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Abstract

In many real-world applications, from robotics to pedes-
trian trajectory prediction, there is a need to predict multi-
ple real-valued outputs to represent several potential scenar-
ios. Current deep learning techniques to address multiple-
output problems are based on two main methodologies: (1)
mixture density networks, which suffer from poor stability
at high dimensions, or (2) multiple choice learning (MCL),
an approach that uses M single-output functions, each only
producing a point estimate hypothesis. This paper presents a
Mixture of Multiple-Output functions (MoM) approach using
a novel variant of dropout, Multiple Hypothesis Dropout. Un-
like traditional MCL-based approaches, each multiple-output
function not only estimates the mean but also the variance
for its hypothesis. This is achieved through a novel stochastic
winner-take-all loss which allows each multiple-output func-
tion to estimate variance through the spread of its subnetwork
predictions. Experiments on supervised learning problems il-
lustrate that our approach outperforms existing solutions for
reconstructing multimodal output distributions. Additional
studies on unsupervised learning problems show that esti-
mating the parameters of latent posterior distributions within
a discrete autoencoder significantly improves codebook effi-
ciency, sample quality, precision and recall.

Introduction
Multiple-output prediction is the task of generating a variety
of real-valued outputs given the same input, a powerful tool
in scenarios that require a comprehensive understanding of
multiple potential possibilities. This approach has demon-
strated an extensive ability to capture diversity, creativity
and uncertainty across many domains including generative
modelling (Graves 2013; Ha and Eck 2017; Nguyen, Nepal,
and Kanhere 2021), computer vision (Guzman-Rivera et al.
2014; Firman et al. 2018), pedestrian trajectory predic-
tion (Makansi et al. 2019), spectral analysis (Bishop 1994),
robotic movement (Zhou, Gao, and Asfour 2020) and rein-
forcement learning (Ha and Schmidhuber 2018).

Multiple-output prediction is a generalization of tradi-
tional single-output prediction. In the supervised learning
context, a single-output function is given a dataset of input-
output pairs {(xn,yn) | n ∈ {1, . . . , N},xn ∈ X ,yn ∈ Y}
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(Guzman-Rivera, Batra, and Kohli 2012). The objective of
the single-output function fω : X 7→ Y is to learn a map-
ping from a single input in input-space to single output in
output-space using a set of parameters ω. It seeks to mini-
mizes a loss function L : Y × Y 7→ R+ that computes the
distance between its predictions ŷn and targets yn.

A multiple-output function F : X 7→ YM can learn
a mapping from input space to an M -tuple of outputs
Ŷn = {ŷ1

n, . . . , ŷ
M
n |ŷM

n ∈ Y}. Multiple-output functions
based on neural networks (NNs) can be categorized into two
main types: those that produce multiple point estimates and
those that produce multi-modal distributions. An effective
class of algorithms that fall into the first group is based
on multiple-choice learning (MCL) (Guzman-Rivera, Ba-
tra, and Kohli 2012; Guzman-Rivera et al. 2014; Lee et al.
2016, 2017; Firman et al. 2018). This class of algorithms
construct an ensemble of M single-output functions that
each produce single point estimates and are trained using
a winner-take-all (WTA) loss function. MCL techniques are
well-known for being stable and have been demonstrated on
high-dimensional datasets such as images (Guzman-Rivera
et al. 2014; Firman et al. 2018). However, a common criti-
cism of MCL algorithms is that it requires the practitioner
to arbitrarily choose the hyper-parameter M , which also as-
sumes an equal number of predictors and targets for any
given input. These models are also challenging to scale as
increasing the number of single-output functions in the en-
semble can be expensive from a computational and parame-
terization perspective.

