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Abstract

Graph Comparative Learning (GCL) is a self-supervised
method that combines the advantages of Graph Convolu-
tional Networks (GCNs) and comparative learning, mak-
ing it promising for learning node representations. How-
ever, the GCN encoders used in these methods rely on
the Fourier transform to learn fixed graph representations,
which is inherently limited by the uncertainty principle in-
volving spatial and spectral localization trade-offs. To over-
come the inflexibility of existing methods and the com-
putationally expensive eigen-decomposition and dense ma-
trix multiplication, this paper proposes an Adaptive Spectral
Wavelet Transform-based Self-Supervised Graph Neural Net-
work (ASWT-SGNN). The proposed method employs spec-
tral adaptive polynomials to approximate the filter function
and optimize the wavelet using contrast loss. This design en-
ables the creation of local filters in both spectral and spatial
domains, allowing flexible aggregation of neighborhood in-
formation at various scales and facilitating controlled trans-
formation between local and global information. Compared
to existing methods, the proposed approach reduces computa-
tional complexity and addresses the limitation of graph con-
volutional neural networks, which are constrained by graph
size and lack flexible control over the neighborhood aspect.
Extensive experiments on eight benchmark datasets demon-
strate that ASWT-SGNN accurately approximates the fil-
ter function in high-density spectral regions, avoiding costly
eigen-decomposition. Furthermore, ASWT-SGNN achieves
comparable performance to state-of-the-art models in node
classification tasks.

Introduction
Graphs are essential in various real-world domains such as
social networks, brain networks, transportation networks,
and citation networks (Wang et al. 2016; Yu, Lee, and
Sohn 2020). Recently, the emergence of graph neural net-
works (GNNs) (He et al. 2022; Wang et al. 2022b) has at-
tracted much attention due to their success in applications
involving graph-structured data such as node classification
(Kipf and Welling 2016) and edge prediction (Hasanzadeh
et al. 2019). Graph Comparative Learning (GCL) (Velick-
ovic et al. 2019; Sun et al. 2019) combines the capabil-
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ities of GNN and comparative learning techniques, mak-
ing it a promising paradigm in the field of graph analysis
(He et al. 2020). Typically, GCL methods generate multiple
views by randomly augmenting input data and optimize the
GNN encoder by learning consistency across views. GCL
reduces the dependence of graph representation learning
on human annotations and achieves state-of-the-art perfor-
mance in tasks such as node classification.

Most GCL methods utilize graph convolutional neural
networks (GCNs) as encoders (Xie et al. 2022; Wang et al.
2022b). Similar to convolutional neural networks (CNNs) in
computer vision, spectral GCNs use Fourier bases in the de-
sign of graph-based operators (Bruna et al. 2013). However,
these operators are localized in the frequency rather than
the spatial domain. Additionally, they require costly multi-
plications between eigen-decomposition and dense matrices,
leading to high computational expenses. In order to address
this issue and achieve spatial localization, methods such as
ChebyNet (Defferrard, Bresson, and Vandergheynst 2016)
and GCN (Kipf and Welling 2016) employ polynomial ap-
proximation. While GCN is widely adopted for graph prob-
lems due to its impressive performance and computational
efficiency (Shi et al. 2020), it encounters limitations and
challenges when applied to large graphs, especially in mini-
batch settings (Zeng et al. 2019b). To overcome the scaling
challenges of GCN on large graphs, researchers have pro-
posed layer sampling methods (Ying et al. 2018; Kaler et al.
2022) and subgraph sampling methods (Zeng et al. 2019b,a).
However, the filter size is determined by the size of the en-
tire graph or the sampled subgraph, which restricts flexibility
for inputs of different sizes. Although some flexible spatial
methods have been proposed, their aggregators lack learn-
ability and convolutional properties. Consequently, the prob-
lem of designing a flexible filter that combines the learnabil-
ity of spatial methods and the convolutional properties of
spectral methods still needs to be solved.

