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Abstract

Active domain adaptation has emerged as a solution to bal-
ance the expensive annotation cost and the performance of
trained models in semantic segmentation. However, existing
works usually ignore the correlation between selected sam-
ples and its local context in feature space, which leads to in-
ferior usage of annotation budgets. In this work, we revisit the
theoretical bound of the classical Core-set method and iden-
tify that the performance is closely related to the local sam-
ple distribution around selected samples. To estimate the den-
sity of local samples efficiently, we introduce a local proxy
estimator with Dynamic Masked Convolution and develop a
Density-aware Greedy algorithm to optimize the bound. Ex-
tensive experiments demonstrate the superiority of our ap-
proach. Moreover, with very few labels, our scheme achieves
comparable performance to the fully supervised counterpart.

Introduction
Semantic segmentation has become increasingly crucial in
various applications, such as autonomous driving (Teich-
mann et al. 2018), virtual try-on (Ayush et al. 2019), and
smart healthcare (Shi et al. 2020). In recent years, remark-
able progress has been made in this field (Chen et al. 2017;
He et al. 2017; Chen et al. 2018; Cheng, Schwing, and
Kirillov 2021). However, annotating each pixel in an im-
age is extremely costly. Thus, domain adaptation techniques
have been introduced to overcome the high cost of annota-
tion (Chang et al. 2019; Cheng et al. 2021; Zhang et al. 2021;
Liu et al. 2021). Unfortunately, the performance of unsuper-
vised domain adaptation methods still lags far behind that
of fully supervised training on the target domain. Therefore,
active domain adaptation has emerged as a solution to bal-
ance the expensive annotation cost and the performance of
the trained segmentation model, which involves labeling a
few additional samples from the target domain to help trans-
fer knowledge from the source domain to the target domain.

Existing active domain adaptation methods for seman-
tic segmentation primarily rely on either modeling uncer-
tainty (Prabhu et al. 2021; Shin et al. 2021; Xie et al. 2022a)
or data diversity (Ning et al. 2021; Xie et al. 2022a; Wu
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Figure 1: Compared with the classical Core-set loss
bound (Sener and Savarese 2017), we find the ‘Average Ra-
dial Distance’ in feature space is a tighter bound, which is
highly correlated to local sample distribution.

et al. 2022) as metrics to select samples for annotation. They
select regions with either higher uncertainty or larger dif-
ferences from the source domain. However, these methods
usually ignore the fact that selected samples can be highly
correlated with their local context (e.g. local sample density
and adjacent structures) in the feature space, which leads to
inevitable redundancy within annotation budget.

One potential solution to the aforementioned problem is
the Core-set approach, which uses a small set to approxi-
mate a large set (Sener and Savarese 2017; Kim and Shin
2022). However, applying the Core-set approach to seman-
tic segmentation with large amount of pixel-level candidates
confronts two issues. Firstly, the classical solution (Wolf
2011) to Core-set problems is essentially minimizing the ra-
dius required to cover extreme points in neighborhood (as
shown in Fig. 1). When the number of candidate points be-
comes larger, extreme points can not effectively reflect the
local properties in feature space. Secondly, in the classical
greedy solution of Core-set, the discrepancy between data
points is evaluated equally, regardless of the local context of
each candidate. In contrast, the representative ability of sam-
ples may vary across different positions in the feature space,
hence the discrepancy measurement should also depend on
different data points.

To address these challenges, we first revisit the theoret-
ical bound of classical Core-set loss (Sener and Savarese
2017) and derive a new upper bound from the perspective
of expectation. This new bound indicates the Core-set per-
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formance is closely related to the conditional distribution
of samples covered by its nearest selected data. More con-
cretely, through intuitive analysis and empirical observation,
we have discovered that the Core-set loss bound is scaled by
the average distance from a sample to its closest selected
points (as shown in Fig. 1), which indicates that our selec-
tion strategy should allocate more label budget to samples
with larger and more diverse coverage area. Consequently,
we propose a Density-aware Core-set Selection method for
domain adaptive semantic segmentation, which takes local
sample distribution of candidates into account for domain
adaptive semantic segmentation.

To estimate the average distance from a training sam-
ple to its nearest selected points, we draw inspiration from
VAE (Kingma and Welling 2013) and the context model
of learned image compression (Minnen, Ballé, and Toderici
2018), and design a fast local proxy estimator equipped with
Dynamic Masked Convolution. This estimator estimates a
statistic we call ‘coverage density’ based on each candi-
date’s neighbors, which is negatively related to the aver-
age distance. Additionally, we also develop a Density-aware
Greedy algorithm that considers both data discrepancy and
estimated coverage density when selecting samples, and
minimizes the average radial distance within a defined cov-
erage area of selected samples.

Overall, our contributions can be summarized as follows:
• We derive a new upper bound for the Core-set approach

based on an expectation perspective. Our analysis reveals
that the average distances within a defined coverage area
of selected points are crucial for the performance, which
is highly correlated to the conditional probability density
within the area.

