
NodeMixup: Tackling Under-Reaching for Graph Neural Networks

Weigang Lu, Ziyu Guan, Wei Zhao*, Yaming Yang, Long Jin
School of Computer Science and Technology, Xidian University, China
{wglu@stu., zyguan@, ywzhao@mail., yym@, jin@stu.}xidian.edu.cn

Abstract

Graph Neural Networks (GNNs) have become mainstream
methods for solving the semi-supervised node classification
problem. However, due to the uneven location distribution
of labeled nodes in the graph, labeled nodes are only acces-
sible to a small portion of unlabeled nodes, leading to the
under-reaching issue. In this study, we firstly reveal under-
reaching by conducting an empirical investigation on vari-
ous well-known graphs. Then, we demonstrate that under-
reaching results in unsatisfactory distribution alignment be-
tween labeled and unlabeled nodes through systematic ex-
perimental analysis, significantly degrading GNNs’ perfor-
mance. To tackle under-reaching for GNNs, we propose an
architecture-agnostic method dubbed NodeMixup. The fun-
damental idea is to (1) increase the reachability of labeled
nodes by labeled-unlabeled pairs mixup, (2) leverage graph
structures via fusing the neighbor connections of intra-class
node pairs to improve performance gains of mixup, and (3)
use neighbor label distribution similarity incorporating node
degrees to determine sampling weights for node mixup. Exten-
sive experiments demonstrate the efficacy of NodeMixup in
assisting GNNs in handling under-reaching. The source code
is available at https://github.com/WeigangLu/NodeMixup.

Introduction
Graph Neural Networks (GNNs) (Kipf and Welling 2017;
Velickovic et al. 2018; Wu et al. 2019; Chen et al. 2020;
Klicpera, Bojchevski, and Günnemann 2019; Hamilton, Ying,
and Leskovec 2017), which are designed based on the
message-passing protocol (Gilmer et al. 2017), have become
the mainstream models for dealing with the semi-supervised
node classification problem. A recent work (Zheng et al.
2022) reveals the success of GNNs is that the propagation
on graphs narrows the distribution gap between labeled and
unlabeled data (distribution alignment), thereby benefiting
GNNs to make reasonable inferences over unlabeled data. At
the training stage, the model is optimized by minimizing the
supervised loss function which is defined on labeled nodes.
Then, at the inference stage, the well-trained model makes
predictions on unlabeled nodes. In other words, a K-layer
GNN helps labeled nodes to receive information from k-hop

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

4

5

6

7

Av
g.

 S
P

Dataset=Cora Dataset=Pubmed

20 40 60
Degree

4

5

6

7

Av
g.

 S
P

Dataset=Coauthor CS

20 40 60
Degree

Dataset=Coauthor Physics

Figure 1: Visual illustrations of under-reaching. Avg. SP is
the mean value of the average shortest path length from each
unlabeled node to all the labeled ones, where the mean is
taken over unlabeled nodes with the same degree. Lower-
degree nodes are farther away from labeled nodes while
higher-degree nodes tend to be closer to labeled nodes.

neighbors (1 ≤ k ≤ K) and learns from these labeled nodes
to capture a better picture of unlabeled data.

However, by revisiting several commonly-used graphs, we
find that nodes with lower (higher) degrees usually stay far-
ther away from (nearer to) labeled nodes, as illustrated in Fig-
ure 1. With the restriction of model depth, those lower-degree
nodes could hardly transmit information to far-off labeled
nodes. Thus, massive unlabeled nodes are hardly known by
labeled nodes in popular 2-layer GNN architectures. It leads
to incomplete knowledge about unlabeled nodes, hindering
distribution alignment. As a result, the trained GNN can
only recognize the nodes located near labeled nodes, whereas
other unseen-during-training nodes are difficult to be classi-
fied. However, in practical scenarios, labeled nodes tend to
distribute sparsely in the graph. This phenomenon, namely
under-reaching (Sun et al. 2022; Di Giovanni et al. 2023;
Brüel-Gabrielsson, Yurochkin, and Solomon 2022; Barceló
et al. 2020), will be discussed in detail.

There have been several methods attempting to alleviate
under-reaching. Intuitively, stacking more GNN layers to al-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14175

low all nodes to propagate more distant information seems
to be a direct solution. Nevertheless, it still raises two ad-
ditional problems, i.e., over-smoothing (Li, Han, and Wu
2018) that induces indistinguishable node representations and
over-squashing (Alon and Yahav 2020) that causes distant
information loss. To increase reachability through modify-
ing the graph structure, (Sun et al. 2022; Brüel-Gabrielsson,
Yurochkin, and Solomon 2022) leverage k-hop positional
encodings to add edges between nodes. Unfortunately, they
require substantial computational costs in calculating the
shortest path between each node pair. Considering practi-
cal use, how to develop an effective and flexible method to
increase reachability is still a challenging problem.

The key insight to tackle under-reaching is to improve
communications between labeled and unlabeled nodes,
facilitating distribution alignment in training. Recently,
mixup (Zhang et al. 2017; Wu et al. 2021; Verma et al. 2021;
Wang et al. 2021) techniques have been widely adopted to
synthesize additional labeled data via random interpolation
between pairs of data points and corresponding labels from
original labeled data. The synthesized data can be used as the
augmented input for the backbone model. Interestingly, inter-
polation is similar to the message-passing mechanism since
they both essentially perform weighted sum. An intuitive idea
is to mix up labeled and unlabeled nodes to enhance their
communications. However, the traditional mixup techniques
are proposed to expand labeled data but less adept at address-
ing the under-reaching issue due to the following reasons: (1)
The mixed pairs are only sampled from the labeled set which
leads to limited access to unlabeled nodes; (2) Traditional
mixup methods often employ linear interpolation on data
features and labels, which proves less adaptable to the intri-
cate graph topology capturing relationships between nodes
in graph-structured data.