To address the issues of inflexible and unlearnable filters,
as well as the limited applicability caused by high compu-
tational complexity in existing methods, this paper proposes
a novel graph comparative learning paradigm based on the
adaptive spectral wavelet transform. More specifically, a fast
spectral adaptive approximation method is utilized to es-
timate the wavelet filter, and contrast loss is employed to
optimize the wavelet scale directly. Additionally, the intro-
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duction of residual links mitigates over-smoothing during
information aggregation. By avoiding the expensive eigen-
decomposition of the graph Laplacian operator and enabling
localization in both the spectral and spatial domains, this ap-
proach effectively overcomes the limitations of graph convo-
lutional neural networks that are constrained by graph size
and lack flexibility in controlling neighborhood aspects. In
comparison to state-of-the-art methods, this work introduces
the following innovations:

• We propose a novel self-supervised graph representation
learning method based on sparse graph wavelets that cre-
ates localized filters in both the spectral and spatial do-
mains. It reduces the computational complexity and ad-
dresses the limitation that graph convolutional neural net-
works cannot flexibly control the neighborhood aspect.

• Theoretically, we demonstrate that nodes with simi-
lar network neighborhoods and features exhibit simi-
lar ASWT-SGNN embeddings, providing a performance
guarantee for the proposed method.

• Extensive experiments on eight benchmark datasets show
that the proposed method reduces approximation errors
in high-density spectral components without requiring
expensive eigen-decomposition and achieves competitive
performance with state-of-the-art models in node classi-
fication tasks.

Related Works
Graph Convolutional Neural Network
Following the success of CNNs in computer vision and nat-
ural language processing, researchers have sought to extend
CNNs to the graph domain. The key challenge lies in defin-
ing the convolution operator for graphs. Graph convolutional
neural networks can be broadly categorized into two main
approaches: spectral and spatial. Spectral methods employ
the graph Fourier transform to transfer signals from the spa-
tial domain to the spectral domain, where convolution oper-
ations are performed. Spectral GNN (Bruna et al. 2013) is
the first attempt to implement CNNs on graphs. ChebyNet
(Defferrard, Bresson, and Vandergheynst 2016) introduce a
parameterization method using Chebyshev polynomials for
spectral filters, which enables fast localization of spectral fil-
ters. GCN (Kipf and Welling 2016) proposes a simplified
version of ChebyNet, which achieves success in graph semi-
supervised learning tasks. However, these spectral methods
face challenges with generalization, as they are limited by
fixed graph sizes, and larger filter sizes result in increased
computational and memory costs. Spatial methods draw in-
spiration from weighted summation in CNNs to extract spa-
tial features from topological graphs. However, these meth-
ods employ unlearnable aggregators, and the localization of
the convolution operation remains uncertain.

Graph Contrastive Learning
In graph analysis, contrastive learning was initially intro-
duced by DGI (Velickovic et al. 2019) and InfoGraph (Sun
et al. 2019), drawing inspiration from maximizing local-
global mutual information. Building upon this, MVGRL

(Hassani and Khasahmadi 2020) incorporate node diffu-
sion into the graph comparison framework. GCA (Zhu
et al. 2021) learns node representations by considering
other nodes as negative samples, while BGRL (Thakoor
et al. 2021) proposes a no-negative-sample model. CCA-
SSG (Zhang et al. 2021) optimizes feature-level objectives
in addition to instance-level differences. GRADE (Wang
et al. 2022b) investigates fairness differences in compara-
tive learning and proposes a novel approach to graph en-
hancement. Several surveys (Xie et al. 2022; Ding et al.
2022; Kumar, Rawat, and Chauhan 2022) summarize recent
advancements in graph contrastive learning. Despite these
methods’ notable achievements, most rely on GCN and its
variants as the base models, inheriting the limitations of
GCN. These limitations restrict the performance of these
graph contrastive learning methods in tasks that require pre-
serving fine-grained node features.

Graph Wavelets
The wavelet transform exhibits favorable structural proper-
ties by utilizing finite length and attenuation basis functions.
This approach effectively localizes signals within both the
spatial and spectral domains. Additionally, it is noteworthy
that the basis and its inverse in the wavelet transform often
showcase sparsity, contributing to its utility and efficiency.
To construct the wavelet transform on graphs, Hammond
et al. (Hammond, Vandergheynst, and Gribonval 2011) pro-
pose a method that approximates the wavelet using Cheby-
shev polynomials. This approach effectively avoids the need
for eigen-decomposition of the Laplace matrix. Building
upon this, GWNN (Xu et al. 2019) redefines graph convo-
lution based on graph wavelets, resulting in high efficiency
and sparsity. M-GWCN (Behmanesh et al. 2022) applies
the multi-scale graph wavelet transform to learn represen-
tations of multimodal data. Collectively, these works show-
case the value of graph wavelets in signal processing on
graphs. However, these methods primarily employ wavelet
transforms in supervised or semi-supervised tasks and heav-
ily rely on labeled data.