• We propose a Density-aware Core-set Selection method
to optimize the derived upper bound. We applies a proxy
estimator equipped with Dynamic Mask Convolution for
fast estimation of local density and average distance,
the estimated density is then utilized in our proposed
Density-aware Greedy algorithm for data sampling.

• We conduct experiments on two representative domain
adaptation benchmarks, namely GTAV → Cityscapes
and SYNTHIA → Cityscapes, achieving performance
that surpasses current state-of-the-art methods.

Related Works
Domain Adaptation
Domain adaptation aims to transfer knowledge from a
source domain with sufficient labels to a related target do-
main with little or no labeled data. Depending on the avail-
ability of labels in the target domain, domain adaptation can
be classified into unsupervised domain adaptation (UDA)
and weakly-supervised domain adaptation (WDA). Lately,
UDA methods including HRDA (Hoyer, Dai, and Van Gool
2022) and MIC (Hoyer et al. 2023) have achieved promis-
ing performance by designing efficient self-training strate-
gies (Wang, Peng, and Zhang 2021; Zheng and Yang 2021;
Jiang et al. 2022). As a complement to these works, this pa-
per focuses on the WDA setting, which balances model per-
formance and annotation cost through the use of weak labels

such as image-level annotations (Paul et al. 2020) or a lim-
ited number of pixel-wise labels (Chen et al. 2021; Guan and
Yuan 2023).

Active Domain Adaptation Segmentation
Active learning is a powerful technique that improves model
performance with a fixed labeling budget by selecting valu-
able samples for labeling in multiple rounds. Many active
learning works focus on image classification (Wang et al.
2016; Xie et al. 2022b; Kirsch, Van Amersfoort, and Gal
2019). However, these methods are often not applicable to
semantic segmentation with numerous candidate samples.
For example, BADGE (Ash et al. 2019) and BAIT (Ash et al.
2021) incorporates last-layer gradients or Fisher matrices for
active selection, but computing them for each pixel or image
patch is computationally and storage-intensive.

Active domain adaptation methods have been developed
for semantic segmentation to address the high cost of an-
notation and the performance of trained models. They typ-
ically employ unsupervised domain adaptation to initialize
a model and subsequently choose samples in the target do-
main using indicators such as uncertainty (Shin et al. 2021)
or diversity (Ning et al. 2021). Some recent works have inte-
grated uncertainty and diversity measures. RIPU (Xie et al.
2022a) uses the entropy of the model output to quantify un-
certainty and measures diversity based on the number of
classes predicted by the model within a fixed neighborhood.
D2ADA (Wu et al. 2022) utilizes the KL divergence of the
feature distribution between the target and source domains to
measure diversity. Nevertheless, these methods do not con-
sider that selecting highly similar samples may result in a
wasted labeling budget.

Core-set Approach
The Core-set selects a subset of data that approximates the
entire dataset by choosing samples that cover the entire
training set with the smallest possible radius, thereby en-
hancing the diversity of selected samples. Sener et al. (Sener
and Savarese 2017) extended this approach to convolutional
neural networks and developed a Robust k-Center algorithm
to improve its optimality. Kim et al. (Kim and Shin 2022)
first clustered samples in the training set according to the es-
timated nearest neighbor distance and then performed active
selection in each cluster using the K-Center Greedy algo-
rithm for image classification. However, this approach still
relies on extreme data points in selection, ignoring the rela-
tionship between data discrepancy and local context.

In this paper, we derived a tighter upper bound for the
Core-set loss and optimized it by assigning varying cover-
age radii to different samples in the selected set. To the best
of our knowledge, this is the first time that the Core-set ap-
proach has been applied to semantic segmentation.

Problem Definition with a Tighter Core-set
Upper Bound

First, we provide a brief overview of the optimization tar-
get of the Core-set approach and introduce some notation.
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The data space is denoted as X and the label space is de-
noted as Y = {1, ..., C}, where C represents the num-
ber of classes for semantic segmentation. The training set
comprises independently and identically distributed (i.i.d.)
samples from the space Z = X × Y . It is represented as
{xt, yt}t∈[n] ∼ pZ , where n is the size of the training set
and [n] is the set of subscripts {1, 2, · · · , n}. The Core-set
approach aims to select a small subset of labeled samples
s ⊂ [n] that minimizes the Core-set loss:

min
s

L(s) = | 1
n

n∑
t=1

l(xt, yt;As)−
1

|s|
∑
k∈s

l(xk, yk;As)|,

s.t. |s| = b, (1)

where b is the labeling budget, As represents learning algo-
rithm which fits the class-wise distribution ηc(x) = p(y =
c|x) for each class given labeled subset s, and l(·, ·, As)
denotes a bounded non-negative loss function. Intuitively,
Eq. 1 aims at finding the subset s such that the performance
of the model on s is close to that on all sampled data.