Inspired by these insights, we develop NodeMixup, an
architecture-agnostic method to tackle under-reaching for
GNNs. To improve communications between labeled and un-
labeled nodes, we propose cross-set pairing that chooses
mixed pairs from labeled and pseudo-labeled unlabeled
sets (Lee et al. 2013). Besides, we enhance intra-class inter-
actions by merging neighbor connections among intra-class
nodes, and use the standard mixup operation for inter-class
node pairs which contributes to characterizing more general-
izable classifying boundaries (Zhang et al. 2017). Notably, we
propose a novel Neighbor Label Distribution (NLD)-Aware
Sampling, which leverages the similarity of neighborhood
label distributions along with node degrees to compute sam-
pling weights. It ensures unlabeled nodes with dissimilar/sim-
ilar neighbor patterns to labeled nodes, as well as nodes with
lower degrees, are more likely to be selected for inter/intra-
class mixup. NodeMixup enables direct interactions between
node pairs and escapes from the restriction of the graph struc-
ture or model depth. This simple but effective approach can
be applied to any GNN without complex architecture adjust-
ments or significant computational costs.

Contributions. Our main contributions are as follows: (1)
We revisit and analyze the under-reaching issue through em-
pirical observations, highlighting its negative impacts on com-

munications between labeled and unlabeled nodes, which
hampers distribution alignment. (2) We propose NodeMixup,
an architecture-agnostic framework that facilitates direct com-
munications between labeled and unlabeled nodes, overcom-
ing the limitations imposed by the graph structure and ef-
fectively alleviating under-reaching for GNNs. (3) We apply
NodeMixup on popular GNNs and evaluate it on six real-
world graphs. It consistently achieves significant performance
gains for GNNs, showing its practicality and generalizability.

Preliminary and Related Works
Notations
We use G = {V, E , A} to denote an undirected graph with
self-loops, where V = {x1, · · · ,xN} is the node set with
N nodes, E is the edge set and A ∈ RN×N is the adjacency
matrix. We also have the input feature matrix X ∈ RN×F
whose i-th row vector is denoted as xi, where F is the input
dimensionality. Here, we abuse the notation xi a bit to denote
it as the node index of node i. We define the node label matrix
as Y ∈ RN×C , whereC is the number of classes and yi is the
one-hot encoding of the label of node i. We divide the data
set into labeled set Dl = {(x1,y1) · · · , (xNl ,yNl)} and
unlabeled set Du = {xNl+1, · · · ,xN}, where 0 < Nl < N .
Specifically, the training set can be divided into C subsets
according to different classes, i.e., V(1)

l , · · · ,V(C)
l . Besides,

we assume that each subset contains T labeled nodes.

Related Works
Graph Neural Networks. (Hamilton, Ying, and Leskovec
2017; Kipf and Welling 2017; Velickovic et al. 2018; Xu
et al. 2019; Wu et al. 2019; Chen et al. 2020; Klicpera, Bo-
jchevski, and Günnemann 2019; Chien et al. 2021) enable
each node to accept the information from neighbors in the
range of K hops. The discernible difference is how they
aggregate messages from connected nodes at each layer. As-
suming h(l) ∈ RF is a F -dimension representation, the l-th
GNN layer f (l) aggregates and transforms neighbor infor-
mation to produce h(l+1) ∈ RF , which can be generalized
as: h(l+1) = f (l)(h(l), θ(l), A), where θ(l) ∈ RF×F is the
learnable parameter and σ is an activation function. Without
loss of generalizability, we can define a L layer GNN as
Gθ(x, A) = (f (L) ◦ f (L−1) ◦ · · · ◦ f (1))θ(x, A), which is pa-
rameterized by θ. Therefore, the cross-entropy loss (Bishop
and Nasrabadi 2006) ` can be adopt in semi-supervised node
classification as:

LGNN(Dl, Gθ, A) = E
(x,y)∼Dl

`(Gθ(x, A),y). (1)

Mixup. (Zhang et al. 2017) proposes the mixup technique
that mixes features and corresponding labels of pairs of la-
beled samples to generate virtual training data. Because of the
simplicity and effectiveness of mixup, some works (Crisos-
tomi et al. 2022; Park, Shim, and Yang 2022; Guo and Mao
2021; Navarro and Segarra 2022) adapt it to the graph do-
main. However, they only focus on the graph classification
problem and can not be directly applied to the node-level task.
To overcome the node classification problem, (Wu et al. 2021;
Wang et al. 2021; Verma et al. 2021) develop improved mixup
mechanisms to enhance GNNs. Formally, assuming both a

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14176

5 10 15
T

0.0

0.5

Pe
ar

so
n

C
oe

ffi
ci

en
t

Model = GCN

5 10 15
T

Model = GAT

5 10 15
T

Model = SAGE

5 10 15
T

Model = SGC

5 10 15
T

Model = Cheb

5 10 15
T

Model = APPNP

Figure 2: The correlation between prediction scores on actual classes and RC values on CORA dataset. T = m represents m
labeled nodes per class. The Pearson coefficient shows a positive correlation between prediction scores and RC, demonstrating
that larger reachability yields better performance. As labeled nodes decrease which (indirectly) suggests poor reachability, a
more significant positive correlation can be observed.

and b are either feature vectors or one-hot label vectors, the
mixup operation is defined as:

Mλ(a,b) = λa+ (1− λ)b, (2)

where λ is sampled from Beta(α, α) distribution and α ≥ 0.