Preliminary
Graph Fourier Transform
Let G = (V , E) denotes a graph, where V = {v1, · · · , vN}
represents the set of nodes and E ⊆ V × V represents
the set of edges. G is associated with a feature matrix
X ∈ RN×p, X = [x1, . . . , xn] and an adjacency ma-
trix A ∈ RN×N , where Aij = 1 if (vi, vj) ∈ E and
Aij = 0 otherwise. We define the Laplacian matrix of the
graph as L = D−A, where D = Diag(d1, . . . , dN ), di =∑
j Aij . The symmetric normalized Laplacian is defined as

Lsym = D− 1
2LD− 1

2 = UΛU⊤. U = [u1, . . . ,uN ],
where ui ∈ RN denotes the i-th eigenvector of Lsym and
Λ = Diag(λ1, . . . , λN ) is the eigenvalue matrix.

For a discrete graph signal X , its Fourier transform has
the following form (Shuman et al. 2013):

f̂ (λℓ) =
N∑
i=1

xiU
∗
ℓ (i) =

N∑
i=1

xiU
T
ℓ (i), (1)
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(a) Signal spectrum (b) Filter signal

Figure 1: Visualize how wavelet filters can capture multiscale properties in graph signals and structures. We use graphs with
two levels of clusters (4-node clusters and 8-node clusters) for demonstration. These clusters are reflected in the gaps (about
0 and 6) in the spectrum in Figure 1a, reflecting different eigenvalue clustering. The signal is obtained by filtering a random
signal with the filter in Figure 1a, purposefully highlighting the three eigenvalue clusters. Figure 1b shows how the complete
signal is decomposed into multiple filter components.

where U∗
ℓ denotes the conjugate transposition of the eigen-

values λℓ corresponding to the eigenvectors. Since the com-
plex number is not involved in the scope of this work, it can
be regarded as a common transposition, that is, U∗ = UT .

Graph Fourier transform provides a means to define the
graph convolution operator using the convolution theorem.
The filter signal can be mathematically expressed as:

fo = Ug(Λ)UTX, (2)

where g(Λ) denotes the filter function on the eigenvalues,
and Ug(Λ)UT is the graph filtering matrix.

Uncertainty Principle
The implementation of graph convolution using the Fourier
transform lacks spatial localization despite its ability to
achieve localization in the spectral domain. Additionally, its
localization is significantly influenced by computational ef-
ficiency. We employ the spatial and spectral concentration
metric proposed by Tsitsvero et al. (Tsitsvero, Barbarossa,
and Di Lorenzo 2016) to establish a more comprehensive
and precise notion of localization.

∥Bx∥22
∥x∥22

= a2,
∥Cx∥22
∥x∥22

= b2, (3)

where the square of the Euclidean paradigm ∥x∥22 denotes
the total energy of the signal x. B is the diagonal ma-
trix representing the node restriction operator. Given a node
subset S ⊆ V , B = Diag {I(i ∈ S)}, where I(·) is an
indicator function. C = UΣFU

−1, is the band-limiting
operator. Given a matrix U and a subset of frequency in-
dices F ⊆ V∗, where V∗ = {1, · · · , N} denotes the set
of all frequency indices. ΣF is a diagonal matrix defined as
ΣF = Diag {I(i ∈ F)}.

More specifically, considering a pair of vertex sets S and
frequency sets F , where a2 and b2 represent the percentage
of energy contained within the sets S and F respectively, our

objective is to determine the balance between a and b and
identify signals that can achieve all feasible pairs. The re-
sulting uncertainty principle is formulated and presented in
the theorem (Tsitsvero, Barbarossa, and Di Lorenzo 2016).

cos−1 a+ cos−1 b ≥ cos−1 λmax (BC) , (4)

where λmax(BC) is the maximum eigenvalue of BC.
Considering the uncertainty principle, we retain the entire

frequency band if we follow the graph localization method
in Eq. (2). However, real graph signals show a non-uniform
distribution in the frequency domain, which suggests that
C can be chosen more efficiently. Moreover, a deeper net-
work leads to a wider propagation of the signal in the graph
domain, which limits the width of the frequency bands and
leads to the dominance of low-frequency signals (smoothing
signals), which produce over-smoothing.