Previous research (Sener and Savarese 2017) demon-
strated that, under appropriate assumptions, the objective of
Eq. 1 is bounded by the radius of balls determined by ex-
treme points in data space.
Theorem 1. Classical Core-set loss bound (Sener and
Savarese 2017): Given selected set s, if l(·, y, As) is λl-
Lipschitz continuous and bounded by L, ηc(x) is λη-
Lipschitz continuous, and l(xk, yk, As) = 0, ∀k ∈ s, then
there exists a radius δ = maxx∈X mink∈s |x− xk| such
that, with probability no less than 1− γ,

L(s) ≤ δ(λl + ληLC) +

√
L2log(1/γ)

2n
. (2)

According to Eq. 2, minimizing the upper bound of the
Core-set loss requires finding a subset s with the minimum
required radius to cover all other samples, which in turn min-
imizes δ. One approach is to use the k-Center Greedy algo-
rithm (Wolf 2011) to obtain a sub-optimal solution. Alterna-
tively, the radius δ can be reformulated as follows:

δ = max
k

max
x∈Ns(k)

|x− xk|,

Ns(k) = {x|x ∈ X ∧ argmin
m∈s

|x− xm| = k}, (3)

where we define Ns(k) as the “Coverage Area” of points
xk, k ∈ s. As shown in Eq. 3, the upper bound defined
by (Sener and Savarese 2017) only considers the furthest
points (the inner max operation of Eq. 3) covered by each
sample from s, making it a relatively loose upper bound. In
contrast, we claim that the Core-set loss can be bounded via
a new formulation from the expectation view.
Theorem 2. With the same assumption as Theorem 1 and
definition of Coverage Area in Eq. 3, with probability at least
1− γ, the Core-set loss is bounded by

L(s) ≤ max
k∈s

δs(k) · (λl + ληLC) +

√
L2log(1/γ)

2n
,

δs(k) = Ex∼Ns(k)[|x− xk|]. (4)

Furthermore, it can be easily verified that the upper bound
given by Theorem 2 is a tighter approximation compared
with the one in Theorem 1.

Theorem 3. With the same assumption as Theorem 1
and definition of Coverage Area in Eq. 3, the upper-
bound of Theorem 2 is smaller than the classical Core-set
bound (Sener and Savarese 2017), i.e. maxk∈s δs(k) ≤ δ.

Theorem 2 shows that the bound is dependent on the max-
imum value of δs(k), which represents the expected distance
between xk and other training samples lying in its cover-
age area Ns(k). We define this factor δs(k) as the ”Aver-
age Radial Distance” of xk, k ∈ s. Additionally, Theorem 2
demonstrates that minimizing the maximum average radial
distance of labeled set s is increasingly crucial for reducing
the Core-set loss.

Density-aware Core-set with a Proxy
Estimator

In this section we introduce how to minimize the upper-
bound drawn from Theorem 2 in the context of semantic
segmentation. From the definition of average radial distance:

δs(k) =

∫
x

|x− xk|p(x|π(x) = k)dx, (5)

where π(x) = argmink∈s |x− xk|.
We can observe that δs(k) relies on the conditional prob-

ability distribution p(x|π(x) = k) of samples within the
coverage area N(xk) of the chosen sample xk. We term this
distribution as ’coverage sample distribution’ of xk. When
samples are uniformly distributed in the feature space, the
distributions of all samples are equal. As a consequence, the
k-Center Greedy algorithm employed in (Sener and Savarese
2017) effectively optimizes both the upper bounds in Eq.
2 and Eq. 4. Nonetheless, samples in the feature space is
seldom evenly distributed (One visual demonstration can be
found in the supplementary). Consequently, a selected sam-
ple with more eccentric coverage sample distribution exhibit
larger average radial distance, thereby it can exert greater in-
fluence on the bound of Eq. 4. Therefore, we drew inspira-
tion to devise an optimization algorithm that takes the cov-
erage sample distribution into consideration.

A naive idea is to modify the k-Center Greedy algorithm,
i.e. at each step, instead of furthest point sampling, greed-
ily select a sample that minimizes the maximum average ra-
dial distance of the newly selected set. However, such so-
lution results in the time complexity of O(n2b), which is
almost unacceptable in the large candidate number scenario
of semantic segmentation. Therefore, we propose a fast local
proxy estimator to estimate a ‘coverage density’ that reflects
the average radial distance for each pixel. Subsequently, this
coverage density is utilized in the Density-aware Greedy al-
gorithm (shown in Fig. 2).

Baseline Training and Candidate Selection
In our framework, the images from the source and target do-
mains are separately sent to the Backbone to extract features.
The prediction P ∈ RC×HI×WI is obtained through a main

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14001



Figure 2: (a) The overview of the proposed method. At each round of active selection, we first select αb(α > 1) pixels closest
to the classification boundary as candidate samples based source domain knowledge. We then introduce a density estimation
branch to estimate the coverage densities of candidate samples. The features and densities of candidate samples are then fed
into our proposed Density-aware Greedy algorithm to perform active selection. Finally, the network will be retrained using all
available labels. (b) Structure of our proposed Dynamic Masked Convolution.

classifier, where HI ×WI represents the resolution of origi-
nal image. All labeled data is used to train the backbone and
main classifier via cross-entropy.