Under-reaching, Over-smoothing, and Over-squashing.
They are the graph-specific information shortage issues in
the context of semi-supervised node classification. From a
topological perspective, prior researchs have described the
under-reaching issue (Sun et al. 2022; Brüel-Gabrielsson,
Yurochkin, and Solomon 2022; Barceló et al. 2020) as a
node’s inability to be aware of nodes that are farther away
than the number of layers. However, directly increasing
the number of layers gives rise to the over-smoothing is-
sue (Li, Han, and Wu 2018; Oono and Suzuki 2020; Lu et al.
2021), where node representations become indistinguishable,
severely impacting prediction performance. Even with the
resolution of over-smoothing by enlarging receptive fields,
the over-squashing issue (Alon and Yahav 2020; Di Gio-
vanni et al. 2023; Topping et al. 2021) still persists. This
issue pertains to the loss of information from distant nodes
due to message propagation over the graph-structured data,
where features from exponentially-growing neighborhoods
are compressed into fixed-length node vectors. Drawing inspi-
ration from the distribution shift concept (Shimodaira 2000),
where the difference between labeled and unlabeled distri-
butions affects the model’s generalization, we identify the
under-reaching issue as a lack of communication between
labeled and unlabeled nodes, leading to difficulties in making
accurate inferences over unlabeled nodes. Thus, this issue
represents a more generalized graph-specific challenge about
how to improve communication between labeled and unla-
beled nodes rather than propagate distant information in the
semi-supervised node classification regime.

Method
In this section, we first explain our motivation by introducing
under-reaching. Then, we present our proposed NodeMixup
framework in order to increase the reachability of GNNs.

Motivation: Understanding Under-reaching
How Does Under-reaching Impact on GNNs? Nodes far
from labeled nodes lack supervision information because
the influence of labeled nodes decreases with topology dis-
tance (Buchnik and Cohen 2018). With the restriction of

model depth, nodes at r-hop away (r > K) from labeled
nodes can not be reached when a K-layer model (e.g., GCN)
is used. Since the supervised loss function is purely defined
on labeled nodes, the optimization might be misled by the
inadequate received information. We define dG(i, j) as the
shortest path length between node i and node j. To measure
reachability for each node, we first introduce the reaching
coefficient (RC) from (Sun et al. 2022) as:

RCi =
1

|Dl|
∑
j∈Dl

(
1− log |dG(i, j)|

logDG

)
, (3)

where DG represents the diameter of graph G, and dG(i, j) =
DG when node i and node j do not belong to the same
connected component. A larger RC value (scaled to [0, 1))
indicates greater reachability of node i. In Figure 2, we
visualize the correlation between prediction scores on ac-
tual classes and RC values on CORA dataset using different
GNNs, i.e., GCN (Kipf and Welling 2017), GAT (Velickovic
et al. 2018), APPNP (Klicpera, Bojchevski, and Günnemann
2019), ChebNet (Defferrard, Bresson, and Vandergheynst
2016), and GraphSAGE (Hamilton, Ying, and Leskovec
2017). Across all experiments, we vary the number of training
nodes per class (T ∈ 5, 10, 15). We can observe positive cor-
relations (Pearson Coefficient larger than 0) in all the cases,
which further demonstrates the benefit of better reachability.
Additionally, as T decreases, indicating that the reachability
declines, the positive correlation becomes more significant.
It is because only a few unlabeled nodes can be seen dur-
ing training. It is easier for GNNs to classify correctly those
unlabeled nodes located nearby labeled nodes.

Why Does Under-reaching Fail GNNs? A recent
study (Zheng et al. 2022) underscores that GNN success
hinges on aligning the distributions of labeled and unlabeled
nodes. The propagation enables labeled nodes to receive infor-
mation from unlabeled nodes to narrow the distribution gap
between labeled and unlabeled nodes. Intuitively, it would
facilitate inference as the two distributions get close. Inspired
by this, to further understand the negative impact of under-
reaching, we here investigate the distance between the labeled
and unlabeled distribution at different levels of RC. We first
briefly introduce the centered kernel alignment (CKA) (Ko-
rnblith et al. 2019) metric1, which is widely used to measure
the representation similarity. Supposing Zl, Zu ∈ Rm×n are

1Please refer to (Kornblith et al. 2019; Zheng et al. 2022) for
more details about CKA.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14177

I II III IV V

G
C

N
G

AT
AP

PN
P

C
he

b
SG

C
SA

G
E

0.044 0.039 0.23 0.23 0.25

0.057 0.082 0.26 0.26 0.23

0.083 0.099 0.25 0.24 0.24

0.057 0.059 0.26 0.26 0.28

0.072 0.083 0.25 0.25 0.29

0.1 0.074 0.27 0.25 0.22

T = 5

I II III IV V

0.06 0.17 0.24 0.22 0.23

0.052 0.19 0.26 0.23 0.23

0.087 0.3 0.25 0.24 0.23

0.047 0.16 0.24 0.25 0.24

0.04 0.32 0.25 0.25 0.26

0.031 0.22 0.25 0.24 0.22

T = 10

I II III IV V

0.043 0.23 0.38 0.26 0.26

0.15 0.16 0.32 0.28 0.28

0.09 0.25 0.25 0.39 0.3

0.11 0.16 0.3 0.29 0.3

0.083 0.31 0.33 0.34 0.38

0.1 0.21 0.25 0.33 0.27

T = 15

0.05

0.10

0.15

0.20

0.25

0.05

0.10

0.15

0.20

0.25

0.30

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 3: The heat map of CKA between labeled and unlabeled distributions learned by different GNNs using CORA. A larger
CKA value indicates more similar representation distributions between labeled and unlabeled nodes. I, ..., V represent unlabeled
nodes with various reachability arranged in ascending order. Larger reachability is in favor of narrowing the distribution gap.

the representations (learned by an arbitrary GNN) sampled
from labeled and unlabeled nodes, the distribution similarity
between Zl and Zu is measured by CKA as:

CKA(Zl, Zu) =
‖ZTu Zl‖F

‖ZlZTl ‖F ‖ZuZTu ‖F
. (4)

A larger CKA (scaled to [0, 1]) implies a higher similarity.
Secondly, we divide unlabeled nodes from CORA into five
subsets DI, ..., DV according to different interval ranges of
RC, i.e., range I, ..., range V2. Finally, we calculate CKA
between Zl and representations of unlabeled nodes from DI,
..., DV learned by different GNNs. To do so, we sample the
same number of nodes in each pair of two sets (Dl, DI), ...,
(Dl, DV), and the number is determined by the minimum
element number of each set pair. We visualize the results in
Figure 3, in which each block represents the CKA value be-
tween labeled and unlabeled distributions learned by various
GNNs. We can see that lower reachability (e.g., range I and
II) tends to result in a larger distribution gap while higher
reachability can bridge the gap.

How Do We Alleviate Under-reaching? From the above
analysis, we can see that under-reaching hinders the distri-
bution alignment since the labeled nodes can only reach a
small part of unlabeled nodes. A straightforward idea for
assisting labeled nodes in reaching more unlabeled nodes
is to add edges between them or stack more GNN lay-
ers. However, the edge-adding strategy could induce pro-
hibitive computation costs for finding globally friendly neigh-
bors (Brüel-Gabrielsson, Yurochkin, and Solomon 2022; Sun
et al. 2022) or lead to noisy graphs without sufficient super-
vision (Sun et al. 2022). Besides, deepening GNNs leads to
over-smoothing or over-squashing. Based on these limita-
tions, we intend to develop an efficient framework for vari-
ous GNNs to tackle under-reaching. Recently, interpolation-
based methods (Zhang et al. 2017; Wu et al. 2021; Wang

2Let RCmax be the maximum value of RC in all the unla-
beled nodes. Then, we define range I as [0, RCmax/5], range II as
(RCmax/5, 2RCmax/5], ..., and range V as (4RCmax/5,RCmax].

et al. 2021; Verma et al. 2021) show great effectiveness and
flexibility in augmenting labeled data. Inspired by this, we
propose NodeMixup, which mixes labeled and unlabeled data
to increase reachability for GNNs. We present the detailed
methodology of our NodeMixup in the following section.

Methodology
We start by giving a high-level overview of NodeMixup and
present its pipeline in Figure 4. Our NodeMixup is designed
as a data augmentation technique that can be easily applied to
various GNNs. At each iteration, NodeMixup samples node
pairs from labeled and unlabeled nodes. This cross-set pairing
ensures labeled nodes reach more unlabeled nodes to bridge
the distribution gap. Then, we use the pseudo labels (Lee et al.
2013) with a confidence threshold γ for unlabeled nodes and
construct a pseudo-labeled data set Dpl. Guided by pseudo
labels, we mix nodes via different mixup operations, i.e.,
intra-class and inter-class mixup. Then, the intra-class-mixup
nodes with the mixed adjacency matrix Ã and inter-class-
mixup nodes with an identity matrixE ∈ RNl×Nl are used as
inputs for the GNN model, whereNl is the number of labeled
nodes. Note that a GNN fed with an identity matrix equals
a MLP. Besides, to enhance the mixup effect, we propose a
neighbor label distribution (NLD)-aware sampling strategy.
It ensures that nodes with similar neighbor patterns and lower
degrees are more likely to be selected. Finally, the model is
optimized via minimizing the loss L from the combination of
LGNN, Lintra-M, and Linter-M (defined by Eq. (1), Eq. (8), and
Eq. (10), respectively) from each branch as follows:

L = LGNN + λintraLintra-M + λinterLinter-M, (5)

where two hyper-parameters λintra, λinter ∈ (0, 1] control the
regularization effect of NodeMixup.

Intra-class Mixup. We sample and mix nodes with the
equal class from Dl and Dpl via Eq. (2). Suppose xi ∈ Dl
and xj ∈ Dpl are classified as yi and ŷj , where ŷj is the
pseudo label of node j. We have the mixed intra-class data
set Dintra as:

Dintra ={(x̃i, ỹi)|x̃i =Mλ(xi,xj), ỹi =Mλ(yi, ŷj),

(xi,yi) ∈ Dl, (xj ,yj) ∈ Dpl,yi = ŷj}.
(6)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14178

AA XX

Ã̃A X̃1X̃1
GNN

X̃2X̃2EE

Intra-class
Mixup

Inter-class
Mixup

GNN Loss

Inter-class
Mixup Loss

Intra-class
Mixup Loss

+

+

Labeled
Nodes

Pseudo-Labeled
Nodes

Unlabeled
Nodes

Pseudo
Labeling

Input Graph (A X) Pseudo-Labeled
Graph

Feat. + Labels + Adj Mixup Ã, Dintra = {X̃1, Ỹ1}Ã, Dintra = {X̃1, Ỹ1}

Feat. + Labels Mixup E, Dinter = {X̃2, Ỹ2}E, Dinter = {X̃2, Ỹ2}

(b) Intra-class Mixup

(c) Inter-class Mixup

(a) Pseudo Labeling

(d) Overall Framework of NodeMixup

Pseudo Labels

Added
Edge

EE Identity
Matrix

Update

Mixup

Ã̃A Mixed Adj

X̃1/X̃2X̃1/X̃2 Mixed Feat.

Ỹ1/Ỹ2Ỹ1/Ỹ2 Mixed Labels

Ỹ1Ỹ1

Ỹ2Ỹ2

YY

DintraDintra
Intra-class
Data Set

DinterDinter
Inter-class
Data Set

Figure 4: The pipeline of NodeMixup. The NLD-aware sampling is omitted in this figure.