Graph Wavelet Transform
As the graph Fourier transform, the graph wavelet transform
also necessitates a set of suitable bases to map the graph
signal to the spectral domain. In this case, we denote the
wavelet operator as Ψs = Ugs(Λ)U⊤, where s is the scal-
ing parameter. The wavelet transform breaks down a func-
tion g into a linear combination of basis functions localized
in spatial and spectral. This paper employs the Heat Kernel
wavelet as the low-pass filter (denoted as gl). In contrast, the
Mexican-Hat wavelet is the band-pass filter (denoted as gb).
These filters are defined as follows:

gls(λ) = e−sλ, (5)

gbs(λ) =
2√
3π

1
4

(
1− (λs)

2
)
e−

(λs)2

2 . (6)

In this work, we integrate filter functions to achieve the
combined effect of a low-pass filter and a wide band-pass
filter. Figure 1 exemplifies how the combination of low-pass
and band-pass filters can generate a more intricate wavelet
filter capable of capturing signal components at various
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scales. This design enables us to obtain a richer represen-
tation of the signal, encompassing its frequency information
more nuancedly.

gθ(λ) = gls0(λ) +
L∑
l=1

gbsl(λ), (7)

where θ = {s0, s1, ..., sl} is the set of scale parameters.
Using the graph wavelet transform instead of the graph

Fourier transform in Eq. (2), we get the graph convolution
as follows:

fo = ΨGΨ⊤X, (8)
where G is a diagonal matrix, which acts as a filter, the scale
set θ of wavelet coefficients is omitted for simplification.

Methodology
Wavelet Coefficients Approximation
The model formulation discussed in the preceding sections
necessitates an eigen-decomposition of the Laplace opera-
tor of the input graph G. However, this process presents a
computational complexity of O(N3), rendering it infeasible
for larger graphs. In order to overcome this constraint, we
employ the polynomial approximation method previously
introduced by Hammond et al. (Hammond, Vandergheynst,
and Gribonval 2011). This method involves expressing the
wavelet filter as gθ(λ) ≈ pθ(λ) = γ0 + γ1λ + · · · +
γmλm. This allows rewriting the wavelet operator as Ψθ =
Upθ(Λ)U⊤ = pθ(Lsym).

While existing methods rely on Chebyshev polynomial
approximations, we aim to optimize scales. Therefore, we
utilize a least squares approximation that can parameterize
the set of wavelet scales θ, which can be expressed as fol-
lows:

γθ = (V ⊤
Λ VΛ)

−1V ⊤
Λ gθ(Λ), (9)

where VΛ ∈ RN×(m+1) is the Vandermonde matrix of Λ
from order 0 to order m, N is the number of eigenvalues.

Accurate calculation of the eigenvalues requires an ex-
pensive eigen-decomposition of the graph Laplace opera-
tor, which is not feasible in our case. As an alternative, we
transform the set of eigenvalues into a sequence of linearly
spaced points ξ = {ξi}Ki=1 within the interval [0, 2] on the
spectral domain. However, in graphs that exhibit multiscale
features, the eigenvalues do not follow a uniform distribu-
tion on the spectral domain. Instead, they display spectral
gaps corresponding to different scales within the data. To
address this non-uniform distribution, we incorporate the es-
timated spectral density ω as the weight for each of the K
sample points ξ on the spectral domain (Fan et al. 2020).
Consequently, we can compute the weighted least squares
coefficients,

γθ = (V ⊤
ξ Diag(ω)Vξ)

−1V T
ξ Diag(ω)gθ(ξ), (10)

where the spectral density ω = {ωj}Kj=1, and ωi =
1
N

∑N
j=1{I(λj = ξi)}.

The goal of spectral density estimation is to approxi-
mate the density function without expensive graph Lapla-
cian eigen-decomposition. To achieve this, we determine the

number of eigenvalues less than or equal to each ξi in the
set ξ. It can be achieved by computing an approximation
to the trace of the eigen-projection matrix P (Di Napoli,
Polizzi, and Saad 2016). In practice, directly obtaining the
projector P is often not feasible. However, it can be approx-
imated efficiently using polynomials or rational functions of
the Laplacian operator L. In this approximation, we inter-
pret P as a step function of L, which can be expressed as
follows:

Pξi = h(L), where h(λ) =

{
1, if λ ≤ ξi
0, otherwise. (11)

