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Abstract

Conventional Federated Domain Adaptation (FDA) ap-
proaches usually demand an abundance of assumptions,
which makes them significantly less feasible for real-world
situations and introduces security hazards. This paper relaxes
the assumptions from previous FDAs and studies a more prac-
tical scenario named Universal Federated Domain Adaptation
(UFDA). It only requires the black-box model and the label
set information of each source domain, while the label sets
of different source domains could be inconsistent, and the
target-domain label set is totally blind. Towards a more effec-
tive solution for our newly proposed UFDA scenario, we pro-
pose a corresponding methodology called Hot-Learning with
Contrastive Label Disambiguation (HCLD). It particularly
tackles UFDA’s domain shifts and category gaps problems by
using one-hot outputs from the black-box models of various
source domains. Moreover, to better distinguish the shared
and unknown classes, we further present a cluster-level strat-
egy named Mutual-Voting Decision (MVD) to extract robust
consensus knowledge across peer classes from both source
and target domains. Extensive experiments on three bench-
mark datasets demonstrate that our method achieves compa-
rable performance for our UFDA scenario with much fewer
assumptions, compared to previous methodologies with com-
prehensive additional assumptions.

Introduction
Federated Learning (FL) (McMahan et al. 2017; Mohassel
and Zhang 2017; Mohassel and Rindal 2018) allows models
to be optimized across decentralized devices while keeping
data localized, where no clients are required to share their
local confidential data with other clients or the centralized
server. Traditional FL often struggles to produce models that
can effectively generalize to new unlabeled domains from
clients due to the barrier presented by domain shifts (Yang
et al. 2019). To address this, Federated Domain Adaptation
(FDA) (Fantauzzo et al. 2022; Gilad-Bachrach et al. 2016)
are proposed and achieved tremendous success as it allows
knowledge transfer from decentralized source domains to
an unlabeled target domain using Domain Adaption (DA)
techniques. Nonetheless, current FDA scenarios often op-
erate under the presumption that model parameters or gra-

*Wei Xi is the Corresponding Author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Category Gaps 

Source Model M

Black-box

Source Model 

Black-box

Source Model 

Black-box

Target Data Target Data

Target Label Sets

B2FDA UFDA

Source 1

Target

Source Model 1

Black-box

Source M

...

Assumption 2 

Assumption 1 

Source Model M

Black-box

Source Model 1

Black-box

!

?

...

Assumption 1: Label sets in different source domains perfect match.
Assumption 2: Label sets in source and target domains perfect match.

Figure 1: Overview of Federated Domain Adaptation for
Black-Box Models (B2FDA) (left), and our proposed Uni-
versal Federated Domain Adaptation (UFDA) (right). Dif-
ferent than B2FDA, where the label set consistency among
different source domains (i.e., Assumption 1) and between
source and target domains (i.e., Assumption 2) are required,
our UFDA scenario allows the label set diversity of source
domains and the target domain.

dients are optimized based on the source domain. However,
acquiring such information in real-world situations is excep-
tionally challenging due to commercial confidentiality. Also,
exposing such information introduces potential risks such as
model misuse and white-box attacks.

To establish a relaxed condition, Federated Domain Adap-
tation with Black-Box Models (B2FDA) (Wu et al. 2021;
Liang et al. 2022; Liu et al. 2023) is introduced, where
the target-domain client can only access the application
programming interfaces (APIs) of various source domains.
However, most existing B2FDA approaches assume that the
label sets of different source domains must perfectly align
with each other and that of the target domains. This as-
sumption is particularly challenging to fulfill in real-world
scenarios. First, source data can originate from vastly di-
verse domains. For example, the biometric data of a sin-
gle client could stem from unrelated sources like the med-
ical domain (e.g., clinical records from different hospitals)
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or the financial domain (e.g., user records from different
Banks). Second, in real-world scenarios, acquiring informa-
tion about the label set of the target domain samples is often
a formidable task. Consequently, attempting to align the la-
bel sets of source and target domains becomes impractical.

To further minimize those in-practical assumptions from
B2FDA, we introduce a new scenario Universal Federated
Domain Adaptation (UFDA) towards a practical FDA set-
up with practical assumptions. As shown in Figure. 1, in
UFDA, the target domain solely requires a black-box model,
devoid of its specifics (e.g., gradients). Meanwhile, we only
need to know the source domains’ label sets, which are not
required to be identical as in B2FDA scenarios, and the
target domain’s label set will remain entirely unknown as
most real-world DA scenarios. On the other hand, different
from most existing B2FDA setups (Liang et al. 2022), our
UFDA presents two unique challenges: First, as the target
domain’s label set is completely unknown, the model opti-
mized based on each individual source domain could be par-
ticularly imprecise for those unique categories of the target
domain. Second, the completion uncertainty of the target do-
main’s label set also makes it impossible to distinguish the
shared and unknown classes among source and target do-
mains. However, it is important in FDA problems to guaran-
tee the consistency of label sets between source and target
domains.