Furthermore, we also fuse their topological information
together since these intra-class pairs tend to share similar
neighbor distribution, which prompts intra-class similarity.
Thus, we mix the topological information of node i and node
j to generate a new adjacency matrix Ã as:

Row mixup: Ãi,: =Mλ(Ai,:, Aj,:),

Column mixup: Ã:,i =Mλ(A:,i, A:,j).
(7)

Here,Ai,: andA:,i represents the i-th row and column vector
of A. Finally, we calculate the intra-class mixup loss Lintra-M
with a GNN model Gθ as follows:
Lintra-M = LGNN(Dintra, Gθ, Ã) = E

(x̃,ỹ)∼Dintra
`(Gθ(x̃, Ã), ỹ).

(8)

Inter-class Mixup. The mixup operation facilitates a linear
behavior of the model between selected nodes, thus improv-
ing its generalization (Zhang et al. 2017). Besides, empirical
observations indicate that interpolating between inputs with
different labels results in decision boundaries that transition
linearly from one class to another, reducing prediction errors.
Thus, the inter-class mixup operation enhances the model’s
ability to distinguish boundaries between different classes. By
combining nodes from different classes, the model can effec-
tively learn shared features and differences between classes,
thereby improving its generalization capability. Based on this,
we generate the mixed inter-class data set Dinter as:
Dinter ={(x̃i, ỹi)|x̃i =Mλ(xi,xj), ỹi =Mλ(yi, ŷj),

(xi,yi) ∈ Dl, (xj ,yĵ) ∈ Dpl,yi 6= ŷj}.
(9)

Furthermore, we argue that inter-class interaction could prob-
ably lead to noisy learning. Therefore, we feed the backbone
GNN with an identity matrix E to block the message passing
between inter-class nodes. Similar to Eq. (8), we define the
inter-class mixup loss Linter-M as follows:
Linter-M = LGNN(Dinter, Gθ, E) = E

(x̃,ỹ)∼Dinter
`(Gθ(x̃, E), ỹ).

(10)

NLD-aware Sampling. In a graph, intra/inter-class nodes
often form cohesive/incohesive communities or clusters, lead-
ing to similar/dissimilar neighbor distributions. The char-
acteristics of a node are not only determined by itself but

also influenced by its neighbors. To capture such neighbor-
hood information, we adapt Neighborhood Label Distribution
(NLD) (Zhu et al.) and define it in the next.

Definition 1 (Neighborhood Label Distribution (NLD))
Given Ȳ is the label matrix for all the nodes (the label of
unlabeled nodes are their predictions), the neighborhood la-
bel distribution of node i is defined as qi = 1

|Ni|
∑
v∈Ni Ȳv,:,

where Ni is the neighbor set of node i.

Besides, we employ the sharpening (Berthelot et al. 2019)
trick to enhance the contrast between class probabilities in
NLD. Specifically, we calculate the new distribution q′ij as
following:

q′ij =
q

1/τ
i∑C

k=1 q
1/τ
ik

, (11)

where 0 < τ ≤ 1 is the temperature parameter that controls
the sharpness of the distribution. As τ → 0, it leads to a
sharper probability distribution. Then, we use the cosine
similarity sij between q′i and q′j to determine the likelihood
of node i and node j sharing a similar neighbor pattern,
where

sij =
q′
T
i q
′
j

‖q′i‖2‖q′j‖2
(12)

Additionally, we take node degrees into account since low-
degree nodes suffer more from under-reaching. Therefore,
for a labeled node i, the sampling weight wij of an unlabeled
node j to be mixed is defined as follows:

wij =

{
1

1+βddj
eβssij , if yi = ŷj ,

1
1+βddj

e−βssij , if yi 6= ŷj ,
(13)

where dj is the degree of node j, and βs > 0 and βd >
0 control the strength of NLD similarity and node degree,
respectively. The term 1/1+βddj ensures that the influence of
node degree on the sampling weight is monotonic, leading
to a higher sampling weight for low-degree nodes and vice
versa. This sampling weight calculation balances the effect of
node similarity and node degree, resulting in a reasonable and
interpretable mechanism for the Mixup operation between
nodes in the graph.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14179

Models Strategy CORA CITESEER PUBMED CS PHYSICS

GCN

Original 81.57±0.4 70.50±0.6 77.91±0.3 91.24±0.4 92.56±1.3
UPS 82.35±0.4 72.82±0.6 78.45±0.4 91.62±0.3 93.01±0.3
PASTEL 81.97±0.6 71.32±0.4 78.92±0.2 91.76±0.6 > 3 days
ReNode 81.98±0.6 69.48±0.4 78.13±0.7 91.32±0.1 OOM
GraphMix 82.29±3.7 74.55±0.5 82.82±0.5 91.90±0.2 90.43±1.7
NodeMixup 83.47±0.3 74.12±0.3 81.16±0.2 92.69±0.4 93.97±0.4

GAT

Original 82.04±0.6 71.82±0.8 78.00±0.7 90.52±0.4 91.97±0.6
UPS 82.17±0.5 72.97±0.7 78.56±0.9 91.26±0.4 92.45±1.1
PASTEL 82.21±0.3 72.35±0.8 78.74±0.9 90.31±0.2 > 3 days
ReNode 81.88±0.7 71.73±1.2 79.68±0.5 88.36±0.5 OOM
GraphMix 82.76±0.6 73.04±0.5 78.82±0.4 90.57±1.0 92.90±0.4
NodeMixup 83.52±0.3 74.30±0.1 81.26±0.3 92.69±0.2 93.87±0.3

