using a Lagrangian
relaxation. Third, for the filter operator 1(·) in supported
value optimization (Equation 5), we learn an ensemble of
target transition model T̂target to maintain the model’s uncer-
tainty and take 1(· > ϵ) over the minimum of ensemble
models. Empirically, we find the performance can be im-
proved by increasing the ensemble size, but improvement is
saturated around 5. Thus, we learn 5 models in ensemble.

Experiments
The goal of our empirical evaluation is to answer the fol-
lowing questions: 1) Can BOSA improve offline data ef-
ficiency by leveraging the additional source-domain data
and achieve better performance than prior alternative meth-
ods? 2) In some cases there exists no additional source data
from other environments, can we retain the benefits of cross-
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Finetune DARA* MABE BOSA
m

as
s

ho-m 44.5 59.3 23.1 80.5 ± 1.7
ho-mr 27.5 34.1 20.4 39.7 ± 0.1
ho-me 85.9 99.7 38.9 104.2± 0.5
wa-m 72.3 81.7 56.7 83 ± 2.9
wa-mr 10.4 15.1 12.5 21.4 ± 2
wa-me 68.6 93.3 82.7 86.5 ± 0.6

jo
in

ts

ho-m 52.5 58 57.7 78 ± 7.3
ho-mr 29.6 32 35.4 32.7 ± 1.3
ho-me 107.3 109 104.8 96.4 ± 0.5
wa-m 76.6 81.2 48.7 86.5 ± 5.6
wa-mr 13.5 16.4 1.6 38.2 ± 4.7
wa-me 104 116.5 82.6 85.8 ± 0.3

Table 2: Comparison on cross-domain tasks, where DARA*
denotes the best score among offline baselines (BCQ, CQL,
and MOPO) when using DARA-based reward modification.

domain data transfer by using BOSA? 3) How do the differ-
ent components of BOSA influence the performance?

In comparison, we consider the four most related of-
fline RL methods: BCQ [Fujimoto, Meger, and Precup
2019], CQL [Kumar et al. 2020], MOPO [Yu et al. 2020],
SPOT [Wu et al. 2022], where BCQ motivates us the sup-
port constraints, CQL motivates us the conservation over
policy optimization, MOPO is a representative model-based
approach which enjoys data efficiency, and SPOT is the cur-
rent state-of-the-art baseline which also performs supported
policy optimization in offline RL.

Offline cross-domain transfer. To answer the first ques-
tion, we use the D4RL [Fu et al. 2020] offline data as the tar-
get domain and use the similar cross-domain dynamics mod-
ification utilized in DARA [Liu, Zhang, and Wang 2022] to
collect source-domain data. Specifically, the source-domain
data are collected by modifying the body mass or adding
noise to joints of the agent and then following the same
data-collection procedure as in D4RL. To study the data effi-
ciency and make the cross-domain setting tractable, we only
use 10% of the D4RL data in the target domain.

In Table 1, we provide the results of different methods us-
ing single-domain offline data or cross-domain data. We can
see that in the single-domain setting, BCQ, CQL, MOPO,
and SPOT both suffer a large performance drop when we re-
duce the training data size from 100% D4RL to 10% D4RL.
Further, using additional source-domain data (i.e., the cross-
domain setting) also does not provide a clear performance
improvement compared to that using only the target-domain
data (10% D4RL). We can observe that in 6 out of the 18
tasks, cross-domain data even brings performance degra-
dation for CQL. The main reason is that although cross-
domain setting introduces additional source-domain data, it
also raises the challenge of ODD transition dynamics. Aim-
ing at improving the data efficiency and eliminating ODD
transition dynamics, we can observe that our BOSA brings
significant performance improvement (in 14/18 tasks) com-
pared to baselines when using 10% D4RL data. In compar-
ison to the best performance of baselines when using 100%
D4RL data, BOSA receives the fewest performance degra-

pseudo-model aug. noise aug.