To tackle the first challenge, we propose a methodol-
ogy called Hot-Learning with Contrastive Label Disam-
biguation (HCLD). It adopts one-hot outputs (without con-
fidence) produced by various source APIs, which gener-
ate more than one candidate pseudo-labels for each target
sample. Compared with previous FDA methods, which di-
rectly adopt one candidate (with confidence) from source
APIs by using the probability function (e.g., Softmax),
our method can mitigate the impact caused by the falsely
higher confidence in these non-existent categories. To obtain
more credible pseudo-labels, we propose a Gaussian Mix-
ture Model (GMM) based Contrastive Label Disambigua-
tion (GCLD) method, which sharpens the shared-class con-
fidence and smooths the unknown-class confidence. Specif-
ically, it leverages Contrastive Learning (CL) (Khosla et al.
2020) strategy to dynamically generate prototype-based
clustering, which will fit a GMM (Permuter, Francos, and
Jermyn 2006) based on its self-entropy distribution for sam-
ple divisions. Therefore, the easy-to-learn sample can be
treated as a shared-class sample while the hard-to-learn sam-
ple can be treated as an unknown-class sample. Furthermore,
to address the second challenge, we propose a cluster-level
Mutual-Voting Decision (MVD) strategy by leveraging the
consensus knowledge of shared classes among source and
target domains. We calculate a “mutual voting score” for
each class based on the overlapping samples recognized as
the same category from all APIs (i.e., source + target). Then,
we use this score to distinguish each class as “shared” or
“unknown” type.

Our contributions are summarized as follows:
• We introduce a new FDA scenario, UFDA, which not

only inherits relaxed assumptions as in B2FDA, but
also eliminates the consistency requirement of label sets

among source domains and keeps the target domain’s la-
bel sets completely unknown, towards a practical sce-
nario for real-world situations.

• We proposed a novel methodology, HCLD, to address
the imprecision issue for samples from non-existent cat-
egories. It adopts ensemble one-hot outputs from multi-
source APIs to produce multiple candidate pseudo-labels
and uses a GMM-based strategy GCLD to disambiguate
those candidates.

• We present a cluster-level strategy MVD to distinguish
shared and unknown classes by leveraging consensus
knowledge across peer classes from source and target do-
mains.

• We conduct extensive experiments on three DA bench-
marks. The results demonstrate that our method exhibits
performance on par with previous MDA approaches, yet
relies on significantly fewer assumptions. This substanti-
ates the practicality of our method.

Related Works
Multi-source Domain Adaptation (MDA)
MDA (Ben-David et al. 2010; Blitzer et al. 2007; Liu et al.
2022) has gained significant attention as a means to mitigate
performance degradation caused by domain shifts. Despite
the achievements of MDA, many existing approaches (Hoff-
man, Mohri, and Zhang 2018; Zhao et al. 2018; Chen et al.
2017, 2022b) are limited to the assumption of perfectly
matched label sets and have to access the raw multi-source,
which can be inefficient and may raise concerns regarding
data protection policies (Voigt and Von dem Bussche 2017).

To tackle category shift issues, the UniMDA scenario is
introduced (Xu et al. 2018; Kundu et al. 2020; Shui et al.
2021, 2022; Saito and Saenko 2021; Shan, Ma, and Wen
2023; Chen et al. 2022a), where the label set among multi-
sources differ, and no prior knowledge about the target label
sets is accessible. In UniMDA, the concept of category shift
was first introduced in DCTN (Xu et al. 2018), which ac-
knowledged that the number of categories in each source do-
main may differ from the target domain. DCTN learns trans-
ferable and discriminative representations via an alternating
adaptation algorithm and a distribution-weighted combin-
ing rule. To address data privacy issues, source-free domain
adaptation (SFDA) (Liang, Hu, and Feng 2020; Ahmed et al.
2021; Dong et al. 2021; Tian et al. 2022; Zhao et al. 2022)
and federated domain adaptation (FDA) (Li et al. 2020; Peng
et al. 2019; Feng et al. 2021; Wu and Gong 2021) have
attracted increasing attention. Instead of accessing the raw
data directly, SFDA utilizing the well-trained model rather
than the raw labeled data has emerged as a possible solu-
tion to this problem. Another setting that deals with unavail-
able source data is the FDA, where the goal is to develop
a global model from decentralized datasets by aggregating
the parameters of each local client (Csurka et al. 2022). In-
spired by FL, (Peng et al. 2019) first raised the concept of
the FDA. This work provides a solution named Federated
Adversarial Domain Adaptation, which aims to address the
FDA problem in a federated learning system using adversar-
ial techniques.
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Figure 2: Our Hot-Learning with Contrastive Label Disambiguation (HCLD) methodology contains two key components:
Pseudo-Hot-Label (PHL) Generation and Gaussian Mixture Model-based Contrastive Label Disambiguation (GCLD). DT ,
ME, ‘//’, GMM, and MLP respectively represent the unlabeled target dataset, Momentum Embeddings maintained by a queue
structure, the stop-gradient operation, Gaussian Mixture Model, and the Multi-Layered Perceptron module.

