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Abstract

Incomplete multi-view clustering has attracted much atten-
tion due to its ability to handle partial multi-view data. Re-
cently, similarity-based methods have been developed to ex-
plore the complete relationship among incomplete multi-
view data. Although widely applied to partial scenarios, most
of the existing approaches are still faced with two limita-
tions. Firstly, fusing similarities constructed individually on
each view fails to yield a complete unified similarity. More-
over, incomplete similarity generation may lead to anoma-
lous similarity values with column sum constraints, affect-
ing the final clustering results. To solve the above challeng-
ing issues, we propose a Sample-level Cross-view Similarity
Learning (SCSL) method for Incomplete Multi-view Clus-
tering. Specifically, we project all samples to the same di-
mension and simultaneously construct a complete similarity
matrix across views based on the inter-view sample relation-
ship and the intra-view sample relationship. In addition, a si-
multaneously learning consensus representation ensures the
validity of the projection, which further enhances the qual-
ity of the similarity matrix through the graph Laplacian reg-
ularization. Experimental results on six benchmark datasets
demonstrate the ability of SCSL in processing incomplete
multi-view clustering tasks. Our code is publicly available at
https://github.com/Tracesource/SCSL.

Introduction
Multi-view clustering (MVC) has garnered considerable at-
tention from researchers as an effective machine learning
paradigm for data analysis (Jiang et al. 2022; Wan et al.
2022; Dong et al. 2023). The objective of MVC is to lever-
age the features of samples across multiple views and par-
tition the data points into a predetermined number of cat-
egories, where samples within the same category should
be as similar as possible (Wang et al. 2022a; Wen et al.
2023a; Yang et al. 2021). The key challenge in MVC lies
in determining the consistent and complementary informa-
tion across multiple views to achieve clustering performance
that surpasses that of single-view clustering. Over the past
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few decades, numerous MVC methods have been proposed
and have demonstrated excellent performance (Zhang et al.
2022; Wen et al. 2023b; Yu et al. 2023).

However, in practical applications, multi-view data often
suffers from partial missingness due to limitations in the data
acquisition process, noise from collection devices, or other
uncontrollable factors (Xu et al. 2019; Wang et al. 2022b).
For instance, a patient’s medical record may be incomplete
because several tests were not conducted, or data from mul-
tiple radar sensors may have missing values caused by chan-
nel interference. Traditional MVC models are typically built
on the fundamental assumption of complete data and are un-
able to directly handle missingness in multi-view data (Wen
et al. 2022). To address these challenges, a series of incom-
plete multi-view clustering (IMVC) methods have emerged
in recent years (Liu et al. 2021; Lin et al. 2021; Liu et al.
2022; He et al. 2023; Yang et al. 2023). Based on the strate-
gies employed to handle missing data, the existing IMVC
methods can be categorized into three types: imputation-
based, representation-based, and similarity-based.

The imputation-based IMVC methods address incomplete
data through heuristic strategies or optimization techniques,
followed by fusion and clustering operations on the filling
data (Liu et al. 2020a; Xia et al. 2023). Liu et al. further
propose integrating missing value imputation and clustering
into a unified learning process (Liu et al. 2020b). Based on
the assumption that each sample in incomplete multi-view
data exists in at least one view, representation-based IMVC
methods learn a consistent low-dimensional representation
based on the samples present in each view and then apply
clustering algorithms to this representation (Lv et al. 2022;
Deng et al. 2023). Wen et al. suggest first learning incom-
plete low-dimensional representations on each view sepa-
rately and then integrating them into a unified latent repre-
sentation (Wen et al. 2018). Similarity-based IMVC meth-
ods construct partial similarity graphs of each view and then
fuse them to build a complete similarity matrix (Liu et al.
2023). Guo et al. propose to average the common similar-
ity parts among views and concatenate the unique parts to
obtain a complete similarity matrix (Guo and Ye 2019).

