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Abstract

Federated learning (FL) has attracted growing attention since
it allows for privacy-preserving collaborative training on de-
centralized clients without explicitly uploading sensitive data
to the central server. However, recent works have revealed
that it still has the risk of exposing private data to adver-
saries. In this paper, we conduct reconstruction attacks and
enhance inference attacks on various datasets to better un-
derstand that sharing trained classification model parameters
to a central server is the main problem of privacy leakage in
FL. To tackle this problem, a privacy-preserving image dis-
tribution sharing scheme with GAN (PPIDSG) is proposed,
which consists of a block scrambling-based encryption algo-
rithm, an image distribution sharing method, and local clas-
sification training. Specifically, our method can capture the
distribution of a target image domain which is transformed
by the block encryption algorithm, and upload generator pa-
rameters to avoid classifier sharing with negligible influence
on model performance. Furthermore, we apply a feature ex-
tractor to motivate model utility and train it separately from
the classifier. The extensive experimental results and security
analyses demonstrate the superiority of our proposed scheme
compared to other state-of-the-art defense methods. The code
is available at https://github.com/ytingma/PPIDSG.

Introduction
Federated learning (McMahan et al. 2017), which enables
clients to train their data locally and upload only model pa-
rameters to the server for model aggregation, undoubtedly
plays a significant role in autonomous driving (Xie et al.
2022), health care (Guo et al. 2021; Liu et al. 2021; Jiang,
Wang, and Dou 2022), and other industries in recent years.
However, recent researches (Geng et al. 2022; Fu et al. 2022;
Yu et al. 2023; Zhu, Yao, and Blaschko 2023) demonstrate
that adversaries can utilize the parameter information up-
loaded by clients to carry out attacks, resulting in serious
privacy leakage problems.

Several strategies have been proposed to enhance secu-
rity in the face of privacy threats, such as homomorphic
encryption (Phong et al. 2018; Jin et al. 2023) can use an
encryption algorithm that satisfies the homomorphic oper-
ation property of ciphertext to encrypt shared model pa-
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rameters and differential privacy (Abadi et al. 2016; Liao
et al. 2023) can prevent privacy leakage by introducing ran-
dom noise. Gradient perturbation (Sun et al. 2021) aims to
perturb data representation to guarantee privacy. However,
the aforementioned methods of protecting sensitive data in
FL significantly increase computational overhead or sacri-
fice efficiency to safeguard sensitive data. Another possible
way is to encrypt training data (Chuman, Sirichotedumrong,
and Kiya 2019; Huang et al. 2020) without greatly affect-
ing model accuracy. These solutions mentioned above all de-
pend on sharing classifier parameters to fulfill the model ag-
gregation against image reconstruction attacks in federated
learning. However, in addition to image reconstruction at-
tacks, clients are vulnerable to membership inference attacks
and label inference attacks. These defenses ignore inference
attacks (Shokri et al. 2017; Geng et al. 2022) in federated
learning and cannot provide adequate security.

To further show the problem of privacy-preserving meth-
ods in FL, we first begin with a theoretical analysis of label
inference attacks and then apply these defenses to perform
attacks on a variety of datasets. Because FL mitigates over-
fitting after model aggregation, we next propose an upgraded
membership inference attack that integrates two shadow
models instead of a single model considering the server at-
tacker can access model parameters as well as structures. We
also experimentally investigate the feasibility of image re-
construction attacks in FL after protection by defense meth-
ods. Extensive experiments and theoretical studies reveal
valuable observations into the relationship between privacy
leakage and trained classification model parameter sharing.

Motivated by these observations, we design PPIDSG, a
scheme that can defend against privacy leakage while main-
taining model utility. Specifically, 1) How to realize privacy
protection while simultaneously resisting attacks? We lever-
age a block scrambling-based encryption algorithm to trans-
form the original image domain into the target domain while
training the classifier locally; 2) How to enable federated
learning without uploading the classifier parameters? We
utilize a GAN to capture the target image distribution and
upload the generator parameters to share it; 3) How to main-
tain classification accuracy? We add an additional classifi-
cation loss to our generator and introduce an independently
trained autoencoder to extract interesting features. To sum-
marize, this paper makes the following contributions:
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• We present an enhanced membership inference attack in
FL by reconstructing classifiers of a victim and others
through uploaded model parameters.

• Theoretical analyses and practical experiments validate
that parameter sharing of trained classifiers leads to pri-
vacy leakage in federated learning.

• To the best of our knowledge, a framework combining a
GAN and a feature extractor without uploading a trained
classifier is first proposed, achieving the balance between
privacy-preserving and model utility in FL.

• Extensive experiments on four datasets compare our
scheme with other defenses and results manifest our ap-
proach provides a considerably more secure guarantee
without compromising accuracy.