However, these approaches do not address both of these
limitations simultaneously. Recently, a few works (Kundu
et al. 2020; Saito et al. 2020; Qu et al. 2023) explore SFDA
under category shift. Despite their effectiveness, they require
dedicated multi-source model specifics, which can be re-
stricted due to their commercial value and associated risks,
such as model misuse and white-box attacks. In this work,
we deal with a practical scenario of UFDA, which requires
neither the shared data and model specifics, consistency of
label sets among source domains, and information on the
target domain label set.

Contrastive Learning (CL)
Due to the success of CL (Wu et al. 2018; Chen et al. 2020,
2021, 2022c; Guo et al. 2023), numerous efforts have been
made to improve the robustness of classification tasks by
harnessing the advantages of CL. For instance, (Zheltonozh-
skii et al. 2022) employed CL as a pre-training technique
for their classification model. Another approach, RRL (Li,
Xiong, and Hoi 2021) introduced label cleaning utilizing
two thresholds on soft labels, which are calculated from the
predictions of previous epochs and their nearest neighbors.
Similarly, Sel-CL (Li et al. 2022) leveraged nearest neigh-
bors to select confident pairs for supervised CL (Khosla et al.
2020). Despite their demonstrated effectiveness, these meth-
ods are not explicitly designed to tackle the category shift
between the noise-label sets and the ground-truth label set.

Methodology
Preliminaries
We are given M source datasets from different clients
{Dm

S }Mm=1 and an unlabeled target client DT , where each
source client contains Nm labeled source samples Dm

S :=

{(xm
i , ymi )}Nm

i=1 and the target client comprising NT unla-
beled samples {xi}NT

i=1, s.t., xi ∈ XT . In most real-world
scenarios, each client’s data and model specifics are stored
exclusively on local systems, ensuring that they are not
shared with other clients or a centralized server. Therefore,
the label sets between the aforementioned multi-source and
target clients may exhibit significant variations.

While, most existing FDA studies intuitively assume that
multi-source and target clients share the same label sets,
which is not practical. Inspired by the research of UniMDA,
we define Csm as the label sets for the m-th source node
and Ct as the label set for the target node. The label sets Cm
represents the common labels between Csm and Ct. Further-
more, Csm = Csm\Cm represent the label sets exclusive to
Dm

S . Similarly, Ct = Ct\{∪mCm} indicates the classes in
the target domain DT that are unknown in the multi-source
domains, as they should never appear in any source label
sets. The label sets C represent the union of shared classes,
i.e., C = ∪mCm. It is important to note that the target data
are fully unlabeled and the target label set (which is inac-
cessible during training) is only used to define the UFDA
problem.

HCLD
Our proposed HCLD aims to establish an effective mapping
that can accurately classify target samples if they correspond
to the shared class C, or confuse the samples with an ”un-
known” class. As shown in Figure. 2, HCLD consists of two
key components: 1) Pseudo-Hot-Label (PHL) Generation;
2) Gaussian Mixture Model-based Contrastive Label Dis-
ambiguation (GCLD). Firstly, to mitigate the impact caused
by multi-source APIs’ falsely higher confidence for the non-
existent categories, we calculate the pseudo-labels for each
target sample with the proposed PHL Generation strategy.
Then, we adopt the GCLD manner to obtain more credible
pseudo-labels, which sharpens the shared-class confidence
and smooths the unknown-class confidence.

PHL Generation In UFDA, only the label sets {Csm}Mm=1
in each source domain and the softmax output Y T

m in each
source APIs for target samples are acceptable for the target
party: Y T

m = fm
S (XT ). Considering the domain shift be-

tween multiple source and target domains, the key challenge
lies in obtaining more reliable pseudo-labels for each tar-
get sample. Empirically, individual source APIs often dis-
play increased confidence levels for both shared- and non-
existent categories. Such a trend adversely affects the accu-
racy of pseudo-labels that are produced using these confi-
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dence scores.
To address the aforementioned limitation, we suggest the

use of an ensemble of multiple one-hot outputs to create
the pseudo-labels, referred to as PHL Cpse (i.e., Figure. 2),
which generates multiple candidate pseudo-labels for each
target sample, providing a broader and potentially more ac-
curate range of labeling options. Given the lack of pre-
existing knowledge about the target label sets, we determine
the Pseudo-Label Sets (PLS) for the target domain by the
following method: ĈT = ∪mCsm . This strategy ensures that
the accurate labels identified by each APIs are encompassed
within these candidate pseudo-labels.