Although it is impossible to compute h(λ) exactly
cheaply, it can be approximated using a finite sum of
Jackson-Chebyshev polynomials, denoted as ϕ(λ). Please
refer to Appendix A (Liu et al. 2023) for detailed infor-
mation on the approximation method. In this form, it be-
comes possible to estimate the trace of P by an estimator
developed by Hutchinson (Hutchinson 1989) and further im-
proved more recently (Tang and Saad 2012). Hutchinson’s
stochastic estimator relies solely on matrix-vector products
to approximate the matrix trajectory. The key idea is to uti-
lize Rademacher random variables, where each entry of a
randomly generated vector R ∈ RN takes on the values −1
and 1 with equal probability of 1

2 . Thus, an estimate of the
trace tr(P ) can be obtained by generating nr samples of
random vectors Rk, k = 1, · · · , nr and computing the av-
erage over these samples. The estimator can be expressed as
follows:

tr(P ) ≈ 1

nr

nr∑
k=1

R⊤
k PRk ≈ 1

nr

nr∑
k=1

R⊤
k ϕ(Lsym)Rk.

(12)
We obtain the approximation Ω to the cumulative spectral

density function.

Ω =

{(
ξi,

1

N

[
1

nr

nr∑
k=1

R⊤
k ϕ(Lsym)Rk

])}K
i=1

. (13)

Finally, the cumulative spectral density Ω is differentiated
to obtain an approximation of the spectral density ω, ie ω =
d
dξΩ. Using the estimated spectral density ω as a weight for
each sample point ξi on the spectral domain, the weighted
least squares coefficient γθ can be calculated by substituting
it into Eq. (10).

These coefficients are used to approximate the wavelet fil-
ter matrix Ψθ, which can be expressed as follows:

Ψθ = γ0I + γ1Lsym + · · ·+ γmLmsym. (14)

Encoder
In this paper, we construct a graph wavelet multilayer con-
volutional network (ASWT-SGNN). Based on the above, we
define the l-th layer of ASWT-SGNN as

H l+1 = σ(H l′W l), (15)

where σ is the activation function, H l′ ∈ RN×p is the re-
sults of graph convolution of the l-th layer, W l ∈ Rp×q is
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the weight of the l-th layer, p is the number of features in
current layer, and q is the number of features in next layer.
H l′ in Eq. (15) is described as follows:

H l′ = αF lH l + (1− α)H l, (16)

where 1 − α represents the proportion of the original fea-
tures H l in l-th layer, and 0 ≤ α ≤ 1. By incorporating
this residual connection, we guarantee that regardless of the
number of layers we add, the resulting representation will
always retain a portion of the initial features. To enhance the
encoder’s capability to aggregate both local and global in-
formation effectively, we define the diffusion operator F l of
l-th layer in Eq. (16) as

F l = β(ΨθG
lΨ⊤

θ ) + (1− β)(D− 1
2 ÃD− 1

2 ), (17)

where β stands for the ratio of the graph wavelet term and
0 ≤ β ≤ 1. θ is the learnable multi-scale parameters. Gl is
the learnable diagonal filter matrix of l-th layer. Ã = A+ I
represents the adjacency matrix of the self-loop graph of G,
where I is the identity matrix.

Optimization Objective
Typical GCL methods involve generating augmented views
and subsequently optimizing the congruence between their
encoded representations. In this paper, we generate two aug-
mented graphs, z and o, by using feature augmentation.
We randomly sample the mask vector mf ∈ {0, 1}B to
hide part of the dimensions in the node feature. Each ele-
ment in mask mf is sampled from Bernoulli distribution
Ber(1 − fd), where the hyperparameter fd is the feature
descent rate. Therefore, the augmented node feature X̂ cal-
culated by the following formula:

X̂ = [x1 ◦mf ,x2 ◦mf , · · · ,xN ◦mf ] . (18)

We use the comparison objective for the node representa-
tion of the two graph augmentation obtained. For node va,
the node representations from different graph augmentation
za and oa form a positive pair. In contrast, the node repre-
sentations of other nodes in the two graph augmentation are
considered negative pairs. Therefore, we define the paired
objective of each positive pair (za,oa) as

La(z,o) = log
eθ(za,oa)

eθ(za,oa) +
∑
b̸=a(e

θ(za,ob) + eθ(za,zb))
,

(19)
where the critic θ(z,o) is defined as sim(Hz,Ho), and
sim(·, ·) refers to cosine similarity function. Hz is the graph
embedding generated by graph augmentation through the
proposed method ASWT-SGNN. The overall objective to
be maximized is the average of all positive pairs,i.e., L =

− 1
2N

∑N
a=1 [La (z,o) + La (o, z)].