Source Aided Candidate Filtering. In active semantic
segmentation, data is selected at the pixel-level, resulting in
extremely large search space for Core-set selection. There-
fore, we preselect informative candidate points from the tar-
get data. In order to fully utilize the source domain knowl-
edge to filter out informative pixels in the target domain
that are distinct from the source domain, we applied the
categorical-wise margin loss proposed in (Xie et al. 2022b)
to the source data, as shown in Eq. 6.

LML =
∑
i

∑
j

∑
c ̸=y

[m− Py,i,j + Pc,i,j ]+ (6)

where m is set to 1 to control the margin width, y corre-
sponds to the channel index of the ground-truth, and [x]+
denotes max(0, x). Subsequently, we can select informa-
tive target samples based on the source knowledge by uti-
lizing Ii,j = 1− P1∗,i,j + P2∗,i,j , where P1∗,i,j and P2∗,i,j
are respectively the maximum and second maximum values
within P:,i,j . For annotation budget b, we select the top αb
(α > 1) pixels with the highest Ii,j as candidate samples
to reduce complexity. These selected candidates are then re-
sampled through the Density-aware Greedy algorithm based
on their estimated density.

Proxy Density Estimator with Dynamic Masked
Convolution
Due to the large size and high dimensionality of seman-
tic segmentation candidates, classic distribution estimation
methods such as GMM (Reynolds et al. 2009) cannot esti-
mate the coverage sample distribution accurately in an com-
putationally efficient way. Therefore, we propose a proxy
estimator for fast estimation. We employ the concept of the
Monte Carlo method to estimate a statistic reflecting the lo-
cal sample distribution of each pixel, termed the ’coverage

density’. Given the continuity of images, spatially adjacent
pixels tend to be also adjacent in the feature space (Qian
et al. 2022). Consequently, the features of neighboring pix-
els can be considered as samples drawn from the central
pixel’s coverage sample distribution p(x|π(x) = k). The
process of calculating distances between the central pixel
and its neighboring pixels and averaging them is equiv-
alent to applying a Monte Carlo method to approximate
Eq. 5. However, such naive estimation can results bias since
the local spatial window cannot contain enough samples.
To improve this estimation under limited neighboring pix-
els, we introduce the Dynamic Masked Convolution module
(DMC), which aggregates neighboring pixel features to re-
construct the central pixel’s feature. Since maximizing the
likelihood of a Gaussian distribution is equivalent to min-
imizing the MSE (Kingma and Welling 2013), our DMC
aligns with the use of masked convolution in learned image
compression (Minnen, Ballé, and Toderici 2018) to estimate
the pixel-wise local conditional distribution.

To enable faster estimation, we first introduce a convo-
lution layer g(·) to convert original feature from backbone
to a low-dimensional representation F ∈ RD×H×W with
channel D and spatial size H ×W . Next we stack several
convolutions h(·) and a softmax operation σ(·) as dynamic
mask generator ϕ(·) to obtain the spatial modulation map
M = ϕ(F) = σ (h(F) +M−∞) ∈ RK

2×H×W , where K
is the kernel size for dynamic convolution. Before the soft-
max σ, we add a mask tensor M−∞ ∈ {0,−∞}K2×H×W ,
where the ⌈K

2

2 ⌉-th channel is set −∞ to mask out the weight
of center coordinates in aK×K kernel. We then reshape M
as M̃ ∈ RK×K×H×W , and the reconstructed representation
F̃ is expressed as:

F̃o,i,j =
D∑

d=1

∑
(u,v)∈∆K

M̃
u+⌊K

2
⌋,v+⌊K

2
⌋,i,j ·

Fd,i+u,j+v · W
o,d,u+⌊K

2
⌋,v+⌊K

2
⌋ (7)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14002



(a) K-Center Greedy (b) Density-aware Greedy

Step 1: assign & find 
furthest link

Step 2: cutout 
furthest link by selection

Step 1: distance 
calculation

Step 2: assign & find furthest 
link by rescaled distance

Step 3: cutout 
furthest link by selection

New ℕ𝓢𝓢(𝒌𝒌)
New ℕ𝓢𝓢(𝒌𝒌)

Figure 3: Comparison between k-Center Greedy and Density-aware Greedy. The red points represent candidates to be selected,
and the blue points denote selected samples in s. (a) The two-step “Find & Cut” view of k-Center Greedy selection, which
cuts the link of furthest distance. (b) Our Density-aware Greedy algorithm rescales the distances so that selected samples with
higher density are closer to other candidates and low-density ones are pushed away from linked candidates.