GCLD The candidate pseudo-labels in the above PHL
Cpse inevitably contain unknown categories due to the gap
between multi-source and target domains. We adopt GCLD,
which iteratively sharpens the possible shared-class confi-
dence, smooths the possible unknown-class confidence, and
obtains more credible pseudo-labels.

The critical challenge is distinguishing between shared-
and unknown-class samples. Inspired by (Permuter, Fran-
cos, and Jermyn 2006), GMM can better distinguish clean
and noisy samples due to its flexibility in the sharpness of
distribution. Treating easy-to-learn samples as shared class
instances and challenging samples as unknown-class in-
stances, we facilitate the acquisition of discriminative image
representations through CL and construct a GMM over the
representations for sample divisions. Typically, the dimen-
sion of contrastive prototypes is limited by the pseudo-label
sets, making it difficult for GMM to handle this scenario
effectively. Therefore, we utilize a comprehensive Memory
Bank denoted Ue =

{
ue
1, . . . , u

e
NT

}
that maintains the run-

ning average of the features of all target samples. Here, Ue

represents the Memory Bank in epoch e. We initialize Ue

with random unit vectors and update its values by mixing Ue

and Ue−1 during training (details in the next subsection).

Ue ← δUe + (1− δ)Ue−1 (1)

where δ is a mixing parameter. The self-entropy of Ue for
each sample can be defined as:

lce(i) = −
∑

ue
i log (u

e
i ) , i ∈ {1, . . . , NT } (2)

1) GMM-based Sample Divisions. To distinguish be-
tween shared- and unknown-class samples, we fit a two-
component GMM to the self-entropy distribution lce us-
ing the Expectation Maximization algorithm. Each sample
is assigned a shared probability wi, which is the posterior
probability p (θ | ℓce), where θ corresponds to the Gaussian
component with a smaller mean (indicating a smaller self-
entropy). Based on the shared probability, we divide all tar-
get samples into two sets: W1 (the sample may with shared
class) and W0 = DT \W1 (the sample may with unknown
class) by setting a threshold σ.

2) Pseudo Target Updating. In terms of the above distin-
guished shared class W1 and unknown class samples W0,
we sharpen the shared-class confidence and smooth the
unknown-class confidence to update the pseudo-labels Cpse

as follows,

Ce
pse ← ϕ(ϕCe

pse + (1− ϕ)Ce−1
pse ) + (1− ϕ)ze (3)

ze =

{
Onehot(ue

i ) xi ∈ W1

1/nC otherwise.
(4)

where ϕ is a tunable hyperparameter. Ultimately, the pseudo-
labels with shared classes will be clustered around each clus-
ter center, while confusing the pseudo-labels with unknown
labels.

3) Prototype Updating. Since the contrastive loss in-
duces a clustering effect in the embedding space, we main-
tain a prototype embedding vector µc corresponding to each
class in ĈT , which serves as a set of representative em-
bedding vectors. This approach adopts updating µc with a
moving-average style:

µc =Normalize (γµc + (1− γ)q) ,

if c = argmax
j∈ĈT

f j
(
Augq(x)

) (5)

where the momentum parameter γ was set as 0.99. Then, we
iteratively update the above-mentioned Memory Bank Ue

with the moving-updating mechanism Ue ← q ∗µT
c (details

of q in the next subsection).

Training Objective Given the target samples with PHL
{xi, cipse}

NT
i=1, we generate a query view Augq(x) and a

key view Augk(x) with the randomized data augmentation
Aug(x). Then, HCLD employs the query network g(.) and
the key network g′(.) to encode the query q = g(Augq(x))
and keys k = g′(Augk(x)). Similar to MoCo (He et al.
2020), the key network employs a momentum update us-
ing the query network. Additionally, we maintain a queue
that stores the most recent key embeddings k and chrono-
logically update the queue. This enables us to establish a
contrastive embedding pool A = Bq ∪ Bk ∪ queue, where
Bq and Bk represent vectorial embeddings corresponding to
the query and key views, respectively. For each sample, the
contrastive loss can be calculated by contrasting its query
embedding with the remaining embeddings in pool A.