SPOT BOSA SPOT BOSA

ho-m 0.7± 0.6 66.6± 1.6 29 ± 5 76.6 ± 9.2
ho-mr 0.6± 0.3 14.2± 0.2 12.8± 1.5 16.5 ± 0.3
ho-me 0.6± 0.3 70.7± 2 66.3± 1.9 78.5 ± 1.7
wa-m −2.1± 1.9 76.7± 0.7 67.4± 10 78.6 ± 3.3
wa-mr 1.4± 0.2 20.1± 2.3 14.8 ± 2.2 12.6± 1
wa-me 0.5± 1.3 84.8± 0.4 82.6± 0.1 84 ± 0.8

Table 3: When source-domain data is not available, we can
use a (sub-optimal) pseudo-transition model or data aug-
mentation to generate new transitions (source-domain data).

dation (−25.6%) among baselines when using 10% D4RL.
Then, we compare BOSA to cross-domain offline RL

baselines: DARA [Liu, Zhang, and Wang 2022] and
MABE [Cang et al. 2021], where DARA conducts the
dynamics-aware reward modification and MABE learns a
cross-domain behavior prior. Additionally, we also intro-
duce a fine-tuning baseline (Finetune), which first trains a
policy on the source-domain data and then finetunes it over
the target-domain data (10% D4RL). We show the results in
Table 2. We can see that BOSA is competitive with DARA
(reward modification) in 9 out of 12 tasks and outperforms or
matches Finetune and MABE on all 12 cross-domain tasks.

Model-based RL and (noising) data augmentation. For
the second question, we answer it affirmatively. If we can not
access additional source-domain data, we can learn a sub-
optimal pseudo-transition model and use the learned model
to generate new cross-domain transitions. Alternatively, we
can also employ data augmentation (adding noise) to gener-
ate new cross-domain transitions. Then, we can directly treat
the generated transitions as the source data. More impor-
tantly, here we do not require the learned pseudo-transition
model to be optimal (in model-based setting) or to delicately
balance the amplitude of noises (in data augmentation). Al-
though the generated source-domain data might be OOD
transitions, BOSA can filter out mismatched transitions, and
preserve the target-relevant and beneficial transitions when
performing supported policy and value optimization.

We provide the comparison results in Table 3. We can find
that naively using a (sub-optimal) pseudo-transition model
or employing data augmentation does not improve or even
hurts their performance in most tasks. In contrast, BOSA
can improve the cross-domain performance in 11 out of 12
tasks, thus facilitating effective cross-domain offline RL by
automatically generating the source-domain data.

Ablation study. To answer the third question, we conduct
a thorough ablation study on BOSA. We first investigate the
sensitivity of BOSA on the amount of target-domain data.
In Figure 3 (a, b), we present the cross-domain results across
5%, 10%, 30%, and 50% of target data. The results show that
increasing the amount of target data generally improves the
performance of both SPOT and BOSA, showing that data
amount is critical to the offline performance. Consistently,
BOSA achieves better performance than SPOT across a wide
range of data amounts, showing that BOSA can contribute to
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Figure 3: Sensitivity on (a, b) the amount of target-domain data and (c) the thresholds ϵth and ϵ′th. (d) Varying the transition shift
level. Across a range of amount of target data and thresholds, BOSA consistently achieves better results compared to baselines.
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BOSA w/o conservation

BOSA w/o target data

Figure 4: Performance changes when we ablate different
components of our method. The x-axis denotes the average
improvement of the ablated BOSA versus the full BOSA.

target-domain sample efficiency by using cross-domain data.
Then, in Figure 3 (c), we study the hyper-parameter sen-

sitivity on the thresholds ϵth and ϵ′th in supported policy and
value optimization respectively. We can see that BOSA is
nearly robust when varying the ϵth and ϵ′th, which consis-
tently outperforms SPOT with 10% D4RL data.

