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1Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
2Faculty of Computer Science, AGH University of Krakow, Krakow, Poland

mikolaj.malkinski.dokt@pw.edu.pl, mandziuk@mini.pw.edu.pl

Abstract

Abstract Visual Reasoning (AVR) comprises a wide selec-
tion of various problems similar to those used in human IQ
tests. Recent years have brought dynamic progress in solving
particular AVR tasks, however, in the contemporary litera-
ture AVR problems are largely dealt with in isolation, leading
to highly specialized task-specific methods. With the aim of
developing universal learning systems in the AVR domain,
we propose the unified model for solving Single-Choice Ab-
stract visual Reasoning tasks (SCAR), capable of solving var-
ious single-choice AVR tasks, without making any a priori
assumptions about the task structure, in particular the num-
ber and configuration of panels. The proposed model relies
on a novel Structure-Aware dynamic Layer (SAL), which
adapts its weights to the structure of the considered AVR
problem. Experiments conducted on Raven’s Progressive Ma-
trices, Visual Analogy Problems, and Odd One Out prob-
lems show that SCAR (SAL-based models, in general) effec-
tively solves diverse AVR tasks, and its performance is on par
with the state-of-the-art task-specific baselines. What is more,
SCAR demonstrates effective knowledge reuse in multi-task
and transfer learning settings. To our knowledge, this work
is the first successful attempt to construct a general single-
choice AVR solver relying on self-configurable architecture
and unified solving method. With this work we aim to stim-
ulate and foster progress on task-independent research paths
in the AVR domain, with the long-term goal of development
of a general AVR solver.

Introduction
For many years, Abstract Visual Reasoning (AVR) has been
a highly challenging area of artificial intelligence (AI) re-
search (Hernández-Orallo et al. 2016). In a typical AVR
task, the solver has to identify a set of rules (visual patterns)
that govern the distribution of a set of 2D shapes with cer-
tain attributes. The shapes are scattered across several image
panels, which are arranged in a specific 2D structure. Popu-
larised by human IQ tests, the prevailing form of task repre-
sentation is a single-choice matrix, where a test-taker has to
select one of the panels as a task answer. A common exam-
ple are Raven’s Progressive Matrices (RPMs) (Raven 1936;
Raven and Court 1998) that consist of a 3× 3 grid of image
panels with the bottom-right panel being missing. The task
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is to complete the grid with one of the panels picked from a
separate set of answer panels that best fits the arrangement
of the image panels. Top-left part of Fig. 1 presents an RPM
with 9 image panels and 8 answer panels (A – H). Additional
examples are presented in Appendix B in the supplementary
material (Małkiński and Mańdziuk 2023a).

Recently, the AVR field has witnessed an increasing in-
terest from the deep learning (DL) community (Małkiński
and Mańdziuk 2023b). While early works reported success-
ful use of DL models to solve easier instances of AVR tasks,
e.g. certain RPMs (Hoshen and Werman 2017; Mańdziuk
and Żychowski 2019), soon after the effectiveness of DL
models in solving more demanding matrices has been ques-
tioned (Barrett et al. 2018; Zhang et al. 2019a). Concur-
rently, a wide suite of AVR benchmarks, extending beyond
the concept of RPMs, has been proposed. For instance, Vi-
sual Analogy Problems (VAPs) (Hill et al. 2019) present
a conceptual abstraction challenge similar to RPMs, but
with different numbers of context and answer panels. An-
other example are Odd One Out (O3) tests (Mańdziuk and
Żychowski 2019) that require the subject to identify the
panel that stands out from the remaining ones. Though all
the above AVR problems have abstract reasoning at their
core, they differ in the number of panels, task structure, and
the rules (visual patterns) that conceptually underlie their
matrix representations.