The second approach to multiple-output prediction repre-
sents different modes of yn with the same input value xn

as separate distributions. This is advantageous over point-
estimate approaches because it provides an estimation of un-
certainty through the covariance. Mixture density networks
(MDN) (Bishop 1994) use the outputs of a neural network
(NN) to predict the parameters of a mixture of Gaussians.
A part of the outputs is used to predict mixture coefficients,
while the remainder is used to parameterize each individual
mixture component. MDNs at higher dimensions, however,
are difficult to optimize with stochastic gradient descent due
to numerical instability and mode collapse and require spe-
cial initialization schemes (Rupprecht et al. 2017; Cui et al.
2019; Makansi et al. 2019; Zhou, Gao, and Asfour 2020;
Prokudin, Gehler, and Nowozin 2018).
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In this paper, we present a novel Mixture of Multiple-
Output functions (MoM) that can learn multi-modal output
distributions by combining the stability of MCL algorithms
with the scalability of MDN parameter estimation. The pa-
rameters (modes and variances) are estimated using a mix-
ture of NNs trained with a new Stochastic WTA loss func-
tion and a variant of dropout called Multiple Hypothesis
(MH) dropout.

Dropout (known as binary dropout), introduced in (Hin-
ton et al. 2012), is a training technique in which units of a
NN are randomly ”dropped” or set to zero during training,
with dropout probability as a hyperparameter. This leads to
the formation of thinned subnetworks during training, where
each thinned subnetwork consists of a set of undropped
weights derived from a base NN. We can think of the subnet-
works that appear during training as elements of ensembles
that share parameters.

During inference, binary dropout networks obtain a sin-
gle prediction by turning off the dropout operation, scaling
the weights by dropout probability and using the entire net-
work. This has been demonstrated to be equivalent to taking
the geometric average of all subnetwork predictions in the
ensemble (Baldi and Sadowski 2013). Further studies have
demonstrated that prediction uncertainty can be modelled by
computing the variance of predictions from thinned subnet-
works during inference (Gal 2016; Amini et al. 2018), more
commonly known as Monte Carlo (MC) dropout.

The work of (Ilg et al. 2018) discussed utilizing MC
dropout for an ensemble of NNs to estimate the uncertainty
of each prediction; however, we show later in the paper that
this technique does not generalize to multi-output settings.
Our MH Dropout extends the abilities of MC dropout to
multiple-output prediction scenarios by producing accurate
variance estimates using a novel loss function. The approach
is aligned with the functionalities of MDNs while sidestep-
ping their inherent numerical instability issues due to the use
of a stable loss function.

Building upon this idea, we design the latent posterior
distribution of a vector-quantization variational autoencoder
(VQVAE) (Hinton and Zemel 1993) as a multi-modal Gaus-
sian distribution by estimating its parameters using MH
Dropout. The conventional unsupervised VQVAE employs
a codebook of latent embeddings to learn rich representa-
tions that are used to reconstruct the input distribution accu-
rately. This technique underpins many recent state-of-the-art
image synthesis models (Rombach et al. 2022; Esser, Rom-
bach, and Ommer 2021; Ramesh et al. 2021).

However, a weakness of the VQVAE is that the latent em-
beddings can only represent the modes of clusters in repre-
sentational space. As far as we know, this framework can-
not represent the spread or variance of each cluster. Due to
this drawback, a common strategy is to scale the model’s la-
tent representational capacity by saturating the continuous
posterior. This is achieved through either (1) increasing the
codebook size or (2) the number of tokens per input. This
scaling strategy has led to works that compromise on com-
putational resources to learn longer sequences of tokens and
lead to slower sampling during generation time. Instead, we
propose an extension called MH-MQVAE, that learns both

the modes and variances of the latent posterior distribution
using MH Dropout networks, resulting in improved code-
book efficiency and representational capacity. Through ex-
tensive experiments, we demonstrate that this improves gen-
eration quality, precision and recall across various datasets
and existing VQ architectures.

To summarize, our contributions are as follows:

1. We introduce the Multiple Hypothesis Dropout, a novel
variant of dropout that converts a single-output function
into a multi-output function using the subnetworks de-
rived from a base neural network.

2. We found that combining Winner-Takes-All loss with
stochastic hypothesis sampling allows MH Dropout net-
works to stably learn the statistical variability of targets
in multi-output scenarios.