Related Work
GAN in Privacy Applications
GAN (Goodfellow et al. 2014) was first proposed in 2014.
The adversarial loss between a discriminator and a genera-
tor, which attempts to generate images that are indistinguish-
able from the real, is GAN’s successful secret. CycleGAN
(Zhu et al. 2017) proposed a cycle consistency loss to com-
plete the image-to-image translation with unpaired images.
Owing to GAN’s advantage in visual translation, more re-
searchers are considering employing it for defense or attack.
A real-time GAN-based learning procedure (Hitaj, Ateniese,
and Perez-Cruz 2017) was proposed that enables the adver-
sary to generate samples from the target distribution. DaST
(Zhou et al. 2020) utilized GAN to train a substitute model
and launched a model extraction attack. DeepEDN (Ding
et al. 2021) suggested a medical image encryption and de-
cryption network based on CycleGAN. FedCG (Wu et al.
2022) leveraged a conditional GAN to achieve privacy pro-
tection against image reconstruction attacks.

Attack in Federated Learning
Traditional attacks in FL include membership inference at-
tacks, property inference attacks, and image reconstruction
attacks. MIA (Shokri et al. 2017) raised the membership in-
ference attack: given the black-box access to a model, de-
termine whether a given data record is included in the target
dataset. To build an inference attack model, the adversary
needs to create shadow training data for shadow models.
ML-Leaks (Salem et al. 2019) relaxed the assumption and
extended it to more scenarios. Later, additional technologies
(Hayes et al. 2019; Melis et al. 2019; Duan et al. 2023) were
employed to raise the attack, such as GAN.

Property inference attacks infer particular attributes that
hold only for a subset of training data and not for others. The
attribute can be replaced with labels (Fu et al. 2022). Image
reconstruction attacks exploit gradients that users submitted
to the server to restore original samples. With the guidance
of the gradient difference produced by original images and
dummy images, DLG (Zhu, Liu, and Han 2019) carried out
the minimization optimization. The extraction of ground-
truth labels is first proposed in iDLG (Zhao, Mopuri, and
Bilen 2020) as an approach to strengthen the attack. In Grad-
Inversion (Yin et al. 2021), a label recovery algorithm for

data in larger batches and a group consistency regularization
were utilized to rebuild complex images with high fidelity.
Then, a zero-shot approach (Geng et al. 2022) promoted im-
age reconstruction to distributed learning and restored labels
even when a batch of labels has duplicate labels.

Privacy Leakage in FL
Attack Setup
In this paper, we consider a common attack scenario where
the attacker is an honest-but-curious server. It indicates that
the attacker adheres to the federated learning protocol with-
out corrupting the training process. Clients upload their local
parameters (gradients or weights) to the server. These two
parameters can be regarded as comparable when all users
train only one local epoch between two global aggregations
with their all training data. In this assumption, the attack pro-
cess is equivalent to a white-box attack, where the attacker
acquires the knowledge of model parameters and structures.

Label Inference Attack
Each client Ck has a local datasetDk = {(xi, yi)}nk

i=1, where
each sample (xi, yi) has a data sample xi and a ground truth
label yi, and they select bs (batch size) of their local datasets
for training. Since most classifiers categorize via the cross-
entropy loss function, we define the gradients of loss func-
tion w.r.t. network weightsW as:

∇WL(x, y) = − 1

bs

bs∑
i=1

nc∑
j=1

∇W [yi(j) log y
′
i(j)], (1)

where y′i is the logit output of the last layer after softmax
and nc is the number of label categories. When the index
j of output is equal to the ground truth, yi(j) = 1, else
yi(j) = 0. Thus, our goal is to measure the number of im-
ages

∑bs
i=1 yi(j) in each label category j. For example, if

we observe that
∑bs

i=1 yi(0) = 2 and
∑bs

i=1 yi(1) = 2 in
the MNIST dataset which has a batch size of four, then we
conjecture that there are two labels “0” and two labels “1”.

According to GradInversion (Yin et al. 2021), the gra-
dient of each xi w.r.t. the network output zi at index j is
∇zi(j)L(xi, yi) = y′i(j) − yi(j). To achieve our goal from
uploading gradients, we defineWm,j as the weights of mth

unit of the last hidden layer to the output layer at j index and
thus obtain the following equation by using a chain rule:
nm∑
m=1

∇Wm,j
L(x, y) =

1

bs

bs∑
i=1

nm∑
m=1

∂L(xi, yi)

∂zi(j)
· ∂zi(j)
∂Wm,j

=
1

bs

bs∑
i=1

(y′i(j)− yi(j))

nm∑
m=1

∂zi(j)

∂Wm,j
,

(2)

where ∂zi(j)
∂Wm,j

= om,i is mth input of the fully-connected
layer with an image xi and nm is the dimension number of
the last hidden layer. However, the above equation has two
unknown values y′i(j) and om,i in addition to the desired one
yi(j). We estimate the unknown values by feeding random
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samples to the classification model multiple times and derive
sample numbers in each category j:

bs∑
i=1

yi(j) ≈ f(
bs∑
i=1

ỹ′i(j)−
bs ·

nm∑
m=1
∇Wm,j

L(x, y)

õi
), (3)

where õi =
∑nm

m=1 mean(õm,i), ỹ′i and õm,i are generated
from random samples, and f(·) is a mode function from
multiple epochs to improve attacks. Attackers obtain the gra-
dient by using the uploaded classifier parameters, which can
then be utilized to launch attacks and cause privacy leakage.