Due to the variety of AVR problems, numerous ap-
proaches to tackle them have been proposed (Małkiński and
Mańdziuk 2022). In effect, for the most popular AVR tasks
a steady research progress has been observed, and the per-
formance of the methods reached, or even surpassed, the
human level (Wu et al. 2020). Despite impressive perfor-
mance, contemporary methods largely focus on solving sin-
gle tasks, often by embedding task-specific design choices
into the model’s architecture, and cannot be easily eval-
uated on other, even similar problems. Consequently, the
generality and wider applicability of these solution meth-
ods remains unclear. What is more, the mainstream research
commonly utilizes well-established benchmarks with large
amounts of available training instances, as the performance
of DL AVR methods, when evaluated in low-data regimes,
rapidly decreases (Zhuo and Kankanhalli 2021). On the con-
trary, human IQ tests which incorporate AVR tasks often as-
sume that the solver has limited prior experience with the
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ŷ

VAP model

ŷ
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Figure 1: STL vs MTL. In this paper, we consider a diverse set of AVR tasks including RPMs, VAPs, and O3 tests (top). Existing
literature deals with AVR tasks in isolation, which leads to the development of task-specific methods with limited applicability
to other, even related problems (bottom left). Instead, we propose a single self-configurable model capable of dealing with
diverse AVR tasks, thus intrinsically facilitating MTL settings (bottom right).

tests, enabling less biased evaluation of fluid intelligence (as
opposed to crystallised intelligence, which depends on ex-
isting knowledge that can be acquired) (Hofstadter 1995).

To address the above limitations and facilitate develop-
ment of universal AVR solvers, we:
1. Propose a unified model for solving Single-Choice Ab-

stract visual Reasoning tasks (SCAR), with no assump-
tions regarding the number of panels or the task struc-
ture and layout. The key concept of the model is a linear
Structure-Aware dynamic Layer (SAL), which adapts its
structure to the current problem instance, thus enabling
to solve diverse AVR tasks with a common model archi-
tecture.

2. Explore multi-task learning (MTL) (Caruana 1997) and
transfer learning (TL) formulations in the AVR domain,
with knowledge reuse between diverse tasks.

3. Experimentally evaluate the proposed SCAR and
SCL+SAL models on five AVR benchmarks, including
RPMs, VAPs, and O3 tests, in STL (single-task learning),
MTL and TL setups. In all three setups, the results prove
high effectiveness of SAL-based models, which visibly
outperform two universal learning benchmark models,
and are on par with the state-of-the-art task-specific SCL
model in the case of solving RPMs – the most popular
AVR task.

One of the aims of this work is to shift the focus of future
AVR research from task-specific methods towards general
models applicable to diverse AVR tasks.

Related Work
Tasks. Early AVR works concentrate on RPMs, a well-
established benchmark used in measuring human intel-

ligence. PGM (Barrett et al. 2018), I-RAVEN (Zhang
et al. 2019a; Hu et al. 2021), and G-set (Mańdziuk and
Żychowski 2019; Tomaszewska, Żychowski, and Mańdziuk
2022) datasets present RPMs composed of a 3 × 3 grid of
context panels, with up to 8 answer panels to choose from.
The VAP benchmark (Hill et al. 2019), structurally similar
to RPMs, comprises matrices with a 2 × 3 context grid and
up to 4 answer panels. Differently, O3 tests (Mańdziuk and
Żychowski 2019) align up to 6 images in a single row and
require the subject to detect the odd panel, which stands
out from the remaining ones. While in this work we con-
centrate on these five datasets which present sufficient di-
versity to evaluate knowledge reuse in the AVR domain,
there are also other relevant tasks that could be of interest
for future work. In the SVRT dataset (Fleuret et al. 2011)
context panels are split into two groups, each of them con-
taining shapes with certain attributes that conform to a dis-
tinct rule (e.g. one shape inside the other vs two separated
shapes). Given two test panels, the role of the subject is to
assign them to a matching group. A similar setting is consid-
ered in Bongard Problems (Bongard 1968) and the Bongard-
LOGO (Nie et al. 2020) dataset.