APPNP

Original 80.03±0.5 70.30±0.6 78.67±0.2 91.79±0.5 92.36±0.8
UPS 81.24±0.6 71.02±0.7 78.69±0.7 91.77±0.3 92.31±0.5
PASTEL 81.56±0.3 70.68±0.8 78.39±0.2 91.98±0.4 > 3 days
ReNode 81.12±0.2 70.04±0.8 78.58±0.3 91.99±0.2 OOM
GraphMix 82.98±0.4 70.26±0.4 78.73±0.4 91.53±0.6 94.12±0.1
NodeMixup 83.54±0.4 75.12±0.3 79.93±0.1 92.82±0.2 94.34±0.2

GraphSAGE

Original 78.12±0.3 68.09±0.8 77.30±0.7 91.01±0.9 93.09±0.4
UPS 81.83±0.3 70.29±0.6 77.82±0.6 91.35±0.4 93.20±0.4
PASTEL 78.58±0.6 70.31±0.3 78.26±0.7 91.77±0.6 > 3 days
ReNode 76.48±1.0 70.79±0.9 78.67±1.2 89.61±0.7 OOM
GraphMix 80.09±0.8 70.97±1.2 79.85±0.4 91.55±0.3 93.25±0.3
NodeMixup 81.93±0.2 74.12±0.4 79.97±0.5 91.97±0.2 94.76±0.2

Table 1: Node Classification Results on Medium-scale Graphs.

Complexity. The mixup operation (Eq. (2)), encompass-
ing both nodes and labels, centers on matrix addition, which
incurs negligible computational overhead due to its paralleliz-
ability across vectors. The predominant computational expen-
diture lies within the NLD-aware sampling phase, which un-
folds in three sequential steps: NLD calculation, NLD cosine
similarity evaluation, and sampling weight computation. The
computational cost of NLD computation is determined by
the number of edges in the graph, rendering it O(|E|). When
determining the NLD-similarity between labeled and selected
unlabeled nodes, the complexity equates toO(|Dpl|2), where
|Dpl| is the subset of confident nodes used for mixup. Subse-
quently, the computation of sampling weights for these unla-
beled nodes involves O(|Dpl|) operations. Overall, the inte-
gration of NodeMixup within GNNs introduces a marginal
computational burdenO(|E|+ |Dpl|2 + |Dpl|) because |Dpl|
is much smaller than |E|, preserving the overall efficiency of
the model.

Experiments
We evaluate NodeMixup on the semi-supervised node classi-
fication task. We use five medium-scale datasets, i.e., CORA,
CITESEER, and PUBMED (Yang, Cohen, and Salakhudinov
2016), COAUTHOR CS and COAUTHOR PHYSICS (Shchur
et al. 2018), and a large-scale graph, i.e., OGBN-ARXIV (Hu
et al. 2020). Besides, we do detailed ablation experiments to
probe into the design of NodeMixup.

Evaluation on Medium-scale Graphs
Settings. Similar to the experimental setup of (Sun
et al. 2022), we choose GCN (Kipf and Welling 2017),
GAT (Velickovic et al. 2018), APPNP (Klicpera, Bojchevski,
and Günnemann 2019), and GraphSAGE (Hamilton, Ying,
and Leskovec 2017) as backbone models. For the compar-
ing strategies, we choose PASTEL (Sun et al. 2022), ReN-
ode (Chen et al. 2021), and GraphMix (Verma et al. 2021).
PASTEL and ReNode address the topology imbalance issue.
GraphMix is a data augmentation method that mixes hidden
node representations. UPS (Rizve et al. 2021) is a state-of-the-
art (SOTA) pseudo-labeling method that generates pseudo-
labels with uncertainty-aware selection. We simply apply grid
search for all the models since we do not intend to achieve
new SOTA performance. We keep the parameters of compar-
ing strategies as they are in the original papers or reference
implementations. For our proposed NodeMixup, which is im-
plemented by PyTorch Geometric Library (Fey and Lenssen
2019) with the Adam optimizer (Kingma and Ba 2015), we
search both λinter and λintra in {1, 1.1, · · · , 1.5}, βd and βs in
{0.5, 1, 1.5, 2}, and γ in {0.5, 0.7, 0.9}. All the experiments
are conducted on an NVIDIA GTX 1080Ti GPU.

Results. For CORA, CITESEER, and PUBMED datasets, we
stick to the public splits (20 nodes per class for training,
1000 nodes for validation, and 500 nodes for testing) used
in (Yang, Cohen, and Salakhudinov 2016). For COAUTHOR
CS and COAUTHOR PHYSICS, we follow the splits in (Shchur

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14180

et al. 2018), i.e., 20 labeled nodes per class as the training
set, 30 nodes per class as the validation set, and the rest as
the test set. The overall results are reported in Table 1 and
all the results are obtained over 10 different runs. We can
observe significant improvement made by NodeMixup in all
the graphs and models. In addition, it is worth noting that
PASTEL and ReNode tend to have higher computational
costs or increased complexity compared to other methods. It
can limit their practical application, particularly when dealing
with large graphs. The best result w.r.t each backbone model
is shown in boldface. OOM stands for “out-of-memory.”

Evaluation on the Large-scale Graph
Settings. We test NodeMixup’s effectiveness on the chal-
lenging large-scale graph OGBN-ARXIV to enhance GNN
performance. Baseline models include GCN, GraphSAGE,
JKNet (Xu et al. 2018), and GCNII (Chen et al. 2020). Data
splits come from (Hu et al. 2020). Due to GPU limitations,
we use GCN and GraphSAGE as backbone models, employ-
ing identical configurations as outlined in the source code
from (Hu et al. 2020).