Figure 4: Experimental observation of the relation between
estimated density and average radial distance. The distribu-
tion of average radial distance tends to approach zero w.r.t
increasing coverage density.

where ∆K represents [−⌊K2 ⌋, ⌊
K
2 ⌋] × [−⌊K2 ⌋, ⌊

K
2 ⌋], and

W ∈ RD×D×K×K is the learnable parameters of dynamic
convolution. Further, additional convolution layers ψ(·) are
used to refine the reconstructed results F̂ = ψ(F̃), where
the convolution kernel in ψ(·) is 1 × 1 to avoid spatial in-
formation leakage. Finally, we exploit the reconstruction er-
ror to approximate the coverage density at location (i, j) as
Di,j = β exp

(
−||F̂:,i,j − F:,i,j ||22/τ

)
, where both β, τ are

hyperparameters, and we regard the inner reconstruction er-
ror ||F̂:,i,j − F:,i,j ||22 as estimated average radial distance.
We train the estimator to extimate the coverage density for
both labeled and unlabeled data:

max
g,ϕ,ψ

log
∏
(i,j)

Di,j (8)

Meanwhile, to prevent the optimization in Eq. 8 from having
a trivial solution, we append another auxiliary classifier on
F and supervise it with cross-entropy loss using labeled data
(as shown in Fig. 2). Before feeding each candidate pixel
into the following Density-aware Greedy algorithm, we ex-
tract its feature vector f and density d from F and D at cor-
responding spatial location respectively.

From Eq. 8, we can observe that the estimated coverage
density is negative correlated with the average radial dis-
tance. To demonstrate this, in Fig. 4, we analyze the cor-
relation between the estimated density and the average ra-
dial distance given the selected set s from the naive Core-

Algorithm 1: Density-aware Greedy
Input: candidates xt, feature ft and densities dt, t ∈ [n],
existing labeled set s0 and budget b
s = s0

rt = mink∈s ||ft − fk||22/dk ∀t ∈ [n]
repeat
u = argmaxt∈[n]\s rt
s = s ∪ {u}
rt = min(rt, ||ft − fu||22/du) ∀t ∈ [n]\s

until |s| = b+ |s0|
return s

set (Sener and Savarese 2017). The average radial distance
of labeled samples with low density is more likely to be
larger, while as the density increases, the distribution of the
average radial distance tends to approach zero.

Density-aware Greedy Algorithm
With the estimated density, we propose a density-aware
modification of k-Center Greedy algorithm (Wolf 2011) to
minimize the Core-set upper bound. To make analogy, we
first breakdown the k-Center algorithm into a two-step “Find
& Cut” manner as Fig. 3: STEP1: link xt to its nearest
point in s thus to obtain estimated Ns(k) for xk, ∀k ∈ s.
STEP2: To shrink coverage of Ns(k), find and cut the link
with longest distance by appending corresponding candidate
into s. In contrast, our goal is to downgrade δs(k) instead of
shrinking Ns(k), therefore we insert a step between STEP1
and STEP2 to rescale the distance of links in each Ns(k)
by density dk of corresponding labeled data. When the
coverage density estimated by DMC exhibits a strong cor-
relation with the average radial distance, this inserted step
transforms the cut link from furthest link in the feature space
into the link associated with the maximum δs. As a result, se-
lected samples with larger δs are assigned smaller coverage
areas and the maximum average radial distance is optimized.
In practice, to ensure a robust correlation between the esti-
mated coverage density and the average radial distance, we
tune β and τ over the training dataset until they reduce the
bound in Eq. 4. Following (Xie et al. 2022a; Wu et al. 2022),
we perform multiple rounds of active selection. Algorithm 1
depicts one round of our proposed method.
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Method ... SN VN TN SY PN RR CR TK BS TN MB BE mIOU

Source Only ... 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
DPL-Dual ... 34.0 85.8 41.3 86.0 63.2 34.2 87.2 39.3 44.5 18.7 42.6 43.1 53.3
BAPA-Net ... 55.3 87.8 46.1 89.4 68.8 40.0 90.2 60.4 59.0 0.0 45.1 54.2 57.4
ProDA ... 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5

WeakDA (point) ... 51.0 86.1 43.4 87.7 66.4 36.5 87.9 44.1 58.8 23.2 35.6 55.9 56.4

LabOR (V2, 40 pixels) ... 60.6 89.4 55.1 91.4 70.8 44.7 90.6 56.7 47.9 39.1 47.3 62.7 63.5
RIPU (V2, 40 pixels) ... 55.7 88.5 55.3 90.2 69.2 46.1 91.2 70.7 73.0 58.2 50.1 65.9 65.5
Ours (V2, 40 pixels) ... 60.7 89.3 54.9 91.2 71.0 48.7 91.6 71.9 71.8 53.9 55.3 68.3 66.9

LabOR (V2, 2.2%) ... 63.5 89.5 57.8 91.6 72.0 47.3 91.7 62.1 61.9 48.9 47.9 65.3 66.6
RIPU (V2, 2.2%) ... 62.2 90.0 57.6 92.6 73.0 53.0 92.8 73.8 78.5 62.0 55.6 70.0 69.6
D2ADA (V2, 5%) ... 64.7 89.3 53.9 92.3 73.9 52.9 91.8 69.7 78.9 62.7 57.7 71.1 69.7
Ours (V2, 2.2%) ... 67.2 90.3 58.5 92.9 74.2 55.0 92.8 75.8 75.0 65.3 54.5 70.4 71.1
Fully Supervised (V2) ... 68.0 90.5 58.1 93.1 75.1 53.9 92.7 72.0 80.2 65.0 58.1 71.1 71.3