AVR solvers. A frequent design choice made in models
for solving AVR tasks is to employ a convolutional back-
bone which processes each panel separately, producing a
vector embedding. Next, various ways have been explored
to aggregate these panel embeddings into the model’s pre-
diction. SRAN (Hu et al. 2021) involves three panel repre-
sentation pathways covering single images, rows/cols, and
pairs of rows/cols, each processed with a dedicated con-
volutional module. These representations are then aggre-
gated using a sequence of multi-layer perceptrons (MLPs).
SCL (Wu et al. 2020) proposes the scattering transforma-
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tion which merges panel representations with the help of an
MLP. However, together with other related methods (Zheng,
Zha, and Wei 2019; Spratley, Ehinger, and Miller 2020;
Wang, Jamnik, and Lio 2020; Benny, Pekar, and Wolf 2021;
Zhuo and Kankanhalli 2021), these approaches incorporate
strong task-specific biases into their design (e.g. by utiliz-
ing a dense layer with the number of input neurons be-
ing determined by the number of panels in the considered
problem instance), limiting their applicability to other tasks
with a different structure or number of panels. Some meth-
ods take a more universal approach by incorporating neural
modules that operate on a set of panel embeddings, without
making explicit assumption on the number of input objects.
WReN (Barrett et al. 2018) employs the Relation Network
(RN) (Santoro et al. 2017), which groups input objects into
pairs and computes their joint representation. The Recurrent
Neural Network (RNN) (Hill et al. 2019) aligns inputs in
a sequence and processes them successively, updating their
internal representation along the way. Nevertheless, a limita-
tion of these more universal methods is their limited aware-
ness of relative panel positions. This issue is partly miti-
gated in (Barrett et al. 2018) by concatenating position en-
codings with panel embeddings. Contrary to the existing ap-
proaches, we propose a model capable of processing AVR
tasks with diverse structure and variable number of panels
through exploiting a neural layout-aware layer, which dy-
namically adapts its structure to a particular input instance.

Dynamic neural modules. The sample-wise structural
layer adaptability of the proposed model relates to the
branch of DL research that focuses on designing dynamic
neural modules (Han et al. 2021), which adapt their compu-
tation in a sample-dependent manner, as opposed to static
modules, which perform the same operation for each data
point. In particular, conditional computation methods adapt
the network’s architecture by gating access to specific neu-
rons based on the input, leading to reduced inference cost
and greater expressivity (Bengio, Léonard, and Courville
2013; Shazeer et al. 2017). In contrast, the layer proposed
in this work in each forward pass utilizes all available pa-
rameters in a differentiable manner, alleviating certain opti-
mization challenges related to sparse models (Bengio et al.
2015). Other dynamic modules adapt kernel sampling loca-
tions in convolutional networks (Dai et al. 2017; Zhu et al.
2019), or directly adjust kernel weights (Gao et al. 2020).
Alternatively, sample-wise direct model parameter predic-
tion has been explored (Schmidhuber 1992) and has found
its applications to linear (Bello 2021) and convolutional (Jia
et al. 2016) layers. In contrast, we rely on a 2D structure
of the input to form a linear projection layer with dynamic
weights, without taking into account input values, resulting
in a simpler and parameter-efficient module.

Method
Considering each AVR dataset as a separate task t ∈ T ,
we define it as t = ({Mi}Nt

i=1, St). Here, {Mi}Nt
i=1 is a set

of Nt problem instances, Mi = (Xi, yi) is a specific prob-
lem instance, Xi = {xi,j}Pt

j=1 = {xCi,j}
Ct
j=1 ∪ {xAi,j}

At
j=1 is

a set of Pt matrix panels which can be partitioned into Ct

context panels and At answer panels, xi,j ∈ [0, 1]h×w is a
greyscale image with height h and width w, yi ∈ [1, At] is
an index of the correct answer, and St is the task structure
which specifies the layout of the panels (e.g. that context
panels are arranged in an r × c grid, where r/c is the num-
ber of rows/columns, resp.). In general, a model for solving
matrices from t has the following form:

Ft({xi,j}Pt
j=1) = ŷi (1)

A common approach to solve single-choice AVR tasks, is to
arrange panels Xi into At groups {χi,k}At

k=1, such that the
group χi,k = {xi,j}Itj=1 ⊂ Xi corresponds to the answer k,
where It is the number of panels in the group. Taking RPMs
as an example, for a given RPM instanceMi, the groups can
be formed by filling in the context grid with each answer
panel, giving χi,k = {xCi,j}

Ct
j=1∪{xAi,k} and It = Ct+1 = 9.

The group that conforms to the highest number of RPM rules
defines the completed form of the (solved) matrix Mi.