Complexity Analysis
The first step of ASWT-SGNN is wavelet coefficients ap-
proximation. Eq. (8) shows that the immediate solution re-
quires eigen-decomposition of the Laplace matrix to obtain
the eigenvalues and eigenvectors of the matrix. However, the

complexity of the direct solution is very high. For example,
the time complexity of the quick response (QR) algorithm
is O(N3), and the space complexity is O(N2). Therefore,
we use the least squares approximation to approximate the
solution in this step. If the m-order Chebyshev polynomial
approximation is used, the sum of the complexity of each
item in the polynomial is calculated as O(m× |E|).

The second step of ASWT-SGNN is to use the wavelet
transform for graph convolution. Spectral CNN (Bruna et al.
2013) has high parameter complexity O(N × p × q).
ChebyNet (Defferrard, Bresson, and Vandergheynst 2016)
approximates the convolution kernel by the polynomial
function of the diagonal matrix of the Laplace eigenvalue,
reducing the parameter complexity to O(m× p× q), where
m is the order of the polynomial function. GCN (Kipf and
Welling 2016) simplifies ChebyNet by setting m=1. In this
paper, the feature transformation is performed first, and the
parameter complexity is O(p× q). Then the graph convolu-
tion is performed, and the parameter complexity is O(N).

Theoretical Analysis
Lemma 1. Consider nodes va and vb within a graph, char-
acterized by their similarity in features or labels. Conse-
quently, their k-hop neighbors exhibit a one-to-one map-
ping, specifically Nk(b) = π(Nk(a)). In this context, it
holds true that |Ψam − Ψbπ(m)| ≤ 2ϵ, where Ψam signi-
fies the wavelet coefficient between nodes va and vm.
Theorem 1. If the graph following the above assumption
and Lemma 1, the expectation of embedding is given by:

E [Fi] = WEy∼P (yi),x∼Py(x)[Γix], (20)

where Γ = ΨGΨ⊤, Γi is the i-th row of Γ. In this context,
we simplify the model by excluding the residual connection
component. With probability at least 1− δ over the distribu-
tion for the graph, we have:

∥Hi − E [Hi]∥2 ≤

√
σ2
max(W )p log(2p/δ)

2N∥Γix∥ψ2

, (21)

where the sub-gaussian norms ∥Γix∥ψ2
= min ∥Γixi,d∥ψ2

,
p is the dimension of features, d ∈ [1, p] and σ2

max(W ) is
the largest singular value of W .

Proof. The proof is shown in Appendix A (Liu et al. 2023).

The theorem stated above indicates that the proposed
method can map nodes with the same label to an area cen-
tered around the expectation in the embedding space. This
holds true for any graph in which each node’s feature and
neighborhood pattern are sampled from distributions that de-
pend on the node label.

Experiments
Experimental Setting
Datasets We evaluate the approach on eight benchmark
datasets, which have been widely used in GCL meth-
ods. Specifically, citation datasets include Cora, CiteSeer
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Method Datasets
Cora CiteSeer PubMed Computers Photo CS Physics WikiCS Avg.

GCN 81.6±0.2 70.3±0.4 79.3±0.2 84.5±0.3 91.6±0.3 93.1±0.3 93.7±0.2 73.0±0.1 83.4
GAT 83.1±0.3 72.4±0.3 79.5±0.1 85.8±0.1 91.7±0.2 89.5±0.3 93.5±0.3 72.6±0.3 83.5

GWNN 82.8±0.3 71.8±0.2 79.9±0.3 85.6±0.2 92.5±0.1 92.6±0.4 92.7±0.2 72.8±0.3 83.8
GCNII 85.5±0.4 73.4±0.6 80.4±0.3 87.6±0.4 92.7±0.2 92.8±0.4 93.5±0.2 74.7±0.3 85.1
GMI 83.3±0.2 72.6±0.2 79.8±0.4 82.2±0.1 90.7±0.2 92.6±0.2 94.3±0.4 74.9±0.2 83.8