MADA (V3+, 5%) ... 59.2 89.1 46.7 91.5 73.9 50.1 91.2 60.6 56.9 48.4 51.6 68.7 64.9
RIPU (V3+, 5%) ... 64.1 90.2 59.2 93.2 75.0 54.8 92.7 73.0 79.7 68.9 55.5 70.3 71.2
D2ADA (V3+, 5%) ... 65.8 90.4 58.9 92.1 75.7 54.4 92.3 69.0 78.0 68.5 59.1 72.3 71.3
Ours (V3+, 5%) ... 69.0 91.1 62.5 93.4 75.9 54.8 92.9 72.5 76.5 71.3 54.2 71.2 72.2
Fully Supervised (V3+) ... 69.1 91.2 60.5 94.4 76.7 55.6 93.3 75.8 79.9 72.9 57.7 72.2 73.2

Table 1: Comparison1 with various domain adaptation methods on GTAV → Cityscapes.

Experiments
Experimental Setup
Datasets. We evaluate our approach using two popular do-
main adaptive semantic segmentation benchmarks: GTAV
→ Cityscapes and Synthia → Cityscapes. GTAV and SYN-
THIA are both synthetic datasets. GTAV shares 19 semantic
categories with Cityscapes while SYNTHIA shares 16 se-
mantic categories with Cityscapes.

Implementation Details. To fairly compare with other
methods, our training settings and active protocal are aligned
with (Xie et al. 2022a). In active selection, β is set to e2.4
and τ is set to 0.25, normalizing the reconstruction error to
0-1 before calculating the density. The candidate features
f are also normalized before being fed into Density-aware
Greedy. We set α in the candidate filtering to 20 for label
budgets lower than 2.2%, and 10 for 5% label budget.

Comparison with State-of-the-Art Methods
We compare our method with various domain adaptation
methods1, as shown in Table 1 and 2. Among them, (Cheng
et al. 2021; Liu et al. 2021; Zhang et al. 2021) are UDA
methods, (Paul et al. 2020) is a WDA method, while (Shin
et al. 2021; Ning et al. 2021; Xie et al. 2022a; Wu et al.
2022) are ADA methods.

It can be observed that: (1) Compared with UDA and
WDA methods, our method can achieve more than 10
mIOU improvement. (2) Our method significantly outper-
forms other active domain adaptation methods. In compar-
ison to RIPU and D2ADA with DeeplabV2, our method
showcases a remarkable improvement of over 1.4 mIOU.

1Results for each category can be found in the arXiv version.

As the segmentation head improves and the labeling bud-
get increases, the performance gains brought by active strat-
egy somewhat saturates. But our method still achieves bet-
ter results under the setting of DeeplabV3+ and 5% labeling
budget. (3) Our method achieves close performance to fully
supervised counterpart with very few annotations. Across
various segmentation heads, our method attains 98% of the
performance achievable under fully supervised conditions,
utilizing just 2.2% to 5% annotations.

Ablation Studies
Effect of Dynamic Masked Convolution and Density-
aware Greedy. we conduct ablation experiments on the
GTAV → Cityscapes and SYNTHIA → Cityscapes tasks
with a 2.2% label budget to explore the impact of our pro-
posed Dynamic Masked Convolution (DMC) and Core-set
selection, as shown in Table 3. The ‘Baseline‘ method uses
only the entropy of the model output for active selection. The
‘K-Center Greedy’ first filters candidate samples using en-
tropy and then applies K-Center Greedy algorithm described
in (Sener and Savarese 2017). When combined with DMC,
the K-Center Greedy only utilizes DMC as a feature regular-
ization technique. For our Density-aware Greedy, removing
DMC involves using the context model from (Minnen, Ballé,
and Toderici 2018) to estimate density.

From the results in Table 3, the following observations can
be made: (1) Our proposed Density-aware Greedy algorithm
demonstrates robust performance improvements compared
to K-Center Greedy. Even when DMC is replaced with a
5×5 masked convolution, we still achieve remarkable mIOU
improvements. This highlights the significance of coverage
density. (2) The proposed DMC is more suitable for estimat-
ing density compared to the context model in learned image
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Method ... PE* LT SN VN SY PN RR CR BS MB BE mIOU mIOU*

Source Only ... 31.4 7.0 27.7 63.1 67.6 42.2 19.9 73.1 15.3 10.5 38.9 34.9 40.3
DPL-Dual ... 33.2 22.0 20.1 83.1 86.0 56.6 21.9 83.1 40.3 29.8 45.7 47.0 54.2
BAPA-Net ... 34.9 30.5 42.8 86.6 88.2 66.0 34.1 86.6 51.3 29.4 50.5 53.3 61.2
ProDA ... 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5 62.0