Lcont (g;x, τ, A) = − 1

|P (x)|∑
k+∈P (x)

log
exp

(
q⊤k+/τ

)∑
k′∈A(x) exp

(
q⊤k′/τ

) , (6)

where A(x) = A\{q} and τ ≥ 0 is the temperature pa-
rameter. Inspired by (Shen and Sanghavi 2019), DNNs first
memorize the training data of easy-learning samples, then
gradually adapt to noisy labels. We construct the positive set
P (x) with the predicted label from the Classifier (See Fig-
ure. 2). About the query view, we train the classifier f using
cross-entropy loss,

Lcls

(
f ;xi, c

i
pse

)
=

nC∑
n=1

−sin log (fn (xi)) , xi ∈ XT (7)

where nC indicates the number of categories in ĈT , n de-
notes the indices of labels, sin denotes the n-th vector of cipse,
and fn denotes the n-th output of f . Putting it all together,
the overall loss function can be defined as L = Lcls+βLcont,
where β is set as 0.01 to balance each loss component.
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Office-Home Office-31 VisDA+ImageCLEF-DA
Methods Ar Cl Pr Re Avg. A D W Avg. C I P Avg.
DANN 68.97 53.37 79.70 82.09 71.03 83.43 81.36 84.22 83.00 76.25 64.75 59.75 66.92
RTN 68.72 59.97 77.04 86.00 72.93 86.70 88.64 83.22 86.19 81.50 67.75 62.75 70.67
OSBP 44.17 45.98 63.37 68.56 55.52 57.76 81.54 78.48 72.59 49.75 44.50 44.25 46.17
UAN 69.27 60.32 79.78 82.82 73.05 85.35 94.54 92.03 90.65 75.00 67.75 61.00 67.92
DCTN 64.77 42.09 65.25 70.11 60.56 88.84 89.18 83.73 87.25 66.25 55.75 50.50 57.50
MDAN 67.56 55.36 79.20 86.02 72.04 85.82 92.82 88.43 89.02 68.50 65.25 60.50 64.75
MDDA 44.66 34.54 54.93 53.24 46.84 84.91 89.16 89.60 87.89 60.25 44.50 36.50 47.08
UMAN 79.00 64.68 81.12 87.08 77.97 90.22 94.50 94.53 93.08 88.00 83.25 70.50 80.58

Data, Model Specifics: Available↑, Data, Model Specifics: Decentralized ↓
HCLD2⋆ 80.31 62.27 82.33 88.85 78.42 80.00 96.55 96.52 91.02 77.25 67.54 60.05 68.28
HCLD2 77.38 61.09 81.74 88.49 77.18 75.66 97.22 94.95 89.28 84.25 73.50 68.50 75.41

Table 1: Comparison with the State-Of-The-Art DA methods on three DA benchmarks (Backbone: Resnet-50) measured by
Accuracy (%). The best numbers are highlighted in bold. The second numbers are highlighted with an underline. Different
from HCLD2, HCLD2⋆ implements HCLD2 with the Pseudo-Soft-Label.
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Figure 3: Overview of Mutual-Voting Decision (MVD).

MVD

Through the above HCLD strategy, we could optimize a
model that is well-performing in shared classes and ambigu-
ous in unknown classes. However, better adaptation perfor-
mance depends on accurate inference for shared and un-
known classes, which becomes challenging without multi-
source data or parameters. Inspired by the consensus knowl-
edge of shared classes among different domains, we con-
sider utilizing cluster-level consensus from multi-source and
target APIs to distinguish between shared and unknown
classes. As the source and target APIs rarely misunderstand
the non-existent category as the same shared class, we in-
troduce an MVD strategy, which leverages the knowledge
voting among the source and target views. Specifically, it
calculates the voting scores in each class (the proportion of
overlapping samples recognized as the same category in the
dataset by all APIs, compared to the minimum number of all
samples recognized as that category among these APIs) and
calculates the mutual voting scores among the source and
target views, which can be used to determine if it reaches a
consensus. The overview of MVD is shown in Figure. 3. For
the source view, given a pair of matched class clusters Bm,i

S

(obtain Bm,i
S across the outputs of the m-th source model)

and Bm,i
T , we measure the cluster-level consensus via calcu-

lating the voting score
{
d1s, . . . , d

nC
s

}
,

di,ms =
(Bm,i

S ∩Bm,i
T )

argminj∈{1,...,M}(B
j,i
S , Bj,i

T )
, i ∈ CSm

(8)

dis = arg max
j∈{1,...,M}

di,js (9)

Similarly, we calculate the voting score
{
d1t , . . . , d

nC
t

}
in the

target view. Then, the mutual-voting score of two views for
each union source class can be calculated as:

Sc =
dct + dcs

2
, c ∈ ĈT (10)

For each Sc, we can predict the class c with a validated
threshold λ. This either assigns class c to one of the union
source classes (Sc<λ) or rejects it as an ”unknown” class.