Membership Inference Attack
The adversary CA possesses a datasetDshadow that includes
some data records from the same distribution that are not
in the target dataset. This security assumption is strong, yet
it maximizes detecting the protection of defenses. The at-
tack relies on overfitting caused by the trained classifica-
tion model, which can be acquired from the submitted pa-
rameters. Considering that overfitting has been mitigated by
model aggregation in FL, we improve the attack by rebuild-
ing different shadow models of a victim and other users.

Given these uploaded model parameters of clients, CA

produces copies of the victim model and other models,
which we denote as Mvictim and Mothers. If client number
K > 2, CA aggregates all models of other users as Mothers.
As depicted in Figure 1, CA randomly divides the Dshadow

into two disjoint sets:Dvictim
shadow andDothers

shadow, and then inputs
them into Mvictim and Mothers respectively, generating the
prediction vectors pvictimshadow and pothersshadow. The former is man-
ually labeled in (member) and the latter is labeled out (non-
member). Next, CA trains the inference model Mattack with
(pvictimshadow, in) and (pothersshadow, out). The attacker has a skepti-
cal dataset and is unable to distinguish between data coming
from the victim and other users. Finally, the adversary feeds
the skeptical dataset into trained Mattack, and the success
rate is the percentage of correctly inferred data records.

Image Reconstruction Attack
Several image recovery optimization functions minimize the
gradient difference between the victim uploaded gradient
∇W and the generated gradient by dummy images x∗ with
dummy or inferred labels y∗:

x∗ = argmin
x

∥∥∥∥∂L(x, y∗;W)

∂W
−∇W

∥∥∥∥2. (4)

We conduct a theoretical investigation of these attacks de-
scribed above, which are caused by sharing trained classifier
parameters and result in privacy leakage. In the Experiments
section, we report detailed comparison attack results under
the protection of our proposal and other defense methods.

Methodology
In PPIDSG, we aim to achieve three objectives: 1) Privacy
Objective: safeguard users’ privacy and resist attacks; 2) Pa-
rameter Objective: avoid trained classifier parameters from
being uploaded when finishing global training in FL; 3) Util-
ity Objective: maintain the model’s classification accuracy.

Figure 1: The enhanced membership inference attack.

Framework of PPIDSG
Figure 2 illustrates our privacy-preserving framework which
mainly consists of three modules: 1) a block scrambling-
based encryption algorithm; 2) an image distribution sharing
method; 3) local classification training. To satisfy “Privacy
Objective”, we employ the encryption algorithm to convert
original images into encrypted images (target domain) and
train the classifier (C) locally. Additionally, data augmenta-
tion (Cubuk et al. 2019) expands original samples while pro-
tecting privacy more effectively. To fulfill “Parameter Objec-
tive”, we deploy the distribution sharing method based on
CycleGAN by transmitting only the parameters of a gener-
ator (G) instead of C to the server. We train G with a dis-
criminator (D) to capture image distribution and eliminate
the cycle consistency loss to prevent G from reconstructing
target images into original images. To achieve “Utility Ob-
jective”, we introduce a feature extractor (F ) that utilizes an
autoencoder (Sellami and Tabbone 2022) to extract interest-
ing features and train it separately from C. Then, a classifi-
cation loss is applied to G to focus on the distribution over
image categories, for a better classification utility.

We consider a federated system with K clients. Each
client Ck has a local dataset Dk. There are N samples in to-
tal. Each client in our paper trains its models locally, upload-
ing only the generator parameters W to the central server.
Then, the server simply aggregates the model parameters in
(t+ 1)

th communication epoch by:

W t+1 ←
K∑

k=1

nk

N
(W t − α∇L(W t;Dk)), (5)

where α and L represent the learning rate and loss function.

Block Scrambling-based Encryption
In this paper, we upload parameters of G that may be uti-
lized by an attacker to generate images that are similar to
the target domain to execute attacks, thus we need to encrypt
the target domain before training. According to DeepEDN
(Ding et al. 2021), an image can be regarded as encrypted
if it can be transformed into a domain that is quite dissim-
ilar to the original. While we can apply any transformation
methods to encrypt images, we prefer the block scrambling-
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Figure 2: The overview of our proposed framework.

based encryption algorithm taking into account the model
utility and encryption timeliness:

• IR: The resulting block can be rotated 0, 90, 180, and 270
degrees.

• IA: The L-bit pixel p(i) can be adjusted with a pseudo-
random bit ri. The new pixel p̂(i) is calculated by

p̂(i) =

{
p(i), ri = 1

p(i)⊕ (2L − 1), ri = 0
. (6)

• IF: The resulting block can be flipped horizontally or ver-
tically or not.

• IC: The colored image block can exchange pixel values
in three color channels.