WeakDA (point) ... 34.9 37.3 50.8 84.4 88.2 60.6 36.3 86.4 43.2 36.5 61.3 57.2 63.7

RIPU (V2, 40 pixels) ... 38.3 47.1 54.2 89.2 90.8 69.9 48.5 91.4 71.5 52.2 67.2 66.1 72.1
Ours (V2, 40 pixels) ... 41.9 50.6 60.9 89.9 91.8 71.7 46.5 92.1 76.2 47.1 68.0 67.9 73.5

RIPU (V2, 2.2%) ... 45.0 53.0 62.5 90.6 92.7 73.0 52.9 93.1 80.5 52.4 70.1 70.1 75.7
D2ADA (V2, 5%) ... 48.0 55.6 66.5 89.5 91.7 75.1 55.2 91.4 77.0 58.0 71.8 70.6 76.3
Ours (V2, 2.2%) ... 47.7 56.5 68.0 91.2 93.0 74.8 52.2 93.4 83.5 54.6 70.7 72.1 77.3
Fully Supervised (V2) ... 49.0 57.5 68.0 90.5 93.1 75.1 53.9 92.7 80.2 58.1 71.1 72.5 77.5

MADA (V3+, 5%) ... 46.7 52.4 60.5 89.7 92.2 74.1 51.2 90.9 60.3 52.4 69.4 68.1 73.3
RIPU (V3+, 5%) ... 48.5 55.2 63.9 91.1 93.0 74.4 54.1 92.9 79.9 55.3 71.0 71.4 76.7
D2ADA (V3+, 5%) ... 54.2 58.3 68.0 90.4 93.4 77.4 56.4 92.5 77.5 58.9 73.3 72.7 77.7
Ours (V3+, 5%) ... 55.1 59.1 70.0 91.9 93.8 77.3 54.4 93.9 80.3 56.4 71.9 73.2 78.5
Fully Supervised (V3+) ... 53.8 59.6 69.1 91.2 94.4 76.7 55.6 93.3 79.9 57.7 72.2 73.8 78.4

Table 2: Comparison with various domain adaptation methods on SYNTHIA → Cityscapes.

Sampling DMC GTAV SYNTHIA

Baseline ✗ 66.2 68.2

K-Center Greedy
✗ 69.4 70.7
✓ 70.1 71.1

Density-aware Greedy
✗ 70.4 71.4
✓ 71.1 72.1

Table 3: Ablation Studies of Each Component.

Algorithm δ maxk∈sδs(k) Core-set Loss

K-Center 0.132 0.364 0.646
Density-aware 0.176 0.124 0.550

Table 4: Bound and Core-set Loss comparison.

compression. (3) Introducing DMC solely as a feature regu-
larization technique also improves model performance.

Moreover, we conducted numerical experiments on the
Cityscapes training set to validate that the proposed Density-
aware Greedy algorithm reduces the new bound introduced
in Eq. 4. We compared the bounds δ from Eq. 3 and
maxk∈sδs(k) from Eq. 4 for models trained with anno-
tations selected using K-center Greedy and Density-aware
Greedy. The results are shown in Table 4. It is observed that
the K-center Greedy algorithm results in a smaller δ, yet
a larger maxk∈sδs(k). Conversely, our proposed Density-
aware Greedy algorithm results in a larger δ, while yield-
ing a smaller maxk∈sδs(k). The actual Core-set Loss of the
Density-aware Greedy algorithm is also smaller.

Comparison with Common Active Learning Baselines.
We also compared our method with other active learn-

Method GTAV SYNTHIA

RAND 63.8 65.6
ReDAL 66.2 67.2
BADGE 66.1 67.1
ENT 66.2 68.2
SCONF 66.5 68.4
MARGIN 66.1 68.0
Ours (w/o source data) 69.1 70.0
Ours 71.1 72.1

Table 5: Comparison with Active Baselines.

ing methods, including random (RAND), uncertainty-based
methods ENT (Shen et al. 2017), SCONF (Culotta and Mc-
Callum 2005) and MARGIN (Wang and Shang 2014), and
hybrid methods ReDAL (Wu et al. 2021) and BADGE (Ash
et al. 2019). The label budget is set to 2.2%. It can be seen
from Table 5 that even without any source domain data,
our method still outperforms commonly used active learning
strategies by a margin over 2 mIOU, demonstrating the com-
petitiveness of our method as an active learning approach.

Conclusion
In this paper, we propose a Density-aware Core-set Selec-
tion method for active domain adaptive segmentation. We
derive a tighter upper bound for the classical Core-set and
identify that the model performance is closely related to
the coverage sample distribution of selected samples. Fur-
ther, we introduce a Proxy Density Estimator and develop
a Density-aware Greedy algorithm to optimize the newly
derived bound. Experiments demonstrate that the proposed
method outperforms existing active learning and domain
adaptation methods.
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Minnen, D.; Ballé, J.; and Toderici, G. D. 2018. Joint autore-
gressive and hierarchical priors for learned image compres-
sion. Advances in Neural Information Processing Systems,
31.