Experiments
Experimental Setup
Datasets. Office-Home (Venkateswara et al. 2017) is a
DA benchmark that consists of four domains: Art (Ar),
Clipart (Cl), Product (Pr), and Real World (Re). Office-
31 (Saenko et al. 2010) is another popular benchmark that
consists of three domains: Amazon (A), Webcam (W), and
Dslr (D). VisDA2017+ImageCLEF-DA is a combination
of two datasets. VisDA2017 (Peng et al. 2018) is a DA
dataset where the source domain contains simulated im-
ages (S) and the target domain contains real-world images
(R). ImageCLEF-DA, on the other hand, is organized by se-
lecting the common categories shared by three large-scale
datasets: ImageCLEF (C), ImageNet (I), and Pascal VOC
(P). Classes in the combined dataset are numbered as fol-
lows: Classes No. 1–7 represent the shared classes among
the five datasets in alphabetical order. Classes No. 8–12 are
the remaining classes from S and R domains. Classes No.
13–17 are the remaining classes from the C, I, and P do-
mains. In UFDA, each domain contains two types of la-
bels: shared and unknown. We use a matrix to describe the
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specific UniMDA setting, called UMDA-Matrix (Yin et al.

2022), which is defined as
[
|C1| ... |CM | |C|
|CS1 | ... |CSM

| |Ct|

]
. The

first row is the size of the shared class of all the domains,
and the second row denotes the unknown class. The first m
columns are the label set of the multi-source domains, and
the last one denotes the target domain. In this way, UniMDA
settings can be determined by the division rule. To ensure a
fair comparison with previous UniMDA works, we maintain
the same UMDA-Matrix settings with UMAN.

Baseline Methods. The proposed HCLD2 (HCLD &
MVD) is compared with a range of State-Of-The-Art
(SOTA) DA approaches. i.e., including DANN (Ganin et al.
2016), RTN (Long et al. 2016), OSBP (Saito et al. 2018),
MDAN (Zhao et al. 2018), MDDA (Zhao et al. 2020),
UAN (You et al. 2019), DCTN (Xu et al. 2018), and
UMAN (Yin et al. 2022). To ensure a fair comparison, we
still the same evaluation metrics as those in the previous
study (Yin et al. 2022), which represents the mean per-class
accuracy over both the shared classes and the unknown class.

Since the UFDA setting is fairly new in this field, we
also compare the other setting HCLD2⋆ based on the pro-
posed HCLD2. Different from HCLD2, HCLD2⋆ imple-
ments HCLD2 with the Pseudo-Soft-Label (PSL) which is
generated by averaging the output of source models, we
weigh each class by the number of source models containing
this class.

Implementation Details. In UFDA, the architecture in
each node can be either identical or radically different. How-
ever, to ensure a fair comparison with previous UniMDA
works, we maintain a common model architecture. Specif-
ically, we utilize ResNet-50 as the backbone for all tasks.
The projection head of the contrastive network is a 2-
layer MLPs that outputs 128-dimensional embeddings. For
model optimization, we employ stochastic gradient descent
(SGD) training with a momentum of 0.9. The learning
rate is decayed using the cosine schedule, starting from
a high value (e.g., 0.005 for Office-31, Office-Home, and
VisDA2017+ImageCLEF-DA) and decaying to zero. To fol-
low the standard UniMDA training protocol, we use the
same source and target samples, network architecture, learn-
ing rate, and batch size as in the UMAN (Yin et al. 2022). In
decentralized training, the number of communication rounds
r plays a crucial role. To ensure a fair comparison with tradi-
tional UniMDA works, we adopt r = 1 for all tasks. Further-
more, we implement all methods using PyTorch and conduct
all experiments on an NVIDIA GeForce GTX 4*2080Ti, uti-
lizing the default parameters for each method.

Experimental Results
Here we present the comparison between our method and
the above baseline methods. Some results are directly cho-
sen from (Feng et al. 2021). From the results in Table 1,
despite the raw data and model specifics are not avail-
able, HCLD2 still can perform comparably across almost
all tasks compared with the traditional UniMDA setting.
It also shows that, although HCLD2⋆’s performance on

Methods VisDA+ImageCLEF-DA
PSL PHL GCLD MVD C I P Avg.

! 56.5 52.1 53.2 53.9
! ! 60.3 59.5 55.0 58.3
! ! 69.8 62.4 54.8 62.3
! ! ! 77.3 67.5 60.1 68.3

! 44.3 43.0 37.6 41.6
! ! 53.5 47.3 44.3 48.4
! ! 74.5 70.0 55.2 66.6
! ! ! 84.3 73.5 68.5 75.4

Table 2: Ablation Study. PSL: Pseudo-Soft-Label. PHL:
Pseudo-Hot-Label. GCLD: Gaussian Mixture Model-based
Contrastive Label Disambiguation. MVD: Mutual-Voting
Decision.