MVGRL 83.1±0.2 72.3±0.5 80.3±0.5 87.5±0.1 91.7±0.1 92.1±0.3 95.1±0.2 77.5±0.1 84.9
GCA-SSG 83.9±0.4 73.1±0.3 81.3±0.4 88.4±0.3 89.5±0.1 92.4±0.1 93.4±0.2 78.2±0.3 85.0
GRADE 84.0±0.3 72.4±0.4 82.7±0.3 84.7±0.1 92.6±0.1 92.7±0.4 93.7±0.2 78.1±0.2 85.1
AF-GCL 83.1±0.1 71.9±0.4 79.0±0.7 89.6±0.2 92.5±0.3 92.0±0.1 95.2±0.2 79.0±0.5 85.3
MA-GCL 83.3±0.4 73.6±0.4 83.5±0.7 88.8±0.3 93.8±0.3 92.5±0.4 94.8±0.5 78.7±0.5 86.1

GraphMAE 84.2±0.4 73.4±0.4 81.1±0.4 89.5±0.1 93.2±0.1 92.7±0.2 94.3±0.4 78.9±0.2 85.9
MaskGAE 84.3±0.4 73.8±0.8 83.6±0.5 89.5±0.1 93.3±0.1 92.7±0.5 94.1±0.4 78.4±0.2 86.2

ASWT-SGNN(Semi) 88.1±0.4 81.5±0.3 85.2±0.6 89.4±0.4 93.8±0.2 93.2±0.3 94.9±0.4 79.8±0.5 88.2
ASWT-SGNN(CL) 86.2±0.6 73.9±0.1 84.9±0.3 89.2±0.3 93.5±0.2 93.5±0.3 95.4±0.3 79.5±0.3 87.0

Table 1: Accuracy (%) on the eight datasets for the node classification. The best result is bold, and the second best is underlined.

and PubMed (Yang, Cohen, and Salakhudinov 2016), co-
purchase and co-author datasets include Photo, Computers,
CS and Physics (Suresh et al. 2021). Wikipedia dataset in-
cludes WikiCS (Mernyei and Cangea 2020).
Baselines We consider several baseline methods for the
node classification task. These include semi-supervised
learning methods like GCN (Kipf and Welling 2016), GAT
(Velickovic et al. 2017) and GCNII (Chen et al. 2020)
and wavelet neural network GWNN (Xu et al. 2019). Fur-
thermore, we evaluate six GCL methods and two graph
generation learning methods, which are GMI (Peng et al.
2020), MVGRL (Hassani and Khasahmadi 2020), GCA-
SSG (Zhang et al. 2021), GRADE (Wang et al. 2022b), AF-
GCL (Wang et al. 2022a), MA-GCL (Gong, Yang, and Shi
2023), GraphMAE (Hou et al. 2022), and MaskGAE (Li
et al. 2023). These methods represent state-of-the-art ap-
proaches in the field of node classification tasks.
Evaluation protocol. For the ASWT-SGNN model, node
representations are learned unsupervised using a 2-layer
model. Following that, a linear classifier is applied as a post-
processing step for assessment. The dataset is randomly par-
titioned, with 20% of nodes allocated to the training set,
another 20% to the validation set, and the remaining 60%
to the test set. To ensure the robustness of our findings, we
conducted the experiments five times for each dataset, each
time with different random seeds. The results include both
the average accuracy and the corresponding standard devi-
ation. All experiments use PyTorch on a server with four e
NVIDIA A40 GPUs. ASWT-SGNN utilizes the Adam Op-
timizer with a learning rate of 0.001. The specific hyperpa-
rameters are as follows: the number of sampling points in
the spectral domain, K, is set to 20, the feature update ratio,
α, is set to 0.8, and the wavelet terms ratio, β, is set to 0.4.

Wavelet Operator Approximation Experiments
The proposed method of approximating wavelet operators
is applied to real-world graph data. We evaluate its perfor-
mance using two distinct metrics: the similarity between
the approximated wavelet filter gθ and the precisely com-
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Figure 2: Wavelet filters gθ for the Cora dataset obtained by
actual wavelet and polynomial approximation.

puted wavelet filter, and the Mean Absolute Error (MAE)
between the approximated wavelet operator Ψθ and the ac-
tual wavelet operator. Figure 2 presents a specific exam-
ple showing the accurate and approximate multiscale fil-
ters, computed precisely and approximately, demonstrating
a significant overlap between them. The MAEs for different
scaled training sets are depicted in Figure 3. The experimen-
tal results indicate that the proposed wavelet operator ap-
proximation method reduces the approximation error in the
high-density spectral domain, while avoiding the need for
computationally expensive eigen-decomposition.