Compared to the previous two methods, the similarity-
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Figure 1: The framework of SCSL.

based approaches avoid the additional computational cost
caused by imputation and are not affected by potential noise
during dimensionality reduction. Directly targeting the clus-
tering task, similarity construction is a promising method
for solving the IMVC problem. However, existing methods
have three shortcomings. Firstly, although samples always
exist in at least one view, there may be cases where two
samples do not appear in the same view simultaneously. In
such cases, the similarity matrix constructed in all views will
lack the corresponding entry that captures the relationship
between these two samples. Existing methods overlook this
possibility, resulting in an incomplete consensus similarity
matrix. Furthermore, most methods impose a constraint on
the similarity matrix, requiring the columns to sum up to 1.
When there is a missing entry with a relatively larger simi-
larity, other originally smaller similarities will increase dra-
matically, leading to abnormal values and affecting the final
clustering results. Moreover, the similarity-based methods
excessively rely on the quality of the constructed similarity.
Merely using similarity as the basis for subsequent cluster-
ing processes may result in unsatisfactory outcomes.

To address the issues above, this paper proposes a novel
approach named SCSL. Firstly, we suggest constructing the
similarity matrix based on the relationships between sam-
ples that exist across all views, rather than solely consid-
ering intra-view relationships. This avoids the drawbacks of
incomplete similarity matrices constructed within individual
views. The projection matrices learned on each view ensure
that all samples can be measured on the same dimension for
distance calculation. To mitigate the impact of imbalanced
occurrences of elements on the final similarity construction,
we introduce a balancing coefficient to ensure equal contri-
butions from all entries. Additionally, we incorporate a con-
sistent latent representation learning module that enhances
the reliability of projections by sharing the same projection
as the previous module. The introduction of an additional

graph Laplacian term connects the latent representation with
the similarity matrix, enabling a global exploration of rela-
tionships between samples and further improving the quality
of the learned complete similarity matrix. Fig. 1 displays the
framework of the presented SCSL.

In summary, the proposed SCSL method in this paper
makes several contributions:
• Addressing the issue of incomplete similarity construc-

tion, we propose a sample-level cross-view similarity
learning approach. To the best of our knowledge, this is
the first attempt to construct similarities between samples
from a cross-view perspective to tackle the IMVC prob-
lem. By simultaneously utilizing intra-view and inter-
view sample relationships, this method effectively avoids
graph incompleteness and abnormal similarities.

• By learning consistent representations through shared
projections across views, the reliability of projections is
greatly enhanced. The additional introduction of a graph
Laplacian term establishes the connection between con-
sistent representations and the similarity matrix, mutu-
ally reinforcing each other and further improving quality.

• We propose a three-step iterative optimization algorithm
to solve the optimization problem and prove its conver-
gence. Experimental results on multiple datasets validate
the effectiveness of this method.

Related Work
In this section, we provide a brief introduction to IMVC and
further focus on the IMVC similarity-based methods. Table
1 presents the symbols used in this paper.

Incomplete Multi-view Clustering
Incomplete multi-view clustering extends MVC algorithms
to scenarios with missing data by inferring the missing parts
based on the available part or directly constructing a com-
plete unified representation. Existing IMVC approaches can
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Notation Definition
n Number of samples
np Number of existing samples
k Number of clusters
v Number of views
dp Dimension
ζp Existing sample indices set

X(p) ∈ Rdp×n Data matrix
W(p) ∈ Rdp×k Projection matrix

H(p) ∈ {0, 1}n×np Missing index matrix
S ∈ Rn×n Similarity matrix
Ls ∈ Rn×n Laplacian matrix of S
G ∈ Rk×n Consensus representation matrix

Table 1: Main symbols used throughout the paper.

be divided into three categories based on how they han-
dle missing data: imputation-based methods, representation-
based methods, and similarity-based methods.