VisDA+ImageCLEF-DA is not ideal, it achieves SOTA re-
sults across several tasks on Office-Home and Office-31.
The results highlight the efficacy of our proposed HCLD2

again and demonstrate the instability of directly using the
soft outputs for the pseudo-label generation.

Ablation Study
Overall Component Effectiveness. We study the effec-
tiveness of three key components (PHL Generation, GCLD,
and MVD) in HCLD2, with results shown in Table 2. Results
show that both GCLD and MVD significantly improved ac-
curacy compared to the approach that removes MVD and
GCLD only trains a classifier with the pseudo-labels (PHL
or PSL). By combining these two components we can obtain
the best performance. Suffer from the one-hot setting, the
method exclusively trains a classifier employing the PHL,
resulting in consistently lower accuracy compared to the
PSL. However, intriguingly, the integration of GCLD yields
a remarkable outcome where the PHL-based approach sig-
nificantly outperforms the PSL-based approach by a sub-
stantial margin.

Effectiveness of the PHL Generation. To further analyze
the impact of different pseudo-label generated methods, we
report the performance of HCLD2⋆ and HCLD2 with vary-
ing settings of category in Table 3. We can see that HCLD2⋆
works better than HCLD2 when the intersection of the multi-
source label sets is non-empty. However, when the intersec-
tion is empty, the performance of HCLD2⋆ will suddenly
decline along with the accuracy of PSL. On the other hand,
HCLD2 performs well with all category settings and shows
a more stable performance compared with HCLD2⋆, which
is sensitive to different category settings.

Effectiveness of GCLD. In Figure. 4a, we report the per-
formance of PSL with and without GCLD, and PHL with
GCLD. As illustrated, PSL with GCLD outperforms the
approach without GCLD by a large margin. In the initial
epochs, PHL with GCLD may suffer from the one-hot set-
ting. As the number of training epochs increases, PHL with
GCLD will surpass the performance of PSL with GCLD.
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UMDA-Matrix M Ar Cl Pr Re Avg.[
3 3 2 8
2 2 1 52

]
P 36.4 47.3 55.7 66.8 51.5
S 48.8 50.6 65.9 76.3 60.4
H 68.9 51.9 72.6 80.5 68.5[

4 3 3 10
2 2 2 49

]
P 47.9 43.5 57.7 65.5 53.6
S 59.9 51.0 68.2 76.2 63.9
H 67.6 52.6 69.9 78.2 67.1

The intersection of MS: Empty ↑, Non-empty ↓[
4 4 4 10
2 2 2 50

]
P 68.3 52.7 72.4 75.4 67.2
S 80.3 62.3 82.3 88.9 78.4
H 77.4 61.1 81.7 88.5 77.2[

6 6 6 10
2 2 2 50

]
P 75.0 55.9 73.9 82.8 71.9
S 83.7 64.9 83.9 90.3 80.7
H 81.4 62.1 80.9 89.2 78.4

Table 3: Comparison with different category settings on
Office-Home measured by Accuracy (%). MS: Multi-Source
label sets. M: Methods. P: Pseudo-Soft-Label. S: Implemen-
tation of HCLD2 with P. H: Our proposed HCLD2.

0 10 20 30 40 50
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Figure 4: (a) indicates the Accuracy of Pseudo-labels on
task C in VisDA+ImageCLEF-DA. (b) plots the sensitivity
to parameter λ on task Dslr in Office-31. PSL: Pseudo-Soft-
Label. PHL: Pseudo-Hot-Label. GCLD: Gaussian Mixture
Model-based Contrastive Label Disambiguation. The verti-
cal axes ((a) and (b)) all represent Accuracy (%).

Effectiveness of MVD. In Table 4, we show results for
the single-view and mutual-voting decision strategies. As
a baseline, we implement HCLD2 without incorporating
any shared-class decision strategy. We establish the shared
classes through voting outcomes within the source or target
node for the single view. As we can see, MVD yields the
most favorable results compared to any other single-view
approach, although every single strategy exhibits improved
performance over the baseline. Moreover, we study the pa-
rameter λ on task Dslr. As shown in Figure. 4b, within a
wide range of λ (0.3-0.5), the performance only varies to a
small degree, showing that our method is robust to different
choices of λ.

Why not Source-Free DA. Although FDA and SFDA are
similar to some extent (e.g., only the pre-trained source
model is accessible to the target domain), they are essen-
tially different. FDA has an important assumption, i.e., the

Methodologies A D W Avg.
w/o MVD 69.48 90.26 89.77 83.17
MVD (w/o target view) 71.53 94.52 92.43 86.16
MVD (w/o source view) 75.18 96.55 93.59 88.44
MVD 75.66 97.22 94.95 89.28

Table 4: Comparison with different shared-class decision
strategy on Office-31 measured by Accuracy (%).