3. We describe a Mixture of Multiple-Output Functions
(MoM), composed of MH Dropout networks to address
multi-modal output distributions in supervised learning
settings. We show this architecture can learn the parame-
ters of the components of a Gaussian mixture.

4. We propose a novel MH-VQVAE that employs MH
Dropout networks to estimate the variance of clusters
in embedding representational space. We show this ap-
proach significantly improves codebook efficiency and
generation quality.

Preliminaries
Multiple-Output Prediction
The idea of generating diverse possible hypotheses for a
downstream expert was presented in Multiple Choice Learn-
ing by (Guzman-Rivera, Batra, and Kohli 2012). In a super-
vised learning setting, a multiple-output function is a map-
ping for single input xn from input space X to an M -tuple
of outputs Ŷn = {ŷ1

n, . . . , ŷ
M
n |ŷM

n ∈ Y}: F : X 7→ YM ,
where F is composed of M single-output functions F =
{fm}Mm=1 parameterized by M separate sets of weights
{ωm}Mm=1. The set of functions (or predictors) produces a
set of M hypotheses given an input sample xn:

F(xn) = {f1(xn), . . . , f
M (xn)} = {ŷ1

n, . . . , ŷ
M
n } (1)

The ensemble is trained using a multiple hypotheses predic-
tion algorithm and (vanilla) winner-takes-all (WTA) loss.
During each iteration, only the “winning” function from the
ensemble is chosen for back-propagation. The “winning”
function is the one with its hypothesis closest to the target
according to some distance function, such as L2-norm. Gra-
dients for the other predictors are eliminated by multiplying
their respective losses by zero. The vanilla WTA loss func-
tion is summarized as:

Lwta(xn,yn) =
M∑

m=1

wm||yn − fm(xn)||22 (2)

where wj =

{
1 if j = argminm ||yn − fm(xn)||22;
0 otherwise.

(3)
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An issue with this loss function is that poorly initialized
predictors can generate hypotheses in regions far from the
outputs, which can be ignored throughout training. Deter-
mining which predictor has been trained or ignored at infer-
ence time can also be challenging.

To address this, the work of (Nguyen, Nepal, and Kan-
here 2021) employed a mixture coefficient layer g to learn a
probability distribution over the number of functions in the
ensemble:

ϕ = softmax(g(xn)) (4)

where ϕ is a vector of length M that sums to one. During
training, the coefficients of “winning” predictors are maxi-
mized using a modified loss function:

L(xn,yn) =
M∑

m=1

−log(ϕm)wm||yn − fm(xn)||22 (5)

During inference, functions are sampled according to m ∼
M(ϕ), a multinomial distribution parameterized by ϕ. This
paper builds upon these ideas and introduces multi-output
function-based subnetworks generated using the dropout
mechanism. We will briefly review this concept next.

Dropout Networks
Here we describe dropout (Hinton et al. 2012) applied to a
neural network f with L layers. Let l ∈ [L] denote the in-
dex of the layers. Each of layer is parameterized by a weight
matrix W(l) and bias vector b(l). Let y(l) be the output vec-
tor of layer l, where y(L) = ŷ. The output of layer l of a
dropout network can be expressed as:

y(l) = σ(W(l)(ψ(l) ⊙ y(l−1)) + b(l)) with y(0) = x (6)

where σ is an element-wise non-linear activation function
such as sigmoid, σ(x) = 1/(1 + e−x), ψ(l) is the dropout
vector for layer l and ⊙ is the Hadamard product (element-
wise multiplication). The dropout vector ψ(l) is a vector
of the same shape as y(l−1) where each element is a 0-1
Bernoulli gating variable sampled according to P (ψ

(l)
i =

1) = p
(l)
i . Here ψ(l)

i is the ith element of dropout vector
ψ(l).

We can view a dropout network as representing an im-
plicit ensemble of 2D possible subnetworks, where D rep-
resents the total weights. This ensemble can be generated
over all possible realizations of Bernoulli gating variables.
In the following section, we leverage subnetworks to build a
multiple-output function.