Imputation-based methods are mainly developed based on
multi-kernel clustering, aiming to fill in the missing values
with different strategies (Yin and Sun 2022; Xia et al. 2023).
The aforementioned methods all follow a two-step process:
imputation and then clustering, where the two processes can-
not contribute to each other. Liu et al. introduce the incom-
plete data as variables into the optimization process, inte-
grating imputation and clustering into the same framework
(Liu et al. 2017, 2020b).

Representation-based methods assume that views share a
low-dimensional subspace, aiming to learn a unified low-
dimensional representation for subsequent clustering (Deng
et al. 2020; Wen et al. 2020). Shao et al. independently learn
latent feature matrices on each view and then fuse them into
a consistent matrix (Shao, He, and Philip 2015). Liang et
al. propose to learn sample-level weights, further improving
clustering performance (Liang, Yang, and Xie 2022).

Similarity-based methods focus on the similarity closely
related to the clustering task, aiming to reconstruct a com-
plete similarity graph by leveraging the relationships among
samples across different views (Fang et al. 2020; Wen et al.
2021b). Wang et al. are the first to address the incomplete
multi-view data problem by transferring it from the data do-
main to the similarity domain (Wang et al. 2019). In contrast
to the above methods, Wen et al. construct local similarity
graphs on each view separately and then recover the incom-
plete parts through a common graph (Wen et al. 2021a).

Similarity-based Incomplete Multi-view Clustering
The similarity-based IMVC methods address the partial
multi-view data problem by constructing a similarity matrix
among all samples. Specifically, given the multi-view data{
X(p)

}v
p=1

, where n is the number of samples and dp is the
dimensionality of samples in each view, the framework of
the similarity-based method is as follows:

min
S(p),S

v∑
p=1

∑
i,j∈ζp

∥∥∥x(p)
i − x

(p)
j

∥∥∥2
2
sij

(p)2 + αf(S,S(p)), (1)

s.t. S(p)⊤1 = 1,S(p) ≥ 0,S⊤1 = 1,S ≥ 0,
where ζp represents the set of sample indices existing in
the p-th view. S(p) denotes the partial similarity matrix con-
structed on the p-th view, and S is the consensus matrix ob-
tained through the fusion term f .

Many works have extended the above framework by in-
corporating different regularization terms into S(p) or modi-
fying the form of the fusion term f . However, we observe
that in missing scenarios, some combinations of sample
pairs may not occur in any view. This issue leads to an in-
complete S learned in the end, thereby affecting the subse-
quent clustering performance. Even worse, the presence of
missing elements in the objective function introduces abnor-
mal similarities, where originally larger similarities become
zero and smaller similarities exhibit a sharp increase. In the
next section, we propose SCSL to address the above prob-
lems.

Method
In this section, we begin by introducing each part of the
proposed model, followed by a detailed explanation of the
optimization procedure. Finally, we delve into the complex-
ity analysis of SCSL. The proposed SCSL consists of three
main sub-models: sample-level cross-view similarity learn-
ing, consensus representation learning, and graph Laplacian
regularization.

Sample-level Cross-view Similarity Learning
Existing similarity-based IMVC methods construct the sim-
ilarity matrix based on the distances between samples within
a single view, leading to a lack of similarity for certain sam-
ple pairs. Additionally, the constraints on column sums fur-
ther affect the construction of the similarity matrix, caus-
ing a sudden increase in small similarities in the presence
of missing larger values, severely hindering clustering. The
key reason for such a problem is that combining the sim-
ilarity matrices S(p) ∈ Rnp×np constructed for individual
samples based on different views does not cover all relation-
ships between samples. For example, in the case of data with
two views, if the i-th sample exists in the first view but is
missing in the j-th sample, while the opposite is true in the
second view, existing methods fail to construct the similarity
between the i-th and j-th samples.