As illustrated in Algorithm 1, the above operations are
controlled by random keys. We denote the distribution of the
original image domain X as xi ∼ pdata(x) and the distri-
bution of the encrypted image domain X̂ as x̂i ∼ pdata(x̂).
Encrypted images are regarded as a target domain.

Image Distribution Sharing
The fundamental idea of CycleGAN is to transfer original
images into target images while capturing the target distri-
bution. Inspired by the idea, we utilize the structure to per-
form image distribution capture and upload parameters to
finish FL. Also, using the original image instead of noise as
the original domain can further enhance privacy protection.
G consists of three components: an encoder, ResNet blocks,
and a decoder. The encoder, consisting of convolutional lay-
ers, is employed to extract features from original images.
ResNet blocks are mainly responsible for maintaining orig-
inal features and aligning them toward target images. The
decoder consists of deconvolution and convolutional layers,
which restores the feature vector to the image. By distin-
guishing generated images from target images, D aims to

Algorithm 1: Block Scrambling-based Encryption.
Input: original image xi, randomly key Kj , j ∈ {1, · · · , 5}.
Output: encrypted image x̂i.

1: IB(xi): xi with Px × Py pixels be divided into n non-
overlapped blocks B(0)l with Bx ×By pixels, l ∈ [1, n].

2: for each B(0)l , l ∈ [1, n] do
3: B(1)l ← IR(B(0)l , K1);
4: B(2)l ← IA(B(1)l , K2);
5: B(3)l ← IF(B(2)l , K3);
6: B(4)l ← IC(B(3)l , K4); //optional
7: end for
8: IS(B(4)l , K5): Shuffle and assemble all blocks B(4)l to

generate a new encrypted image x̂i with K5.
9: return x̂i

improve the image distribution capture performance. We ap-
ply an adversarial loss without conditional labels to train G
and D. Given training samples {xi}bsi=1 and {x̂i}bsi=1, the ob-
jective can be written as:

L(G,D)
adv = Ex̂i∼pdata(x̂)

[
logD({x̂i}bsi=1)

]
+ Exi∼pdata(x)

[
log(1−D(G({xi}bsi=1)))

]
.

(7)

G tries to minimize the objective and D tries to maximize
it. We add a ℓ1 norm loss function to further constrain se-
mantic information. The semantic loss is:

Lsem =
∑bs

i=1

∥∥GX→X̂(xi; θG)− x̂i

∥∥ . (8)

To lessen the negative effect caused by parameter col-
lapse, we follow CycleGAN to update D with a series of his-
torical images rather than using new images from a separate
epoch. In addition, we add a classification loss computed by
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Policy Dataset ResNet18 LeNet ConvNet
Sigmoid ReLU LReLU Sigmoid ReLU LReLU Sigmoid ReLU LReLU

ATS MNIST 100 98.44 96.88 100 98.44 100 98.44 79.69 70.31
F-MNIST 100 95.31 95.31 100 96.88 98.44 98.44 73.44 71.88
CIFAR10 100 93.75 98.44 100 92.19 92.19 95.31 62.50 60.94

SVHN 100 98.44 100 100 93.75 93.75 95.31 70.31 71.88
EtC MNIST 100 100 100 100 95.31 93.75 93.75 98.44 96.88

F-MNIST 100 96.88 96.88 100 96.88 96.88 100 95.31 92.19
CIFAR10 100 96.88 96.88 100 96.88 96.88 100 92.19 85.94

SVHN 100 93.75 95.31 100 96.88 96.88 100 85.94 87.50

Table 1: The LIA accuracy (%) of different model architectures and activation functions under the protection of ATS and EtC
policy. We speculate that the reason for the low success rate in ConvNet is the MaxPool structure. LReLU: LeakyReLU.

C to G to better focus on categorical information in the dis-
tribution. Images generated by G are gradually aligned to-
ward the target distribution during training. Then, we upload
generator parameters to the central server to enable clients
to complete FL. This also facilitates the training of global G
because of more samples.

Local Classification Training
The feature extractor is introduced to achieve decoupling
training in the non-overlapping and different images among
clients. F is made up of an encoder Enc and a decoder
Dec. We divide Enc into four blocks Encj , where j ∈
{1, 2, 3, 4}. Each encoder block attempts to extract fea-
tures, which are then restored to original dimensional pic-
tures by the decoder. Let x̃i represents a generated image
GX→X̂(xi; θG). The objective of F is to extract efficient
features from generated images by minimizing

Lfea =
∑bs

i=1
∥Dec(Enc(x̃i))− x̃i∥2. (9)

Similarly, we use historical images to train F . Then, we
initialize C and use the parameter as a key to guide the train-
ing of G with the Lcls computed by C. C is initialized with
the key before each beginning of the global communication
round. C receives final features from F and performs local
update with nc classes by minimizing

Lcls = −
bs∑
i=1

nc∑
j=1

yi (j) log y
′
i (j) . (10)

Because F converts encrypted images into efficient fea-
tures, the classification network can be a fully connected
neural network or a simple convolutional neural network.