To reflect this approach in a DL framework, contemporary
approaches proposed to: 1) embed each input panel xi,j with
a convolutional encoder Et to a latent representation hi,j ∈
Rdh , 2) arrange the embeddings into At groups {Hi,k}At

k=1,
where group Hi,k ⊂ {hi,j}Pt

j=1 corresponds to answer k,
3) fuse the embeddings inside each group with a reasoning
module Gt to generate a joint embedding gi,k ∈ Rdg , 4) em-
ploy a decoder D to convert the joint embedding to an align-
ment score si,k ∈ R, 5) transform the resultant scores into a
probability distribution p̂i over the set of available answers,
6) return the answer corresponding to the highest probability
as the model’s prediction ŷi:
1) Et(xi,j) = hi,j 2) ARRANGE({hi,j}Pt

j=1) = {Hi,k}At

k=1

3) Gt(Hi,k | St) = gi,k 4) Dt(gi,k) = si,k (2)

5) SOFTMAX({si,k}At

k=1) = p̂i 6) ARG MAX p̂i = ŷi

Insofar, models were developed with the aim of tackling a
specific task, without much consideration for generalizing
to other problems. To a large extent, this led to task-specific
models which assume It and St in advance, and incorporate
them directly into their architecture. To lift these assump-
tions and bolster universality of AVR models, we i) propose
a neural module which dynamically adapts to matrices with
various It and St, ii) embody it in an end-to-end architecture
for solving AVR tasks, and iii) demonstrate how the method
can be applied to solving tasks with diverse structures.

Dynamic Weight Adaptation
To solve various AVR tasks with a single unified model ar-
chitecture, we start by designing a differentiable computa-
tion layer ψ(Hi,k | St) = vi,k which produces a latent repre-
sentation vi,k ∈ Rdv for a set of It panel embeddings Hi,k,
with a layout defined by the task structure St. As we dis-
cuss in the next section, ψ will serve as the first layer in G,
and vi,k will be transformed to gi,k by the subsequent lay-
ers of G. To instantiate ψ, we propose the Structure-Aware
dynamic Layer (SAL) – see Fig. 2:

W(W ∗ | St) =W CONCAT(Hi,k) = Gi,k

WTGi,k +B = vi,k (3)
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Figure 2: Structure-Aware dynamic Layer. SAL enables processing of AVR tasks with diverse structures by adapting its weights
to the problem instance. The figure illustrates two separate forward passes through the layer for an RPM (top) and a VAP
matrix (bottom). From left, the panelsXi belonging to a single problem instance are processed with an encoder E . The resultant
embeddings {hi,j} are arranged into At groups {Hi,k}. Next, the figure illustrates further processing of a single group Hi,1

for both matrices. Thanks to SAL’s adaptability, the resultant vector vi,1 ∈ Rdv has the same dimensions irrespectively of the
considered task, thus enabling uniform processing in the subsequent model layers.

From a high-level perspective, SAL can be viewed as a lin-
ear layer with weights W ∈ Rr·c·dh×dv , where r/c is the
number of rows/columns in the context grid, and B ∈ Rdv

are optional biases. In contrast to the widely-adopted linear
layer with static weights, the matrix W in SAL is computed
dynamically by the transformation W , based on the under-
lying weight matrix W ∗ ∈ RR×C×dh×dv , where R and C
are its row and column dimensions, resp. Specifically, W
utilizes a sliding window, which is adapted according to the
task structure St, to unfold the first two dimensions of W
from R × C to dr × r × dc × c (Eq. 4), averages along the
first and third dimensions (Eq. 5), and flattens the matrix into
2D form (Eq. 6):

SLIDINGWINDOW(W ∗|St) =W † ∈ Rdr×r×dc×c×dh×dv

(4)

1

dr

1

dc

dr∑
i=1

dc∑
k=1

W †
ijklmn =W ‡

jlmn ∈ Rr×c×dh×dv (5)

FLATTEN(W ‡, 1 : 3) =W ∈ Rr·c·dh×dv (6)

where dr = R
r and dc = C

c . The SAL input is constructed by
concatenating the embedding vectors Hi,k, to obtain Gi,k ∈
Rr·c·dh .

Multi-head SAL. On top of the default formulation, we
propose a multi-head version of SAL. In this setting, each
embedding vector hi,j from {hi,j}Pt

j=1 is partitioned into a
set of L vectors {hi,j,l}Ll=1, where hi,j,l = hi,j [(l − 1)dl :

ldl] ∈ Rdl , and dl = dh

L . The resultant set of panel em-
beddings {{hi,j,l}Ll=1}

Pt
j=1 is processed in parallel for each

l with the arrangement operator (ARRANGE in Eq. 2) and
ψ, leading to {vi,k,l}Ll=1. The vectors are then concate-
nated producing vi,k, which can be processed by the subse-
quent layers of G. The above multi-head SAL variant, with
L = 20, was used in all conducted experiments.