To address this issue, we propose utilizing not only the
distances between samples within each view but also the dis-
tances between samples across different views to construct
a comprehensive similarity matrix, denoted as S ∈ Rn×n.
Since the sample dimensions vary across different views, we
introduce a projection matrix W(p) for each view to project
all samples into a common k-dimensional space and com-
pute their distances. As a result, the objective function for
sample-level cross-view similarity learning can be formu-
lated as follows:

min
S,W(p)

v∑
p=1

v∑
u=1

∑
i∈ζp

∑
j∈ζu

∥∥∥W(p)⊤x
(p)
i −W(u)⊤x

(u)
j

∥∥∥2
2
s2ij ,

(2)
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s.t. S⊤1 = 1,S ≥ 0,W(p)⊤W(p) = I,
where ζp and ζu represent the sets of existing sample indices
for the p-th and u-th views, respectively. The orthogonality
constraints on the projection matrices reduce redundancy in
the projected information. In the original method, the set of
constructed sample pairs is

⋃v
p=1 (ζp × ζp), which cannot

cover the relationship among all samples. While in our ap-
proach, the set is

⋃v
p,u=1 (ζp × ζu), which actually construct

a complete similarity. Mathematically,∣∣∣∣∣
v⋃

p=1

(ζp × ζp)

∣∣∣∣∣ ≤
∣∣∣∣∣

v⋃
p,u=1

(ζp × ζu)

∣∣∣∣∣ = n2. (3)

Consensus Representation Learning

To enhance the reliability of projections across different
views and explore their consistency, we introduce a module
for consistent representation learning. Specifically, we aim
to find a common latent representation G that approximates
the existing samples in each view. The objective function
can be formulated as follows:

min
W(p),G

v∑
p=1

∥∥∥X(p)H(p) −W(p)GH(p)
∥∥∥2
F
, (4)

s.t. W(p)⊤W(p) = I,
where H(p) is the missing index matrix, let w be an indi-
cator vector containing the indices of np existing samples
for the p-th view in a specific order, H(p)

ij is set to 1 when
wpi equals the value j. It is worth noting that the projection
matrix W(p) in this module remains consistent with the pre-
vious one, enabling G to contribute to the construction of a
more reliable projection matrix.

Graph Laplacian Regularization

According to the manifold learning theory, if two data points
have high similarity, their reconstructed low-dimensional
representations should also be close to each other. Based
on this characteristic, we can further guide the learning of
similarity using the reconstructed consistent representation.
Specifically, we establish a connection between the similar-
ity matrix and the consistent representation through a graph
Laplacian regularization term. The objective function can be
defined as follows:

min
S,G

Tr
(
GLsG

⊤) , (5)

s.t. S⊤1 = 1,S ≥ 0,
where Ls denotes the Laplacian matrix corresponding to S,
defined as Ls = D − S+S⊤

2 . D is a diagonal matrix con-
structed from the rows and columns of S+S⊤

2 . Unlike the
local similarity built in the first module, this term directly
explores the global structure of the data through consistent
representation, thereby enhancing the quality of the similar-
ity matrix.

Overall Model of SCSL
To mitigate the impact of varying occurrence frequencies
among sample pairs on the construction of similarity, we as-
sign a normalized weight ω to each element of the similarity
construction. Specifically, ωij =

1
nij

, where nij denotes the
occurrences number of the corresponding sample pair. Fi-
nally, by incorporating two hyperparameters to regulate the
influence among the three modules, we derive the overall
objective function as follows:

min
S,W(p),G

v∑
p=1

v∑
u=1

∑
i∈ζp

∑
j∈ζu

ωij

∥∥∥W(p)⊤x
(p)
i −W(u)⊤x

(u)
j

∥∥∥2

2
s2ij

+β

v∑
p=1

∥∥∥X(p)H(p) −W(p)GH(p)
∥∥∥2

F
+ λTr

(
GLsG

⊤
)
,

(6)

s.t. S⊤1 = 1,S ≥ 0,W(p)⊤W(p) = I.