Full Objective
Above all, our full objective of GAN is

LGAN = L(G,D)
adv + λsemLsem + λclsLcls, (11)

where λ controls the importance of each loss term.

Experiments
Experiment Implementation
Datasets and Setup We carry out experiments on four
datasets: MNIST (Deng 2012), FMNIST (Xiao, Rasul, and

Vollgraf 2017), CIFAR10 (Krizhevsky and Hinton 2009),
and SVHN (Netzer et al. 2011). Then we select one of the
clients to act as a victim and carry out attacks. Our ex-
periments are performed on the PyTorch platform using an
NVIDIA GeForce 3090 Ti GPU.

Defense Baselines We compare our method with several
defenses in federated learning: 1) ATS (Gao et al. 2021) sug-
gests an automatic transformation search to find the ideal im-
age transformation strategy; 2) EtC (Chuman, Sirichotedum-
rong, and Kiya 2019) utilizes a block-based image transfor-
mation method to encrypt images; 3) DP (Wei et al. 2020)
clips gradients and adds Gaussian noise during training; 4)
GC (Zhu, Liu, and Han 2019) performs privacy protection
by pruning gradients; 5) FedCG (Wu et al. 2022) leverages
conditional generative adversarial networks to guarantee pri-
vacy in federated learning. With the privacy budget ϵ/T in T
global training epochs, we denote DP as DP<ϵ, C>, where
C refers to the clipping bound. We also explore GC with
different gradient compression degrees.

Attack Results
Results of Label Inference Attack We perform the at-
tack (LIA) for 10 epochs under the protection of baselines
(batch size is 64). In these baselines, the activation function
is commonly ReLU or Sigmoid. We obtain the following ob-
servations from Table 1 and Table 2: 1) attack success rates
are essentially 100% regardless of the complicated or simple
models with Sigmoid; 2) rates are slightly lower, but most of
them are more than 80% in other activation functions. One
reason why Sigmoid performs better is that its results are
all positive. When users upload classifier parameters, espe-
cially the last few fully connected layers, an attacker can
effectively perform label inference, despite any protection
measures they have taken. Compared with them, the attacker
can’t access penultimate gradients without sharing trained
classifier parameters, making PPIDSG resist the attack.

Results of Membership Inference Attack We leverage
test datasets as shadow datasets. A fully connected network
with layer sizes of 10, 128, and 2 (the output layer) is ap-
plied as Mattack. We select the Adam optimizer and train the
model for 100 epochs with a learning rate of 0.005. We start
by comparing with ML-Leaks (Salem et al. 2019), which
exploits a single model for an attack, and uses two different
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DP1 DP2 GC1 GC2 FedCG
Sigmoid 100 100 100 100 100
ReLU 90.63 92.19 89.06 90.63 82.81

LReLU 92.19 93.75 93.75 93.75 84.37

Table 2: The LIA accuracy (%) under other protection poli-
cies in LeNet with the CIFAR10 dataset. DP1: DP<5,10>,
DP2: DP<20,5>, GC1: GC (10%), GC2: GC (40%). More
results are presented in the Appendix.

Knowledge MIA Accuracy (%)
Prediction vectors (ML-Leaks) 51.92

Prediction vectors (ours) 84.30
original images (MIA) 45.81

Table 3: Membership inference attack (MIA) accuracy using
different data records and methods in the CIFAR10 dataset.

data types as inputs to Mattack in ATS. As illustrated in Ta-
ble 3, it is difficult to attack with a single model. The obser-
vation demonstrates that our enhanced attack can improve
the attack effect when overfitting is weakened in FL. Addi-
tionally, we discover that the uniform image distribution pre-
vents the image knowledge from attacking effectively. Then
we extend the attack to all defense strategies and assume that
the attacker has a suspect dataset containing images from
the victim and another user (part) or other users (all). Fig-
ure 3 presents that only EtC and our method obtain lower
attack effects than other defenses. Uploading a trained clas-
sifier causes the exposure of overfitting, which further leads
to privacy leakage. We speculate that EtC achieves MIA re-
sistance by encrypting the original image distribution. Our
proposal combines the above technique with the local clas-
sification model training to achieve privacy-preserving.

Results of Image Reconstruction Attack Due to the lack
of full model parameters and loss terms, the adversary fails
to undertake this attack in PPIDSG and can only recover
images from the outputs of G. Figure 4 visually shows
evaluations of image reconstruction attacks (RS). Compared
to ATS and GC (10%), the attacker with other defense
methods cannot recover original images visually. Moreover,
we compare the privacy-preserving capability according to
PSNR values between original and reconstructed images.
The lower the PSNR score, the higher the privacy-preserving
of this defense policy. We observe that PPIDSG achieves the
lowest PSNR value in most datasets, implying the strongest
privacy protection. Although the value is high in the SVHN
dataset, the attacker cannot visually restore images.

By sharing classifier parameters to complete FL, not all
baselines can protect against RS. Additionally, these meth-
ods also perform poorly in LIA and MIA. It indicates that
sharing trained classifier parameters is a major privacy leak-
age in FL, and it may not be a suitable method for protection.