Results. The results are provided in Table 2. Notably,
NodeMixup demonstrates its efficacy in bolstering the per-
formance of fundamental GNN models, such as GCN and
GraphSAGE. This enhancement remains pronounced even in
the context of large-scale graphs, effectively surpassing the
performance of more intricate deep GNN models, i,e, GCNII.
This observation underscores the ability of NodeMixup to
yield substantial gains in predictive accuracy while main-
taining efficiency. The baseline performance are obtained
from the OGB Leaderboards (https://ogb.stanford.edu/docs/
leader nodeprop/).

Models Accuracy (%)
Test Valid

GCN 71.74±0.2 73.00±0.1
GraphSAGE 71.49±0.2 72.77±0.1
JKNet 72.19±0.2 73.35±0.1
GCNII 72.74±0.1 -

GCN+NodeMixup 73.46±0.2 74.13±0.2
GraphSAGE+NodeMixup 73.24±0.2 74.14±0.1

Table 2: Node Classification on OGBN-ARXIV.

Ablation Analysis
NodeMixup comprises three key modules: cross-set mixup,
class-specific mixup, and NLD-aware sampling. In Table 3,
we conduct an investigation into each design utilizing the
CORA dataset and GCN as the underlying model. Note that,
except for the design under examination, NodeMixup remains
unchanged. Our observations reveal several fascinating prop-
erties, which are outlined below.

Cross-set Pairing. The traditional mixup (Zhang et al.
2017) approach samples mixed pairs exclusively from the la-
beled set, making it function primarily as a data augmentation

technique without addressing the under-reaching problem.
Consequently, it does not generate significant improvements
since a considerable number of unlabeled nodes remain in-
accessible. In contrast, our labeled-unlabeled (LU) pairing,
as opposed to labeled-labeled (LL) and labeled-all (LA) pair-
ings, allows GNNs to leverage information from a larger pool
of unlabeled nodes. This facilitates distribution alignment
and ultimately leads to enhanced performance.

Class-specific Mixup. Table 3 reveals that both inter-class
(IE) and intra-class (IR) interpolations contribute to perfor-
mance enhancements when applied between nodes. Nonethe-
less, solely interpolating nodes with the same label does not
significantly improve the backbone model, aligning with find-
ings in (Zhang et al. 2017). It is because such an approach
fails to take advantage of the mutually beneficial neighbor
information among intra-class nodes.

NLD-aware Sampling. To investigate the low-degree bi-
ased sampling strategy employed in NodeMixup, we con-
ducted a comparison with random sampling. Our findings
consistently demonstrated that our sampling strategy consis-
tently outperforms random sampling. This can be attributed
to two factors: (1) NLD similarity guarantees a higher proba-
bility of mixing nodes with similar neighbor patterns, thereby
enhancing information alignment and generalization; (2) as-
signing larger sampling weights to low-degree nodes, which
are typically difficult to access in a general scenario.

GCN 81.57±0.4
GCN + vanilla mixup 81.67±0.3

Cross-set Pairing
LL 81.85±0.2
LA 81.97±0.6
LU 83.64±0.5

Class-specific Mixup
IE 81.97±0.3
IR 82.06±0.3

IE+IR 83.64±0.5

NLD-aware Sampling Random 82.41±0.2
NLD-aware 83.64±0.5

Table 3: Ablation Analysis.

Conclusion

In this work, we take an in-depth look at the under-reaching
issue through comprehensive empirical investigations and
extensive experimental analysis on widely-used graphs. The
issue widely exists in various GNN models and degrades
their performance. Our findings shed light on the fact that
the reachability of GNNs should be further strengthened. To
this purpose, we propose an architecture-agnostic framework,
NodeMixup, to improve reachability for GNNs. It effectively
addresses the under-reaching issue, helping GNNs to achieve
better performance using different graphs.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14181

Acknowledgments
This work was supported in part by the National Natural Sci-
ence Foundation of China under Grants 62133012, 61936006,
62073255, and 62303366, in part by the Innovation Capa-
bility Support Program of Shaanxi under Grant 2021TD-05,
and in part by the Key Research and Development Program
of Shaanxi under Grant 2020ZDLGY04-07.

References
Alon, U.; and Yahav, E. 2020. On the bottleneck of graph
neural networks and its practical implications. arXiv preprint
arXiv:2006.05205.
Barceló, P.; Kostylev, E. V.; Monet, M.; Pérez, J.; Reutter, J.;
and Silva, J.-P. 2020. The logical expressiveness of graph neu-
ral networks. In 8th International Conference on Learning
Representations (ICLR 2020).
Berthelot, D.; Carlini, N.; Goodfellow, I.; Papernot, N.;
Oliver, A.; and Raffel, C. A. 2019. Mixmatch: A holistic
approach to semi-supervised learning. Advances in neural
information processing systems, 32.
Bishop, C. M.; and Nasrabadi, N. M. 2006. Pattern recogni-
tion and machine learning, volume 4. Springer.
Brüel-Gabrielsson, R.; Yurochkin, M.; and Solomon, J. 2022.
Rewiring with positional encodings for graph neural net-
works. arXiv preprint arXiv:2201.12674.
Buchnik, E.; and Cohen, E. 2018. Bootstrapped graph diffu-
sions: Exposing the power of nonlinearity. In Abstracts of the
2018 ACM International Conference on Measurement and
Modeling of Computer Systems, 8–10.
Chen, D.; Lin, Y.; Zhao, G.; Ren, X.; Li, P.; Zhou, J.; and Sun,
X. 2021. Topology-imbalance learning for semi-supervised
node classification. Advances in Neural Information Process-
ing Systems, 34: 29885–29897.
Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; and Li, Y. 2020. Sim-
ple and deep graph convolutional networks. In International
Conference on Machine Learning, 1725–1735. PMLR.
Chien, E.; Peng, J.; Li, P.; and Milenkovic, O. 2021. Adap-
tive Universal Generalized PageRank Graph Neural Network.
ICLR.
Crisostomi, D.; Antonelli, S.; Maiorca, V.; Moschella, L.;
Marin, R.; and Rodolà, E. 2022. Metric Based Few-Shot
Graph Classification. arXiv preprint arXiv:2206.03695.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. Advances in neural information processing
systems, 29.
Di Giovanni, F.; Giusti, L.; Barbero, F.; Luise, G.; Lio, P.;
and Bronstein, M. 2023. On Over-Squashing in Message
Passing Neural Networks: The Impact of Width, Depth, and
Topology. arXiv preprint arXiv:2302.02941.
Fey, M.; and Lenssen, J. E. 2019. Fast Graph Representation
Learning with PyTorch Geometric. In ICLR Workshop on
Representation Learning on Graphs and Manifolds.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. In ICML, 1263–1272. PMLR.