Optimization
To tackle the aforementioned optimization problem, a se-
quential variable updating scheme is employed, whereby
each variable is updated while maintaining the others as con-
stants. The specific details are outlined as follows:

(1) Update S While keeping the other two variables W(p)

and G constant, the optimization of S is attained by solving
the subsequent equation.

min
S

v∑
p=1

v∑
u=1

∑
i∈ζp

∑
j∈ζu

ωij

∥∥∥W(p)⊤x
(p)
i −W(u)⊤x

(u)
j

∥∥∥2
2
s2ij

+ λTr
(
GLsG

⊤) ,
(7)

s.t. S⊤1 = 1,S ≥ 0.
Utilizing sj to denote the j-th column of S, we note the

independence of Eq. (7) across distinct values of j, enabling
separate solutions for each j:

min
sj

sj
⊤Ajsj + λb⊤

j sj , (8)

s.t. sj
⊤1 = 1, sj ≥ 0,

where Aj is a diagonal matrix with diagonal elements

Aj
ii =

∑v
p=1

∑v
u=1 ωij

∥∥∥W(p)⊤x
(p)
i −W(u)⊤x

(u)
j

∥∥∥2
2
,

bji =
1
2 ∥gi − gj∥22.

Nie et al. offer a comprehensive delineation of the tech-
nique to solve equation Eq. (8) (Nie et al. 2016). The optimal
sj can be expressed as:

sji =

(
η − λbji

2Aj
ii

)
+

, (9)

where (·)+ = max(·, 0), and the parameter η is obtained as
the root of the equation gj (η) = 0, which can be readily
computed using Newton’s method.

gj (η) =
n∑

i=1

(
η − λbji

2Aj
ii

)
+

− 1. (10)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14020



(2) Update W(p) While keeping the other two variables
S and G constant, the optimization of W(p) is attained by
solving the subsequent equation.

min
W(p)

v∑
u=1

∑
i∈ζp

∑
j∈ζu

ωij

∥∥∥W(p)⊤x
(p)
i −W(u)⊤x

(u)
j

∥∥∥2
2
(s2ij

+ s2ji1u̸=p) + β
∥∥∥X(p)H(p) −W(p)GH(p)

∥∥∥2
F
,

(11)
s.t. W(p)⊤W(p) = I,

where 1u ̸=p denotes an indicator function that evaluates to 1
when variables u and p are not equal, and 0 otherwise. Re-
moving constant terms unrelated to W(p), Eq. (11) is sim-
plified to the following form,

min
W(p)

Tr
(
W(p)⊤C(p)W(p) +W(p)⊤D(p)

)
, (12)

s.t. W(p)⊤W(p) = I,
where C(p) = Q(p)Z

(
Q(p)

)⊤
, Z = diag

(
Y
∑v

u=1 a
(u)
)

−Y, Y = ω⊙
(
S⊙ S+ S⊤ ⊙ S⊤). a(u) = H(u)1, Q(p) =

X(p) ⊙ 1a(p)⊤. The symbol ⊙ denotes the Hadamard
product. And D(p) = −2

∑v
u=1 Q

(p)Y
(
Q(u)

)⊤
W(u) +

βQ(p)G⊤. For detailed derivation process regarding C(p)

and D(p), please refer to the appendix.
Eq.(12) can be efficiently solved using the Generalized

Power Iteration Method (GPI) (Nie, Zhang, and Li 2017).

(3) Update G While keeping the other two variables S
and W(p) constant, the optimization of G is attained by
solving the subsequent equation.

min
G

v∑
p=1

β
∥∥∥X(p)H(p) −W(p)GH(p)

∥∥∥2
F
+λTr

(
GLsG

⊤) .
(13)

Removing constant terms unrelated to G, Eq. (13) is sim-
plified to the following form,

min
G

Tr

(
G

(
λ

β
Ls + vI

)
G⊤ − 2

v∑
p=1

W(p)⊤Q(p)G⊤

)
.

(14)
Taking the derivative and making it equal to 0 yields:

G =
v∑

p=1

W(p)⊤Q(p)

(
λ

β
Ls + vI

)−1

. (15)

The entire procedure for solving Eq. (6) is outlined in Al-
gorithm 1.