FDA (r)
SFDA 0.2 0.5 1 5 10

A 69.59 72.76 75.09 75.66 77.39 77.72
D 86.92 92.3 95.04 97.22 97.27 97.11
W 90.59 92.49 94.34 94.95 95.54 96.93

Avg. 83.03 85.85 88.15 89.28 90.07 90.59

Table 5: Accuracies (%) on Office-31 for SFDA and FDA
with various communication rounds r (per epoch).

decentralized source clients keep communicating the up-
dated source black-box models during the training process,
whereas this does not hold in SFDA at all. Both our proposed
scenario UFDA and our method HCLD2 heavily rely on this
assumption and aim to make the black-model communica-
tion in a more practical condition. Indeed, the difference
between the SFDA and FDA settings of our method could
be reflected in Table 5. As seen, without black-box model
communication in SFDA, the performance of our model sig-
nificantly drops. Moreover, the FDA performance increases
with the communication round r.

Conclusion
This work investigated a more practical scenario, UFDA,
where we relax the comprehensive assumptions such as con-
figuration specifics nor the prior label set overlap across
multi-source and target domains as in most FDA scenar-
ios. We propose a new optimization methodology HCLD2

to address UFDA and cluster-level strategy called MVD to
distinguish shared and unknown classes during inference.
Through extensive evaluations of three benchmark datasets,
we demonstrate that HCLD2 is capable of achieving compa-
rable performance as conventional MDA baselines even with
much less source knowledge. In the future, we may explore
methods to further minimize additional assumptions (e.g.,
Source label sets) in our UDFA, aiming for a more relaxed
FDA scenario.
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B. 2021. Aggregating from multiple target-shifted sources.
In International Conference on Machine Learning, 9638–
9648. PMLR.

Tian, J.; Zhang, J.; Li, W.; and Xu, D. 2022. VDM-DA: Vir-
tual Domain Modeling for Source Data-Free Domain Adap-
tation. IEEE Transactions on Circuits and Systems for Video
Technology, 32(6): 3749–3760.
Venkateswara, H.; Eusebio, J.; Chakraborty, S.; and Pan-
chanathan, S. 2017. Deep hashing network for unsupervised
domain adaptation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 5018–5027.
Voigt, P.; and Von dem Bussche, A. 2017. The eu general
data protection regulation (gdpr). A Practical Guide, 1st Ed.,
Cham: Springer International Publishing, 10(3152676):
10–5555.
Wu, G.; and Gong, S. 2021. Collaborative optimization
and aggregation for decentralized domain generalization and
adaptation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 6484–6493.
Wu, K.; Shi, Y.; Han, Y.; Shao, Y.; and Li, B. 2021. Black-
box Probe for Unsupervised Domain Adaptation without
Model Transferring. arXiv preprint arXiv:2107.10174.
Wu, Z.; Xiong, Y.; Yu, S. X.; and Lin, D. 2018. Unsuper-
vised feature learning via non-parametric instance discrimi-
nation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 3733–3742.
Xu, R.; Chen, Z.; Zuo, W.; Yan, J.; and Lin, L. 2018. Deep
cocktail network: Multi-source unsupervised domain adap-
tation with category shift. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 3964–
3973.
Yang, Q.; Liu, Y.; Chen, T.; and Tong, Y. 2019. Federated
machine learning: Concept and applications. ACM Transac-
tions on Intelligent Systems and Technology (TIST), 10(2):
1–19.
Yin, Y.; Yang, Z.; Hu, H.; and Wu, X. 2022. Universal multi-
Source domain adaptation for image classification. Pattern
Recognition, 121: 108238.
You, K.; Long, M.; Cao, Z.; Wang, J.; and Jordan, M. I.
2019. Universal domain adaptation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, 2720–2729.
Zhao, H.; Zhang, S.; Wu, G.; Moura, J. M.; Costeira, J. P.;
and Gordon, G. J. 2018. Adversarial multiple source domain
adaptation. Advances in neural information processing sys-
tems, 31.
Zhao, S.; Wang, G.; Zhang, S.; Gu, Y.; Li, Y.; Song, Z.; Xu,
P.; Hu, R.; Chai, H.; and Keutzer, K. 2020. Multi-source dis-
tilling domain adaptation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, 12975–12983.
Zhao, Y.; Zhong, Z.; Luo, Z.; Lee, G. H.; and Sebe, N. 2022.
Source-free open compound domain adaptation in semantic
segmentation. IEEE Transactions on Circuits and Systems
for Video Technology, 32(10): 7019–7032.
Zheltonozhskii, E.; Baskin, C.; Mendelson, A.; Bronstein,
A. M.; and Litany, O. 2022. Contrast to divide: Self-
supervised pre-training for learning with noisy labels. In
Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, 1657–1667.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14034