Guo, H.; and Mao, Y. 2021. ifmixup: Towards intrusion-
free graph mixup for graph classification. arXiv e-prints,
arXiv–2110.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. Advances in neural
information processing systems, 30.
Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.;
Catasta, M.; and Leskovec, J. 2020. Open graph benchmark:
Datasets for machine learning on graphs. Advances in neural
information processing systems, 33: 22118–22133.
Kingma, D.; and Ba, J. 2015. Adam: A method for stochastic
optimization. In ICLR.
Kipf, N. T.; and Welling, M. 2017. Semi-Supervised Classi-
fication with Graph Convolutional Networks. international
conference on learning representations.
Klicpera, J.; Bojchevski, A.; and Günnemann, S. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personal-
ized PageRank. ICLR.
Kornblith, S.; Norouzi, M.; Lee, H.; and Hinton, G. 2019.
Similarity of neural network representations revisited. In
International Conference on Machine Learning, 3519–3529.
PMLR.
Lee, D.-H.; et al. 2013. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural networks.
In Workshop on challenges in representation learning, ICML,
volume 3, 896.
Li, Q.; Han, Z.; and Wu, X.-M. 2018. Deeper insights into
graph convolutional networks for semi-supervised learning.
In Thirty-Second AAAI conference on artificial intelligence.
Lu, W.; Zhan, Y.; Guan, Z.; Liu, L.; Yu, B.; Zhao, W.; Yang,
Y.; and Tao, D. 2021. SkipNode: On Alleviating Over-
smoothing for Deep Graph Convolutional Networks. arXiv
preprint arXiv:2112.11628.
Navarro, M.; and Segarra, S. 2022. GraphMAD: Graph
Mixup for Data Augmentation using Data-Driven Convex
Clustering. arXiv preprint arXiv:2210.15721.
Oono, K.; and Suzuki, T. 2020. Graph Neural Networks Ex-
ponentially Lose Expressive Power for Node Classification.
ICLR.
Park, J.; Shim, H.; and Yang, E. 2022. Graph transplant: Node
saliency-guided graph mixup with local structure preserva-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, 7966–7974.
Rizve, M. N.; Duarte, K.; Rawat, Y. S.; and Shah, M.
2021. In defense of pseudo-labeling: An uncertainty-aware
pseudo-label selection framework for semi-supervised learn-
ing. arXiv preprint arXiv:2101.06329.
Shchur, O.; Mumme, M.; Bojchevski, A.; and Günnemann,
S. 2018. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868.
Shimodaira, H. 2000. Improving predictive inference un-
der covariate shift by weighting the log-likelihood function.
Journal of statistical planning and inference, 90(2): 227–244.
Sun, Q.; Li, J.; Yuan, H.; Fu, X.; Peng, H.; Ji, C.; Li, Q.; and
Yu, P. S. 2022. Position-aware structure learning for graph

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14182

topology-imbalance by relieving under-reaching and over-
squashing. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, 1848–
1857.
Topping, J.; Giovanni, D. F.; Chamberlain, P. B.; Dong, X.;
and Bronstein, M. M. 2021. Understanding over-squashing
and bottlenecks on graphs via curvature. ICLR 2022.
Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph Attention Networks. ICLR.
Verma, V.; Qu, M.; Kawaguchi, K.; Lamb, A.; Bengio, Y.;
Kannala, J.; and Tang, J. 2021. Graphmix: Improved training
of gnns for semi-supervised learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 35,
10024–10032.
Wang, Y.; Wang, W.; Liang, Y.; Cai, Y.; and Hooi, B. 2021.
Mixup for node and graph classification. In Proceedings of
the Web Conference 2021, 3663–3674.
Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; and Wein-
berger, K. 2019. Simplifying graph convolutional networks.
In International conference on machine learning, 6861–6871.
PMLR.
Wu, L.; Lin, H.; Gao, Z.; Tan, C.; Li, S.; et al. 2021. Graph-
mixup: Improving class-imbalanced node classification on
graphs by self-supervised context prediction. arXiv preprint
arXiv:2106.11133.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How Pow-
erful are Graph Neural Networks? international conference
on learning representations.
Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.-i.;
and Jegelka, S. 2018. Representation learning on graphs with
jumping knowledge networks. In International Conference
on Machine Learning, 5453–5462. PMLR.
Yang, Z.; Cohen, W.; and Salakhudinov, R. 2016. Revisiting
semi-supervised learning with graph embeddings. In Interna-
tional conference on machine learning, 40–48. PMLR.
Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2017. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412.
Zheng, Q.; Xia, X.; Zhang, K.; Kharlamov, E.; and Dong, Y.
2022. On the distribution alignment of propagation in graph
neural networks. AI Open, 3: 218–228.
Zhu, J.; Yan, Y.; Heimann, M.; Zhao, L.; Akoglu, L.; and
Koutra, D. ???? Heterophily and Graph Neural Networks:
Past, Present and Future. Data Engineering, 10.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14183