Complexity Analysis
Benefiting from the utilization of efficient computational
techniques, the proposed SCSL exhibits a commendably
low computational complexity. For instance, in solving the
quadratic programming problem of Eq. (8), a closed-form
solution is derived. Furthermore, to address the orthogonal

Algorithm 1: SCSL

Require: Incomplete dataset {X(p)}vp=1, missing index
matrix {H(p)}vp=1, normalized weight ω, parameters
β, λ and the number of cluster k.

1: Initialize {W(p)}vp=1 and G.
2: repeat
3: Update S by solving Eq. (7);
4: Update {W(p)}vp=1 by solving Eq. (11);
5: Update G by solving Eq. (13);
6: until converged.

Ensure: Perform spectral clustering on S to obtain cluster
labels.

Dataset Size #Classes #Views #Features

MSRCV 210 7 6 256/512/1302
ORL 400 40 3 3304/4096/6750

ProteinFold 694 27 12 694/. . . /694
Wiki 2866 10 2 10/128
CCV 6773 20 3 20/20/20

SUNRGBD 10335 45 2 4096/4096

Table 2: Datasets used in our experiments.

constraint issue in Eq. (12), the algorithm employs the effi-
cient Generalized Power Iteration Method (GPI). Addition-
ally, instead of matrix inversion, a linear equation system is
solved to compute Eq. (15), thereby contributing to a reduc-
tion in computational load.

The SCSL algorithm primarily encompasses three opti-
mization steps, namely, updating S, updating W(p), and up-
dating G. The computational cost of updating S involves
O(knd + kv2n2) operations for calculating Eq. (9), where
d =

∑v
p=1 dp. During the update of W(p), matrix multipli-

cation demands O(n2d + (n + k)d2) operations, while in-
voking the GPI algorithm for solving Eq. (12) accounts for
O(kd2 + k2d) operations. When updating G, matrix multi-
plication requires O(knd) operations, and solving the linear
equation system necessitates O(kn2) operations.

In summary, the computational complexity of the pro-
posed SCSL algorithm is characterized by O(knd+kv2n2+
n2d+(n+ k)d2+ k2d) . Notably, within the context of this
algorithm, it holds that k ≪ n, v ≪ n, d ≪ n, rendering the
complexity quadratic for the number of samples.

Experiments
Experimental Settings
Datasets We evaluate the effectiveness of the proposed al-
gorithm using six widely used datasets: MSRCV, ORL, Pro-
teinFold, Wiki, CCV, and SUNRGBD. Detailed information
about these datasets can be found in Table 2. To create in-
complete versions of these datasets, we randomly remove
samples from each view. Following the approach outlined in
(Li et al. 2022), we ensure that each sample is present in at
least one view. To assess the algorithm’s performance under
varying degrees of incompleteness, we generate incomplete
datasets at intervals of 0.1, ranging from 0.1 to 0.9.
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Datasets MSRCV ORL ProteinFold Wiki CCV SUNRGBD
ACC

BSV 33.36±2.45 24.32±0.89 22.25±0.53 44.75±1.26 11.86±0.10 6.14±0.08
MIC 47.19±3.12 37.56±1.66 15.99±0.78 40.50±1.74 12.85±0.67 14.61±0.54

MKKM-IK 61.51±1.77 59.80±2.44 26.03±1.06 45.23±0.22 14.72±0.33 11.35±0.31
DAIMC 66.04±7.40 68.03±2.32 28.65±1.65 46.07±1.11 15.17±0.73 17.03±0.65
UEAF 55.47±4.67 60.25±2.50 28.72±1.53 47.75±0.05 17.08±0.32 15.35±0.41

MKKM-MKC 57.45±4.03 64.95±2.62 17.99±0.83 46.21±0.06 15.76±0.15 16.81±0.49
V3H 71.11±5.42 67.03±1.45 17.33±0.48 32.57±0.46 11.98±0.35 -