Further, one may prefer to learn a “soft” filter to assign
different weights over OOD samples, rather than the strict
filter advocated in Equation 5. We thus implement such a
“soft” BOSA here (by learning two transition models for
weighting), and we provide the comparison when varying
the transition shift level in Figure 3 (d). We can see that
BOSA achieves more robust results compared to soft BOSA,
especially as the distribution shift level increases.

To understand how the choice of different components of
BOSA affects its performance, we continue conducting the
following ablations2: 1) w/o policy reg.: we remove the sup-
ported policy regularization in Equation 4. 2) w/o filter: we
remove the filter operator in value optimization (Equation 5).
3) w/o conservation: we remove the conservation regulariza-
tion (Equation 5) in value optimization. 4) w/ target data: To
eliminate the potential OOD transition dynamics, one can
directly perform value optimization over the target-domain
data. Thus, we replace the expectation of Equation 5 by
target-domain data Dtarget and remove the corresponding fil-
ter operator. The results of our ablation studies are shown in
Figure 4, where we present the percent difference (averaged
over 9 tasks) in performance when removing the correspond-

2Due to page limitations, we leave the technical details and sup-
plementary appendix to https://arxiv.org/pdf/2306.12755.pdf.
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Figure 5: Cross-domain offline RL results on a simulated
cross-domain quadruped locomotion task, where the y-axis
denotes the normalized return recorded on the target domain.

ing components of BOSA. As expected, removing any of the
above components would result in performance degradation
for cross-domain BOSA.

Quadrupted results. Aiming at improving the offline RL
sample efficiency, we expect to deploy BOSA to more com-
plex quadruped locomotion tasks. To do so, we have vali-
dated BOSA on two simulated quadruped locomotion envi-
ronments (with transition dynamics mismatch, see details in
appendix) and, following D4RL, collected 2× 106 (source-
domain) and 3× 104 (target-domain) medium-expert offline
transitions. Then, we conduct the standard offline RL train-
ing paradigm and test the performance in the target simula-
tion environment. In Figure 5, we provide the comparison
results of BC, SPOT, DARA, and BOSA. We can find that
BOSA achieves significant performance gains in this cross-
domain task, showing a greater potential that awaits future
real-world quadruped robots.

Conclusion
In this paper, we formalize the cross-domain offline RL in
an effort to improve offline data efficiency. Beyond the com-
mon OOD state actions issue,we identify a new challenge
of OOD transition dynamics in the cross-domain offline set-
ting and propose supported policy and value optimization.
Empirically, we demonstrate in a variety of offline cross-
domain tasks, BOSA can outperform existing cross-domain
baselines and enjoys broad flexibility for cross-domain of-
fline data transfer (being naturally plugged into model-based
RL and (noising) data augmentation techniques).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13951



Ethical Statement
Limitations. Regarding the methodological assumption
made in this paper, we assume source and target domains
share the same state space, action space, and reward func-
tion. In more general real-world settings, such the state/ac-
tion space and reward may be also different between the two
domains. Thus, future works could further exploit source do-
main data with different state/action spaces, perhaps with
different reward functions, to further improve the data ef-
ficiency of offline RL methods in low-data regimes. An-
other interesting direction is to use support policy/value con-
straints for online RL and safe RL [Schulman et al. 2015, Liu
et al. 2022, Gu et al. 2022]. Similar to those trust region RL
methods, we can use support constraints (instead of distri-
bution matching objectives) to constrain the learning policy.

Social impacts. Typically, offline RL holds the promise
of enabling RL agents to learn complex behaviors through
fixed and static offline data. However, realizing this promise
for data-limited tasks in the real world requires mechanisms
to improve offline learning efficiency. This paper explicitly
proposes cross-domain transfer and data augmentation for
such data-limited offline scenes. We believe our work is an
important step towards data-efficient offline RL while offer-
ing significant improvement, improving offline RL transfer-
ability, and providing a promising approach for real-world
offline RL participation.
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