Defense Performance
Hyperparameter Configurations Our experiments are
carried out on a FL system (McMahan et al. 2017) with ten

Figure 3: The MIA accuracy (%) of different victim data
proportion with defense policies in the CIFAR10 dataset.
Full dataset results are presented in the Appendix.

Figure 4: Qualitative and quantitative results (PSNR: dB) of
RS. Full results are shown in the Appendix.

clients, each of whom has the same amount of training data
from the identical distribution. We set batch size as 64, im-
age pool size as 10, and block sizes Bx and By in the encryp-
tion algorithm are 4. We apply an Adam optimizer and set
the learning rate to 0.0002 in G and D. For F and C, we use
a SGD optimizer and set the learning rate to 0.01 (weight
decay is 0.001). Their initial learning rates are constant in
the first 20 global iterations and then decrease linearly until
they converge to 0. We set λsem = 1, λcls = 2 and run 50
global rounds. A random user is selected for accuracy test-
ing since there is no global classification model in PPIDSG.
More details can be found in the Appendix.

Results Table 4 verifies the highest model classification
accuracy of our method compared with other techniques,
achieving the best utility in all datasets within a tolerable
time overhead (see Appendix), especially in color images
with an accuracy exceeding 70%. In addition, the classifier
architecture complexity in ATS and EtC, which we exploit in
this paper as ResNet18, greatly influences the model utility,
whereas our feature extractor improves model performance
while reducing classifier complexity. In conclusion, our so-
lution achieves competitive accuracy and outperforms others
in terms of privacy-preserving.

To further investigate the model effectiveness of differ-
ent modules, we conduct comparative studies as depicted in
Figure 5. We have the following observations: 1) Compared
with “original image” (benchmark) and “encrypted image”
which take original images and encrypted images as inputs
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Policy Classification Accuracy (%)
MNIST F-MNIST CIFAR10 SVHN

ATS 98.96 89.23 59.67 85.22
EtC 98.06 89.41 53.34 78.70
DP1 97.42 85.58 49.29 82.70
DP2 97.54 85.01 44.43 80.28
GC1 97.61 85.81 54.07 84.36
GC2 97.22 85.09 50.91 79.96

FedCG 98.60 88.00 53.20 79.71
ours 99.43 91.60 70.56 91.53

Table 4: Classification accuracy results of test datasets. Full
results are obtained in the Appendix.

Figure 5: Comparison of defense accuracy under different
modules in the CIFAR10 dataset.

to F which jointly train with C respectively, our method has
a slightly lower accuracy than the benchmark, exceeding the
direct encryption policy. This indicates our PPIDSG can ex-
tract useful features to maintain model utility, demonstrating
that merely sharing the image distribution can finish feder-
ated learning. 2) Our approach is more stable than “local
train” and “joint train”, which train all models locally and
jointly train F with C, respectively. It indicates our method
can maintain a stable model while maintaining classification
accuracy. Also, it explains why we train F and C indepen-
dently and share the parameter of G. 3) We also notice that
“no update”, which does not train the classifier and only uses
the initial key, converges slowly. Therefore, we only employ
the initial key at the beginning of each global round.

We also explore the following aspects: 1) the impact of
different client numbers; 2) the effect of various image block
sizes. As anticipated in Figure 6, the block size has almost
no effect on model convergence, while the user number has
a slight effect on classification accuracy.

Security Analyses
Classifier Key The parameter of C, which has a total of
37764106 parameters in CIFAR10 and SVHN datasets and
29899786 parameters in MNIST and F-MNIST datasets, is
a crucial privacy factor in the testing process. We show how
different parameters affect the test result by applying the cor-
responding key0 and two random keys. In the left of Figure
7, only key0 can perform valid testing while others cannot.

Figure 6: Test accuracy of different client numbers with all
clients (left) and different block sizes (right). More results
are presented in the Appendix.

Figure 7: Left: Test accuracy (%) of classifier keys with all
clients. Right: Pixel distribution between the original and
generated images.

Target Image The image space in the target domain de-
termines the difficulty of using an exhaustive attack. We
formulate NIR(n), NIA(n), NIF(n), and NIC(n) as possi-
ble states of the encryption algorithm, and the target image
space Nenc(n) is represented by:

Nenc(n) = NIR(n) ·NIA(n) ·NIF(n) ·NIC(n) · n!
= 4n · 2n · 3n · 6n · n!, (12)

where n = (Px × Py)/(Bx ×By), so that the target domain
is a huge space that is difficult to decrypt.

Generated Image We analyze the histograms of the orig-
inal and generated images on the right of Figure 7. Sensitive
data is protected visually, and the pixel distribution is more
uniform statistically. Particularly, blank areas of the gener-
ated image lead to abnormal distribution of final pixel areas,
which we speculate can be compensated by improving the
model aggregation and refining the image loss Lsem.