AGC-IMC 74.72±0.18 63.97±1.21 31.13±0.93 20.43±0.00 10.68±0.00 -
HCP-IMSC 63.38±0.19 68.40±1.29 18.92±0.88 30.64±0.05 11.31±0.08 10.70±0.00

Proposed 79.21±0.78 71.55±2.20 32.62±1.06 48.19±0.19 17.70±0.27 17.61±0.40
NMI

BSV 24.03±2.45 48.49±0.90 27.60±0.59 40.28±1.04 4.85±0.21 3.27±0.08
MIC 35.96±2.62 56.44±1.00 16.64±1.02 29.39±1.20 7.80±0.84 21.27±0.35

MKKM-IK 49.67±1.57 75.95±1.33 33.70±0.84 38.51±0.11 10.44±0.19 15.27±0.25
DAIMC 58.58±5.05 82.89±1.06 37.76±1.08 32.31±0.83 10.51±0.72 21.53±0.43
UEAF 46.31±2.81 76.16±1.25 38.18±0.88 43.68±0.03 14.28±0.19 21.72±0.22

MKKM-MKC 45.94±3.01 79.76±1.41 24.88±0.84 38.01±0.06 11.94±0.15 20.48±0.28
V3H 64.84±3.25 81.05±0.61 22.75±0.53 19.03±0.21 10.53±0.25 -

AGC-IMC 68.64±0.05 78.36±0.39 38.42±0.56 12.20±0.00 1.31±0.00 -
HCP-IMSC 62.23±0.19 66.10±1.53 21.79±0.91 31.37±0.14 11.31±0.11 19.88±0.40

Proposed 68.65±0.22 84.71±0.95 40.94±0.61 36.33±0.15 13.81±0.11 24.03±0.18
Purity

BSV 36.15±2.25 26.80±0.92 25.89±0.60 46.88±1.18 12.76±0.14 13.06±0.16
MIC 49.08±2.79 40.81±1.40 19.78±0.84 44.00±1.22 16.51±0.61 32.36±0.59

MKKM-IK 62.31±1.57 62.79±2.11 30.91±1.04 51.02±0.12 18.66±0.27 27.06±0.45
DAIMC 68.44±6.10 71.82±1.79 34.99±1.54 49.62±0.85 18.77±0.59 34.89±0.59
UEAF 57.37±3.99 63.90±1.90 35.47±1.16 51.13±0.04 19.60±0.38 33.37±0.48

MKKM-MKC 58.79±3.47 67.68±2.34 22.73±0.87 47.96±0.07 19.42±0.20 32.92±0.50
V3H 73.66±4.05 70.22±1.09 22.24±0.51 38.43±0.37 15.30±0.31 -

AGC-IMC 76.47±0.16 66.3±0.93 36.23±0.79 22.19±0.00 10.81±0.00 -
HCP-IMSC 64.73±0.19 70.88±1.17 16.82±0.72 30.48±0.05 11.00±0.09 7.32±0.38

Proposed 79.32±0.54 74.81±1.76 38.54±0.84 51.18±0.19 21.72±0.20 35.93±0.31

Table 3: ACC, NMI and Purity comparison of different IMVC algorithms on six partial datasets. ’-’ means out of CPU memory.

Metrics Method Datasets
MSRCV ORL ProteinFold Wiki CCV SUNRGBD

ACC w/ 79.21±0.78 71.55±2.20 32.62±1.06 48.19±0.19 17.70±0.27 17.61±0.40
w/o 66.43±56.21 70.38±83.62 29.18±37.54 38.92±29.35 14.65±9.77 15.89±20.42

Table 4: Experimental results of SCSL with and without the Laplacian regularization term. Due to space limitations, the results
of the other two metrics are provided in the appendix.