Model Architecture
We propose the unified model for solving Single-Choice Ab-
stract visual Reasoning tasks (SCAR), which is an end-to-
end architecture based on SAL, illustrated in Fig. 3. A de-
tailed description of all SCAR hyperparameters is provided
in Appendix C (Małkiński and Mańdziuk 2023a).

SCAR starts with a panel encoder E which processes each
xi,j with a 4-layer convolutional module to extract low-level
image features. Each layer comprises a 2D 3×3 convolution,
2D Batch Normalization (Ioffe and Szegedy 2015), and the
ReLU (Nair and Hinton 2010) activation. The output of the
module is flattened along the spatial dimensions to a 2D ma-
trix and processed with a token mixer module, which fuses
feature representations from different spatial regions of the
considered panel. Token mixer is composed of Layer Nor-
malization (Ba, Kiros, and Hinton 2016), two linear layers
with the GELU (Hendrycks and Gimpel 2016) nonlinear-
ity in-between, and a residual connection. Next, a channel
mixer module consisting of two 1D 1×1 convolutions inter-
leaved with GELU is employed to mix features from a given
spatial region and flatten the matrix to a 1D vector. Another
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token mixer transforms the flattened vector into the panel
embedding hi,j .

Next, the resultant panel embeddings {hi,j}Pt
j=1 are ar-

ranged into At groups {Hi,k}At

k=1. Each group is then pro-
cessed separately by the reasoning module G, which consists
of SAL, GELU, channel mixer, token mixer, and a linear
layer that produces gi,k. Lastly, two linear layers are inter-
leaved with GELU to map gi,k onto the predicted score si,k.

Unified Reasoning
The proposed model is applied to three challenging AVR
problems of different structure – for RPMs r = c = 3, for
VAPs r = 2 and c = 3, and for O3 tests r = 1 and c ∈
{4, 5, 6}. To enable solving these tree diverse tasks with a
common SCAR model, the following design choices have
been made.

xi,j
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Figure 3: SCAR architecture. Each input panel xi,j is em-
bedded separately with the panel encoder E to a latent repre-
sentation hi,j . The embeddings are arranged into At groups
{Hi,k}At

k=1. The figure depicts processing of a single group
Hi,k corresponding to answer k. Vectors belonging to this
group are fused and processed with the reasoning module G.
The resultant representation gi,k is used to predict the index
of the correct answer and optionally the encoded rules.

SCAR adaptation to diverse structures. The proposed
formulation of dynamic weight adaptation in SAL utilizes an
underlying weight matrix W ∗, for which R and C (its first
two dimensions) have to be evenly divisible by r and c, see
Eq. 4. To instantiate SCAR, we calculate the least common
multiple of all possible values for r ∈ {1, 2, 3} and c ∈
{3, 4, 5, 6}, which gives R = 6 and C = 60.

Solving O3 tests. O3 tests have a fundamentally different
goal than RPMs and VAPs. Instead of selecting an answer
that correctly completes the context grid, in O3 tests it is
required to select a panel that differentiates most from the
remaining ones. To handle these opposing settings in one
unified model, we cast O3 to the setting where a subset of
Pt − 1 panels with the most common features has to be cho-
sen. Putting this into the introduced framework, we arrange
the panel embeddings {hi,j}Pt

j=1 into groups {Hi,k}At

k=1 (for
O3 tests Pt = At) such that Hi,k = {hi,j | j ̸= k}Pt

j=1. This
allows to interpret gi,k as a latent representation of semantic
congruency of the considered subset of panels.

Training objectives. To optimize parameters of the
model, we compute cross-entropy LCE between the pre-
dicted distribution p̂ and ground-truth p obtained by one-hot
encoding of the target label k. In addition, some considered
datasets provide auxiliary metadata referring to the problem
instances (Barrett et al. 2018). In particular, matrices from
PGM, I-RAVEN, and VAP provide ground-truth annotations
of the underlying matrix rules: Mi = (Xi, yi, ri). To utilize
this additional training signal, for each task we employ a
separate rule prediction head Rt(gi,k) = r̂i,k composed of
two linear layers with GELU in-between. R predicts the rule
representation ri encoded with sparse encoding (Małkiński
and Mańdziuk 2024). Binary cross-entropy LAUX is used to
assess the fitness between r̂i and ri. In effect, the model is
trained to minimise LCE + βLAUX, where β = 10 is a fixed
balancing coefficient.