Ning, M.; Lu, D.; Wei, D.; Bian, C.; Yuan, C.; Yu, S.; Ma,
K.; and Zheng, Y. 2021. Multi-anchor active domain adapta-
tion for semantic segmentation. In Proceedings of the IEEE
International Conference on Computer Vision, 9112–9122.

Paul, S.; Tsai, Y.-H.; Schulter, S.; Roy-Chowdhury, A. K.;
and Chandraker, M. 2020. Domain adaptive semantic seg-
mentation using weak labels. In Proceedings of the Euro-
pean Conference on Computer Vision, 571–587. Springer.

Prabhu, V.; Chandrasekaran, A.; Saenko, K.; and Hoff-
man, J. 2021. Active domain adaptation via clustering
uncertainty-weighted embeddings. In Proceedings of the
IEEE International Conference on Computer Vision, 8505–
8514.

Qian, Y.; Lin, M.; Sun, X.; Tan, Z.; and Jin, R. 2022. En-
troformer: A transformer-based entropy model for learned
image compression. arXiv preprint arXiv:2202.05492.

Reynolds, D. A.; et al. 2009. Gaussian mixture models. En-
cyclopedia of Biometrics, 741(659-663).

Sener, O.; and Savarese, S. 2017. Active learning for con-
volutional neural networks: A core-set approach. arXiv
preprint arXiv:1708.00489.

Shen, Y.; Yun, H.; Lipton, Z. C.; Kronrod, Y.; and Anandku-
mar, A. 2017. Deep active learning for named entity recog-
nition. arXiv preprint arXiv:1707.05928.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14006



Shi, F.; Wang, J.; Shi, J.; Wu, Z.; Wang, Q.; Tang, Z.; He,
K.; Shi, Y.; and Shen, D. 2020. Review of artificial intelli-
gence techniques in imaging data acquisition, segmentation,
and diagnosis for COVID-19. IEEE Reviews in Biomedical
Engineering, 14: 4–15.
Shin, I.; Kim, D.-J.; Cho, J. W.; Woo, S.; Park, K.; and
Kweon, I. S. 2021. Labor: Labeling only if required for do-
main adaptive semantic segmentation. In Proceedings of the
IEEE International Conference on Computer Vision, 8588–
8598.
Teichmann, M.; Weber, M.; Zoellner, M.; Cipolla, R.; and
Urtasun, R. 2018. Multinet: Real-time joint semantic rea-
soning for autonomous driving. In IEEE Intelligent Vehicles
Symposium, 1013–1020. IEEE.
Wang, D.; and Shang, Y. 2014. A new active labeling
method for deep learning. In International Joint Conference
on Neural Networks, 112–119. IEEE.
Wang, K.; Zhang, D.; Li, Y.; Zhang, R.; and Lin, L. 2016.
Cost-effective active learning for deep image classification.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 27(12): 2591–2600.
Wang, Y.; Peng, J.; and Zhang, Z. 2021. Uncertainty-aware
pseudo label refinery for domain adaptive semantic segmen-
tation. In Proceedings of the IEEE International Conference
on Computer Vision, 9092–9101.
Wolf, G. W. 2011. Facility location: concepts, models, algo-
rithms and case studies.
Wu, T.-H.; Liou, Y.-S.; Yuan, S.-J.; Lee, H.-Y.; Chen, T.-
I.; Huang, K.-C.; and Hsu, W. H. 2022. D 2 ADA: Dy-
namic Density-Aware Active Domain Adaptation for Se-
mantic Segmentation. In Proceedings of the European Con-
ference on Computer Vision, 449–467. Springer.
Wu, T.-H.; Liu, Y.-C.; Huang, Y.-K.; Lee, H.-Y.; Su, H.-T.;
Huang, P.-C.; and Hsu, W. H. 2021. Redal: Region-based
and diversity-aware active learning for point cloud seman-
tic segmentation. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, 15510–15519.
Xie, B.; Yuan, L.; Li, S.; Liu, C. H.; and Cheng, X. 2022a.
Towards fewer annotations: Active learning via region impu-
rity and prediction uncertainty for domain adaptive seman-
tic segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 8068–8078.
Xie, M.; Li, Y.; Wang, Y.; Luo, Z.; Gan, Z.; Sun, Z.; Chi, M.;
Wang, C.; and Wang, P. 2022b. Learning distinctive mar-
gin toward active domain adaptation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 7993–8002.
Zhang, P.; Zhang, B.; Zhang, T.; Chen, D.; Wang, Y.; and
Wen, F. 2021. Prototypical pseudo label denoising and tar-
get structure learning for domain adaptive semantic segmen-
tation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 12414–12424.
Zheng, Z.; and Yang, Y. 2021. Rectifying pseudo label learn-
ing via uncertainty estimation for domain adaptive seman-
tic segmentation. International Journal of Computer Vision,
129(4): 1106–1120.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14007