Compared Methods In addition to the proposed SCSL
algorithm, we compared it against eight state-of-the-art in-
complete multi-view clustering methods. These methods in-
clude BSV (Ng, Jordan, and Weiss 2002), MIC (Shao, He,
and Philip 2015), MKKM-IK (Liu et al. 2017), DAIMC (Hu
and Chen 2018), UEAF (Wen et al. 2019), MKKM-MKC
(Liu et al. 2020b), V3H (Fang et al. 2020), AGC-IMC (Wen
et al. 2021a), HCP-IMSC (Li et al. 2022).

For all the aforementioned algorithms, we configured
their parameters within their recommended ranges. In our
proposed method, we search β in [0.001, 1, 10] and λ in
[0.001, 0.1, 1].

Evaluation To ensure robustness, we repeated each ex-
periment 20 times and calculated the average performance
along with the standard deviation. To evaluate the clustering
performance, we utilized three commonly used metrics: ac-
curacy (ACC), normalized mutual information (NMI), and
Purity. All experiments were conducted on a desktop com-
puter equipped with an Intel Core i9-10900X CPU, 64GB of
RAM, and MATLAB 2020b (64-bit).

Experimental Results
Table 3 displays the clustering outcomes for the six bench-
mark datasets. Furthermore, Fig. 2 offers a comparison of
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Figure 2: ACC metrics for clustering results on benchmark datasets with different missing rates. Due to space limitations, results
for other metrics are provided in the appendix.

accuracy (ACC) across all methods at different missing
rates. From the results, we draw the following conclusions:

1. Our proposed SCSL algorithm generally outperforms ex-
isting IMVC methods on most datasets. Notably, the re-
cently introduced HCP-IMSC method displays superior
performance in incomplete datasets. In terms of ACC,
SCSL surpasses the second-best method on the MSRCV,
ORL, ProteinFold, Wiki, CCV, and SUNRGBD datasets
by margins of 6.01%, 4.61%, 4.79%, 0.92%, 3.63%, and
3.41%, respectively.

2. When compared to traditional similarity-based IMVC
methods in recent years (V3H, AGC-IMC, HCP-IMSC),
our approach generally achieves superior performance.
This demonstrates the superiority of our proposed SCSL
in constructing a comprehensive similarity by simultane-
ously utilizing the sample-level cross-view relationships.

3. As depicted in Fig. 2, most IMVC methods exhibit
greater performance fluctuations with increasing missing
rates, while SCSL maintains more stability. This trend
suggests that the utilization of cross-view similarity com-
pensates for the absent information from different views.

Ablation Study
To demonstrate the effectiveness of the Laplacian regu-
larization term, we conducted experiments by removing
this term in SCSL. As shown in Table 4, the addition of
the Laplacian regularization term significantly improves the
clustering performance of SCSL, validating its effectiveness
in enhancing the quality of the similarity matrix.

Sensitivity and Convergence Analysis
We examined the sensitivity of SCSL to the parameters β
and λ by investigating how our performance varies with
their different value. As depicted in Fig. 3(a), the proposed
method is not significantly affected by λ when β is large,
while it is less influenced by β when λ is small.

(a) Study for β and λ
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Figure 3: Sensitivity analysis of β and λ and convergence
analysis of our method on MSRCV datasets. Convergence
studies on other datasets are given in appendixs.

We performed a series of experiments to demonstrate the
convergence behavior of SCSL. Fig. 3(b) illustrates that the
objective value of our algorithm consistently decreases with
each iteration, which provides clear evidence of the conver-
gence of our proposed algorithm.

Conclusion
In this paper, we propose a novel incomplete multi-view
clustering method termed as Sample-level Cross-view Sim-
ilarity Learning (SCSL). Different from existing methods,
we construct a cross-view similarity from every sample-
pair among all views. Meanwhile, the consistency represen-
tation learning module contributes to improving the relia-
bility of the projection and enhancing the quality of sim-
ilarities through the inclusion of a graph Laplacian regu-
larization. The proposed SCSL has been extensively evalu-
ated on six benchmark datasets, showcasing its effectiveness
in addressing the incomplete multi-view clustering problem
when compared to state-of-the-art approaches.
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