Node Classification
Table 1 displays the results of node classification accuracy.
Notably, our proposed ASWT-SGNN achieves state-of-the-
art (SOTA) performance on six out of the eight graphical
benchmarks. Specifically, compared to other self-supervised
methods across the eight datasets, ASWT-SGNN outper-
forms the best self-supervised method, MaskGAE, by an av-
erage of 0.8%, and it outperforms the worst self-supervised

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13995



0.000

0.002

0.004

0.006

M
AE

       

Wavelet filter MAEs

20%  30%  40%  50%  60%  70%  80%
The ratio of training nodes

0.3

0.4

0.5

0.6

M
AE

The ratio of training nodes
20%  30%  40%  50%  60%  70%  80%

Nodes classification MAEs

Figure 3: MAE between the approximated and the actual
wavelet operator at the eigenvalues (left). MAE between the
predicted labels and the actual labels of the nodes on the
Cora dataset (right).
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Figure 4: Ablation studies. The degree of over-smoothing
under various parameter settings.

method, GMI, by 3.2%. Furthermore, experiments are car-
ried out within a semi-supervised setting, revealing that the
proposed method consistently outperforms the best semi-
supervised benchmark, GCNII, by an average margin of
3.1%. Additionally, it surpasses the best self-supervised
benchmark, MaskGAE, by an average of 2.0%. These re-
sults further demonstrate the effectiveness of the proposed
method ASWT-SGNN in node classification tasks.

Ablation Studies
The proposed method incorporates two pivotal hyperpa-
rameters: α and β. By adjusting these parameters, ASWT-
SGNN can be simplified to its core forms: when α is set
to 1 and β is set to 0, ASWT-SGNN aligns with GCN; set-
ting both α and β to 1 makes ASWT-SGNN behave simi-
larly to GWNN (Xu et al. 2019); and when α ̸= 1 and β is
set to 0, ASWT-SGNN exhibits similarities to GCNII (Chen
et al. 2020). We comprehensively compare ASWT-SGNN
and transformation models, including GCN, GWNN, and
GCNII. Clear observations can be made from Figure 4: as
the number of layers increases, the performance of GCN and
GWNN significantly declines. In contrast, the performance
of GCNII and ASWT-SGNN remains relatively stable even
with more layers stacked. Notably, due to the incorporation
of graph wavelet bases, ASWT-SGNN model outperforms
GCNII in semi-supervised node classification tasks.

Other Experiments
To comprehensively investigate the impact of parameters α
and β on model performance, we systematically vary their
values from 0 to 1. The results are presented in Figure 5,
illustrating several noticeable trends. When α is set to 0, in-
dicating the exclusion of residual connections, accuracy is
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Figure 5: Classification accuracy of the proposed method at
different parameter settings (α and β).

(a) ASWT-SGNN (b) MA-GCL

Figure 6: Intra-class distance heatmap and node embedding
visualization on Cora dataset.

significantly decreased. On the other hand, larger values of
α result in fixed node representations, leading to lower per-
formance. β represents the proportion of the graph wavelet
base; if it is tiny, it may not effectively extract local informa-
tion. Conversely, excessively large values of β could result
in the neglect of global information, ultimately reducing per-
formance. These findings highlight the complex relationship
between parameters α and β in shaping the model’s perfor-
mance. This delicate balance allows our model to synthe-
size local and global information, achieving optimal perfor-
mance effectively.

Furthermore, we use t-SNE (Van der Maaten and Hinton
2008) to visualize the node embeddings. Figure 6 illustrates
that compared to MA-GCL, ASWT-SGNN exhibits more
pronounced gaps between different classes. This suggests
that ASWL-SGNN captures more detailed class information
and clarifies the boundaries between samples from differ-
ent classes. Further extensive experimental analyses, includ-
ing sparse, robustness, and uncertainty analyses, are exhaus-
tively presented in Appendix B (Liu et al. 2023).

Conclusion
This paper introduces an adaptive graph wavelet self-
supervised neural network called ASWT-SGNN. By utiliz-
ing multiple wavelet scales, the model integrates different
levels of localization on the graph, enabling the capture of el-
ements beyond the low-frequency ones. To avoid the expen-
sive eigen-decomposition in the spectral domain, the model
employs a polynomial approximation of the wavelet oper-
ator. Comprehensive experimental results demonstrate the
competitiveness of the proposed method against state-of-
the-art GCL models on real graph datasets. As our frame-
work applies to all message-passing GNNs and polynomial
graph filters, we plan to extend its application to more intri-
cate graph neural architectures. Moreover, we will also con-
sider larger datasets with the increase in GPU resources.
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