Mini-batch training. In MTL experiments, each train-
ing batch is composed of matrices belonging to a sin-
gle randomly-chosen task. This ensures that the operation
WTGi,k (Eq. 3) can be efficiently computed for the whole
batch with a single matrix multiplication.

Experiments
The experimental evaluation of SCAR focuses on the fol-
lowing three settings: (1) single-task learning (STL), where
the model is trained and evaluated on the same task, (2)
multi-task learning (MTL), where the model is simultane-
ously trained on several tasks and then fine-tuned, sepa-
rately for each task, and (3) transfer learning (TL), where
the model is pre-trained on a base set of tasks and fine-tuned
on a novel target task. In each scenario, the performance of
SCAR is compared to leading AVR literature models, both
task-specific and universal. The code required to reproduce
the experiments is available online1. Extended results are
provided in Appendix A (Małkiński and Mańdziuk 2023a).

1www.github.com/mikomel/sal
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MODEL
TEST ACCURACY (%)

G-SET PGM-S I-RAVEN VAP-S O3

WREN 34.7 25.1 21.9 73.6 65.6
RNN 49.6 29.4 38.9 88.1 51.2
SCL+SAL 89.9 51.5 95.5 92.6 63.1
SCAR 82.1 46.1 94.7 92.9 86.7

COPINET 63.5 37.3 47.1 N/A N/A
SRAN 82.3 39.4 66.9 N/A N/A
RELBASE 81.3 50.3 93.7 N/A N/A
SCL 83.4 51.1 95.5 N/A N/A

Table 1: Single-task learning. Test accuracy of univer-
sal (WReN, RNN, SCL+SAL, SCAR) and task-specific
(CoPINet, SRAN, RelBase, SCL) models in solving a single
task. Due to architectural constraints, the considered task-
specific models created with RPMs in mind can’t be directly
applied to solve VAPs and O3 tests. Best results in each
group are marked in bold, and second best are underlined.

Tasks. The experiments are conducted on three challeng-
ing AVR problems. Firstly, we consider RPMs belonging
to three datasets: G-set (Mańdziuk and Żychowski 2019)
with 1 100 matrices; PGM-S, a subset of the Neutral regime
of PGM (Barrett et al. 2018) where the training split was
obtained by uniformly sampling instances from the par-
ent dataset preserving the original ratio of object–attribute–
rule triplets; and I-RAVEN (Zhang et al. 2019a; Hu et al.
2021) with 70K samples. Secondly, we consider the VAP
dataset (Hill et al. 2019) to construct the VAP-S dataset with
training matrices sampled analogously to PGM-S. Thirdly,
the O3 tests (Mańdziuk and Żychowski 2019) with 1 000 in-
stances are utilized. In G-set, I-RAVEN, and O3 datasets we
uniformly allocate 60% / 20% / 20% samples to train / val
/ test splits, resp. PGM-S contains 42K / 20K / 200K ma-
trices and VAP-S has 42K / 10K / 100K instances in train /
val / test splits, resp. Altogether, the selection of tasks com-
prises a diverse set of AVR matrices ranging from visually
simple instances from G-set and O3, through more challeng-
ing ones from PGM and VAP, up to matrices from I-RAVEN
with hierarchical structure. In addition, the variability of the
component dataset sizes allows to evaluate the models’ per-
formance in data-constrained scenarios. At the same time,
considering subsets of PGM and VAP allows the construc-
tion of a joint dataset for MTL where the size of these ini-
tially large datasets doesn’t dominate the smaller ones.

Baselines. SCAR is compared with WReN (Barrett et al.
2018) and RNN (Hill et al. 2019), the two alternative uni-
versal models, capable of processing AVR tasks with vari-
able structure, which is a prerequisite for their application to
multi-task scenarios. We also consider a variant of SCL (Wu
et al. 2020) where the first layer in its relationship network
N r is replaced with SAL (denoted as SCL+SAL). In addi-
tion, we compare SCAR with selected state-of-the-art task-
specific models: SRAN (Hu et al. 2021), CoPINet (Zhang
et al. 2019b), RelBase (Spratley, Ehinger, and Miller 2020)
and SCL. These additional baselines are included only in the
RPM settings, as the architectural constraints prevent their

direct application to tasks with different structure.