Conclusion
We presented and supported the assumption that sharing
trained classification model parameters is the main problem
for privacy leakage in federated learning. To solve the prob-
lem, we subsequently designed a novel privacy-preserving
method (PPIDSG) that combines a block scrambling-based
encryption algorithm, an image distribution sharing method,
and local classification training. Results showed that our
scheme can successfully defend against attacks with high
model utility. Future work will focus on: 1) improving the
model aggregation and stable training; 2) enhancing users’
capacity to capture the image distribution.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14278



Acknowledgments
This work was supported in part by the National Natural
Science Foundation of China with Grant No. 62172383,
No. 62231015, and No. 61802357, Anhui Provincial Key
R&D Program with Grant No. S202103a05020098, Re-
search Launch Project of University of Science and Tech-
nology of China with Grant No. KY0110000049.

References
Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H. B.;
Mironov, I.; Talwar, K.; and Zhang, L. 2016. Deep learn-
ing with differential privacy. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Se-
curity (CCS), 308–318.
Chuman, T.; Sirichotedumrong, W.; and Kiya, H. 2019.
Encryption-then-compression systems using grayscale-
based image encryption for JPEG images. IEEE Transac-
tions on Information Forensics and Security, 14(6): 1515–
1525.
Cubuk, E. D.; Zoph, B.; Mane, D.; Vasudevan, V.; and Le,
Q. V. 2019. AutoAugment: Learning augmentation strate-
gies from data. In IEEE/CVF Conference on ComputerVi-
sion and Pattern Recognition (CVPR), 113–123.
Deng, L. 2012. The MNIST database of handwritten digit
images for machine learning research. IEEE Signal Process-
ing Magazine, 29(6): 141–142.
Ding, Y.; Wu, G.; Chen, D.; Zhang, N.; Gong, L.; Cao, M.;
and Qin, Z. 2021. DeepEDN: A deep-learning-based image
encryption and decryption network for internet of medical
things. IEEE Internet of Things Journal, 8(3): 1504–1518.
Duan, J.; Kong, F.; Wang, S.; Shi, X.; and Xu, K. 2023.
Are diffusion models vulnerable to membership inference
attacks? arXiv:2302.01316.
Fu, C.; Zhang, X.; Ji, S.; Chen, J.; Wu, J.; Guo, S.; Zhou,
J.; Liu, A. X.; and Wang, T. 2022. Label Inference Attacks
Against Vertical Federated Learning. In Proceedings of the
31st USENIX Security Symposium, 1397–1414.
Gao, W.; Guo, S.; Zhang, T.; Qiu, H.; Wen, Y.; and Liu, Y.
2021. Privacy-preserving collaborative learning with auto-
matic transformation search. In IEEE/CVF Conference on
ComputerVision and Pattern Recognition (CVPR), 114–123.
Geng, J.; Mou, Y.; Li, F.; Li, Q.; Beyan, O.; Decker, S.; and
Rong., C. 2022. Towards general deep leakage in federated
learning. In International Workshop on Trustable, Verifi-
able and Auditable Federated Learning in Conjunction with
AAAI.
Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio., Y.
2014. Generative adversarial nets. In Advances in Neural
Information Processing Systems (NeurIPS), 2672–2680.
Guo, P.; Wang, P.; Zhou, J.; Jiang, S.; and Patel, V. M.
2021. Multi-institutional collaborations for improving deep
learning-based magnetic resonance image reconstruction us-
ing federated learning. In IEEE/CVF Conference on Com-
puterVision and Pattern Recognition (CVPR), 2423–2432.