Experimental setting. We use batches of size 32 for G-
set and O3, and 128 for the remaining datasets. Early stop-
ping is performed after the model’s performance stops im-
proving on a validation set for 17 successive epochs. We use
the Adam (Kingma and Ba 2014) optimizer with β1 = 0.9,
β2 = 0.999 and ϵ = 10−8, the learning rate is initialized
to 0.001 and reduced 10-fold if the validation loss doesn’t
improve for 5 subsequent epochs. Data augmentation is em-
ployed with 50% probability of being applied to a particular
sample. When applied, a pipeline of transformations (ver-
tical flip, horizontal flip, rotation by 90 degrees, rotation,
transposition) is constructed, each with 25% probability of
being adopted. The resultant pipeline is applied to each im-
age in the matrix in the same way. Each training job was run
on a node with a single NVIDIA DGX A100 GPU.

Single-Task Learning
Table 1 presents STL results, where each model is trained
and evaluated on the same dataset. Among universal meth-
ods, either SCL+SAL or SCAR achieved the best results on
each considered dataset, demonstrating SAL’s applicability
to solving AVR tasks with diverse structures, and high ef-
ficacy even in tasks with limited number of training sam-
ples (G-set and O3). When compared to task-specific mod-
els, SCAR performed better than two selected baselines
(CoPINet and SRAN) and was slightly inferior to SCL. In
contrast to the universal methods, the dedicated RPM mod-
els cannot be evaluated on VAPs and O3 tests due to their
architectural design.

Multi-Task Learning
Next, we evaluate knowledge reuse capabilities of the
adopted methods. Toward this end, in the MTL setting, the
models are first pre-trained on a base set of tasks and then
separately fine-tuned on each task. Two settings for the se-
lection of tasks are considered: (1) RPMs only, which allows
measuring knowledge reuse within a single problem; and (2)
RPMs combined with VAPs, to evaluate knowledge reuse
between problems. In the pre-training phase batches of size
128 are used.

The results are presented in Table 2. Among universal
models, either SCAR or SCL+SAL achieved the highest
scores. In both settings MTL helped to increase their perfor-
mance on the most challenging tasks, i.e. G-set and PGM-S,
showing SAL’s ability to effectively reuse the gained knowl-
edge. On I-RAVEN and VAP-S their results are on-par with
these of STL, however, the models achieved high accuracy
already in the STL setup, leaving small room for potential
improvement. For the two other universal methods, MTL
proved beneficial in some settings (G-set and VAP-S), while
it hindered the performance in other cases (I-RAVEN). This,
contrary to SCAR and SCL+SAL, suggests insufficient ca-
pacity of WReN and RNN to leverage previously acquired
knowledge. Regarding the task-specific methods, MTL im-
proved their performance in most experiments, especially on
the data-constrained G-set. Due to architectural constraints,
VAP could not be included in the experiments concerning
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MODEL
TEST ACCURACY (%)

PRE-TRAINED ON RPMS PRE-TRAINED ON RPMS AND VAPS
G-SET PGM-S I-RAVEN G-SET PGM-S I-RAVEN VAP-S

WREN 41.6 (+ 6.9) 24.5 (- 0.6) 19.4 (- 2.5) 48.8 (+14.1) 26.1 (+ 1.0) 20.2 (- 1.7) 80.6 (+ 7.0)
RNN 66.4 (+16.8) 27.8 (- 1.6) 34.0 (- 4.9) 61.9 (+12.3) 26.5 (- 2.9) 27.8 (-11.1) 88.6 (+ 0.5)
SCL+SAL 94.9 (+ 5.0) 58.1 (+ 6.6) 95.4 (- 0.1) 94.8 (+ 4.9) 68.6 (+17.1) 95.3 (- 0.2) 92.8 (+ 0.2)
SCAR 91.0 (+ 8.9) 53.7 (+ 7.6) 94.3 (- 0.4) 93.2 (+11.1) 54.8 (+ 8.7) 94.7 (+ 0.0) 93.0 (+ 0.1)

COPINET 74.9 (+11.4) 35.2 (- 2.1) 50.3 (+ 3.2) N/A N/A N/A N/A
SRAN 87.2 (+ 4.9) 40.7 (+ 1.3) 68.3 (+ 1.4) N/A N/A N/A N/A
RELBASE 95.7 (+14.4) 64.0 (+13.7) 89.3 (- 4.4) N/A N/A N/A N/A
SCL 96.2 (+12.8) 69.6 (+18.5) 95.3 (- 0.2) N/A N/A N/A N/A

Table 2: Multi-task learning. Test accuracy of universal and task-specific models pre-trained simultaneously on multiple tasks
and then separately fine-tuned on each task. The results shown in the left part of the table were achieved by pre-training only on
RPMs (G-set, PGM-S, and I-RAVEN), while those in the right part additionally included VAPs in the pre-training set. Values
in parentheses show the difference w.r.t. the STL setup (cf. Table 1).