Hayes, J.; Melis, L.; Danezis, G.; and Cristofaro, E. D. 2019.
LOGAN: Membership Inference Attacks Against Genera-
tive Models. Proceedings on Privacy Enhancing Technolo-
gies.
Hitaj, B.; Ateniese, G.; and Perez-Cruz, F. 2017. Deep mod-
els under the GAN: Information leakage from collaborative
deep learning. In Proceedings of the ACM SIGSAC Con-
ference on Computer and Communications Security (CCS),
603–618.
Huang, Y.; Song, Z.; Li, K.; and Arora, S. 2020. InstaHide:
Instance-hiding schemes for private distributed learning. In
Proceedings of the 37th International Conference on Ma-
chine Learning (ICML), 4457–4468.
Jiang, M.; Wang, Z.; and Dou, Q. 2022. HarmoFL: Har-
monizing Local and Global Drifts in Federated Learning on
Heterogeneous Medical Images. In Proceedings of the 36th
AAAI Conference on Artificial Intelligence (AAAI), 914–
922.
Jin, W.; Yao, Y.; Han, S.; Joe-Wong, C.; Ravi, S.; Aves-
timehr, S.; and He, C. 2023. FedML-HE: An Efficient
Homomorphic-Encryption-Based Privacy-Preserving Fed-
erated Learning System. arXiv:2303.10837.
Krizhevsky, A.; and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images.
Liao, X.; Liu, W.; Zheng, X.; Yao, B.; and Chen, C. 2023.
PPGenCDR: A Stable and Robust Framework for Privacy-
Preserving Cross-Domain Recommendation. In Proceed-
ings of the 37th AAAI Conference on Artificial Intelligence
(AAAI), 4453–4461.
Liu, Q.; Chen, C.; Qin, J.; Dou, Q.; and Heng, P.-A. 2021.
FedDG: Federated domain generalization on medical image
segmentation via episodic learning in continuous frequency
space. In IEEE/CVF Conference on ComputerVision and
Pattern Recognition (CVPR), 1013–1023.
McMahan, H. B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-efficient learning of
deep networks from decentralized data. In Proceedings of
the 20th International Conference on Artificial Intelligence
and Statistics, 1273–1282.
Melis, L.; Song, C.; Cristofaro, E. D.; and Shmatikov, V.
2019. Exploiting Unintended Feature Leakage in Collabora-
tive Learning. In IEEE Symposium on Security and Privacy,
691–706.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and
Ng, A. Y. 2011. Reading digits in natural images with un-
supervised feature learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning.
Phong, L. T.; Aono, Y.; Hayashi, T.; Wang, L.; and Moriai,
S. 2018. Privacy-preserving deep learning via additively ho-
momorphic encryption. IEEE Transactions on Information
Forensics and Security, 13(5): 1333–1345.
Salem, A.; Zhang, Y.; Humbert, M.; Berrang, P.; Fritz, M.;
and Backes, M. 2019. Ml-leaks: Model and data indepen-
dent membership inference attacks and defenses on machine
learning models. In 26th Annual Network and Distributed
System Security Symposium (NDSS).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14279



Sellami, A.; and Tabbone, S. 2022. Deep neural networks-
based relevant latent representation learning for hyperspec-
tral image classification. Pattern Recognition, 121: 108224.
Shokri, R.; Stronati, M.; Song, C.; and Shmatikov, V. 2017.
Membership inference attacks against machine learning
models. In IEEE Symposium on Security and Privacy (SP),
3–18.
Sun, J.; Li, A.; Wang, B.; Yang, H.; Li, H.; and Chen,
Y. 2021. Soteria: Provable defense against privacy leak-
age in federated learning from representation perspective.
In IEEE/CVF Conference on ComputerVision and Pattern
Recognition (CVPR), 9307–9315.
Wei, K.; Li, J.; Ding, M.; Ma, C.; Yang, H. H.; Farokhi, F.;
Jin, S.; Quek, T. Q. S.; and Poor, H. V. 2020. Federated
Learning With Differential Privacy: Algorithms and Perfor-
mance Analysis. IEEE Transactions on Information Foren-
sics and Security, 15: 3454–3469.
Wu, Y.; Kang, Y.; Luo, J.; He, Y.; Fan, L.; Pan, R.; and Yang,
Q. 2022. FedCG: Leverage Conditional GAN for Protecting
Privacy and Maintaining Competitive Performance in Fed-
erated Learning. In International Joint Conference on Arti-
ficial Intelligence (IJCAI), 2334–2340.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning
Algorithms. arXiv:1708.07747.
Xie, K.; Zhang, Z.; Li, B.; Kang, J.; Niyato, D.; Xie, S.;
and Wu, Y. 2022. Efficient Federated Learning With Spike
Neural Networks for Traffic Sign Recognition. IEEE Trans-
actions on Vehicular Technology, 71(9): 9980–9992.
Yin, H.; Mallya, A.; Vahdat, A.; Alvarez, J. M.; Kautz, J.;
and Molchanov, P. 2021. See through gradients: Image batch
recovery via gradinversion. In IEEE/CVF Conference on
ComputerVision and Pattern Recognition (CVPR), 16332–
16341.
Yu, Y.; Liu, Q.; Wu, L.; Yu, R.; Yu, S. L.; and Zhang, Z.
2023. Untargeted Attack against Federated Recommenda-
tion Systems via Poisonous Item Embeddings and the De-
fense. In Proceedings of the 37th AAAI Conference on Arti-
ficial Intelligence (AAAI), 4854–4863.
Zhao, B.; Mopuri, K. R.; and Bilen, H. 2020. idlg: Improved
deep leakage from gradients. arXiv:2001.02610.
Zhou, M.; Wu, J.; Liu, Y.; Liu, S.; and Zhu, C. 2020.
DaST: Data-free substitute training for adversarial attacks.
In IEEE/CVF Conference on ComputerVision and Pattern
Recognition (CVPR), 231–240.
Zhu, J.; Yao, R.; and Blaschko, M. B. 2023. Surrogate Model
Extension (SME): A Fast and Accurate Weight Update At-
tack on Federated Learning. In International Conference on
Machine Learning (ICML).
Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Un-
paired image-to-image translation using cycle-consistent ad-
versarial networks. In IEEE International Conference on
Computer Vision (ICCV), 2242–2251.
Zhu, L.; Liu, Z.; and Han, S. 2019. Deep leakage from gradi-
ents. In Advances in Neural Information Processing Systems
(NeurIPS).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14280