MODEL
TEST ACCURACY (%)

R → V R → O3 R+V → O3

WREN 83.3 (+9.7) 65.4 (-0.2) 65.5 (-0.1)
RNN 88.1 (+0.0) 55.9 (+4.7) 55.3 (+4.1)
SCL+SAL 93.6 (+1.0) 65.4 (+2.3) 75.5 (+12.4)
SCAR 93.0 (+0.1) 88.6 (+1.9) 89.0 (+2.3)

Table 3: Transfer learning. Test accuracy of universal models
after transferring knowledge from a set of pre-training tasks
to a novel target task. R and V denote RPMs and VAPs, resp.
In parentheses there are p.p. changes w.r.t. STL (cf. Table 1).

TEST ACCURACY (%)
G-SET PGM-S I-RAVEN VAP-S O3

R 36.5 (-45.6) 33.2 (-12.9) 56.1 (-38.6) 90.5 (-2.4) 69.5 (-17.2)
L 43.5 (-38.6) 26.0 (-20.1) 41.7 (-53.0) 90.7 (-2.2) 52.4 (-34.3)

Table 4: Ablation study. Test accuracy of SCAR variants
where SAL is replaced with RN (row R) and LSTM (row
L), resp. Both models were trained in the STL setup. Values
in parentheses denote p.p. change w.r.t. the STL training of
the default variant of SCAR with SAL – see Table 1.

the RPM-specialised methods. Generally, adopting MTL ap-
proach to solving AVR tasks, proposed in this paper, has
proven effective, especially for the data-limited tasks. At the
same time, the results show that MTL need to be designed
with care, as in certain settings its application may deterio-
rate the results, a problem known in the literature as the neg-
ative transfer effect (Pan and Yang 2010; Cao et al. 2018).

Transfer Learning
To further study knowledge reuse capabilities across differ-
ent AVR problems, we conduct TL experiments where the
models are pre-trained on a set of tasks, and then fine-tuned
on a novel target task. Three such settings are considered:
taking all three RPM datasets as pre-training tasks and fine-
tuning on VAP-S and O3, respectively, and pre-training on

RPMs and VAP-S and fine-tuning on O3. Table 3 show-
cases the results. TL allowed to significantly increase the
performance of WReN on VAP-S and improved the results
of RNN, SCL+SAL and SCAR on O3. The results amplify
the importance of developing universal methods in the AVR
domain capable of processing tasks with diverse structures.

Ablation Study
Lastly, we perform an ablation study to validate the useful-
ness of the proposed SAL in the SCAR architecture. To this
end, we develop two variants of SCAR in which SAL is re-
placed with RN (Santoro et al. 2017) and LSTM (Hochreiter
and Schmidhuber 1997), resp., and evaluate them in the STL
setting. The results are presented in Table 4. First, we ob-
serve that both alternatives are competitive to other methods
trained with STL (see Table 1). For instance, the RN variant
achieved better results than universal WReN and RNN on G-
set, PGM-S, VAP-S, and O3, and outperformed task-specific
CoPINet on I-RAVEN. Still, both variants perform signifi-
cantly worse than the default version of SCAR, which con-
firms the critical importance of SAL in the proposed model.

Conclusion
In this work we consider the problem of solving diverse AVR
tasks with a unified model architecture. To this end we pro-
pose SCAR, a DL model capable of solving a variety of
single-choice AVR problems. SCAR design principles dif-
fer from the vast majority of the contemporary AVR mod-
els, which are developed with a particular task in mind. The
core idea of the proposed model is SAL, a novel structure-
aware layer which adapts its weights to the structure of the
considered AVR instance. In the experiments conducted on
RPMs, VAPs, and O3 tests, SAL-based models significantly
surpassed the performance of other universal methods and
even of some task-specific models. At the same time, the
models demonstrated effective knowledge reuse capabilities
in MTL and TL settings. On a more general note, with this
work we aim to encourage AVR researchers to shift the re-
search focus from task-specific methods towards universal
AVR solvers applicable to a wide selection of AVR tasks.
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