Multiple Hypothesis Dropout
Multiple Hypothesis Dropout (MH Dropout) can be thought
of as converting a single-output neural network into an
accurate multiple-output function (MH Dropout Network)
trained with a stochastic WTA loss function. In the follow-
ing sections, we describe this algorithm, its loss function and
analyse its ability to capture variance using a toy dataset.

MH Dropout Networks
Let Fω be a neural network parameterized by ω with D
total weights and suppose that it is trained with MH Dropout.
The set of all M = 2D possible subnetworks of this base
network can be generated over all M possible realizations
of Bernoulli gating variables. Thus, a MH Dropout Network
and its subnetworks is: Fω = {fω,m}Mm=1

where all subnetworks are parameterized using a shared
set of weights ω. Here fω,m is the mth subnetwork of the
base network and the index m represents a specific realiza-
tion of the Bernoulli gating variables.

Given an input vector xn, the set of output vectors (or
hypotheses) of all subnetworks can be expressed as:

F(xn;ω) = {f1(xn;ω), ..., f
M (xn;ω)} = {ŷ1

n, . . . , ŷ
M
n }
(7)

where ŷm
n denotes the hypothesis of the mth subnetwork.

Variance Estimates. During inference, we can compute
variance estimates using the set of subnetworks with a simi-
lar methodology to the work by (Gal 2016). First, we define
the expected outputs across all subnetworks E[F ] and then
compute the predictive variance V ar[F ].

To begin, we take T stochastic samples of
Bernoulli gating variables, which gives T subnet-
works {fω,1, . . . , fω,T }, where T < M . The ex-
pected output can be estimated by taking the av-
erage of these subnetwork outputs given the same
input: E[F(xn;ω)] ≈ 1

T

∑T
t=1 f

ω,t(xn;ω),where
t ∈ {1, . . . , T}. Thus, the predictive variance is:

V ar[F(xn;ω)] = E[(F(xn;ω)− E[F(xn;ω)])
2] (8)

Loss Function. Vanilla WTA loss requires the hypothe-
ses of all predictors in the ensemble to be compared against
each target during each training iteration. With MH Dropout,
however, it can be impractical to compute all possible sub-
network hypotheses when the number of weights is large.
Our proposal is to only consider a random subset of all
subnetwork hypotheses during winner-takes-all training, re-
ferred to as Stochastic Winner-Take-All (SWTA):

Lswta(xn,yn) =
T∑

t=1

wt||yn − f t(xn;ω)||22 (9)

This equation is nearly identical to vanilla WTA (Eq. 2),
with the main modification being the replacement of M
(number of total predictors) with T (random subset size).
The critical difference between Stochastic WTA and its pre-
decessor, vanilla WTA, is that it requires predictors to share
parameters which allow poor subnetwork predictions in far
regions from targets to move even when they are not the
“winning” subnetwork. This is visualized in (Nguyen et al.
2023).

Estimating the Variance of Multiple Points
To quantitatively assess a MH Dropout network’s ability
to capture the variance of multiple targets, we describe
a toy multi-point dataset and metric. Our toy multi-point
dataset contains N different outputs given the same input:
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Figure 1: SSD vs subset ratio curves for FFNs trained with
3 techniques. The line represents the average SDD value,
while the shadow represents the 95% confidence interval.

{(x1,yn) |x1 ∈ X ,yn ∈ Y} as proposed by (Makansi
et al. 2019). The inputs are sampled from N (0, 1) and out-
puts from a uniform distribution in the range [0,1].

We define a simple metric, Standard Deviation Distance
(SDD), that measures the distance between the standard de-
viation of two sets of vectors: predicted hypotheses Ŷk and
targets Yk: SDD = 1

K

∑K
k=1 ||sd(Ŷk)− sd(Yk)||2 where

sd represent the standard deviation operation and k repre-
sents the experiment trial.

For this experiment, we employ a three-layer feed-
forward network (FFN) with four hidden units. Multiple
copies of the network are initialized with the same weights
and trained with a different MH dropout subset size T to rep-
resent different levels of stochasticity. Let the subset ratio r
be the subset size T over the total subnetwork size 2D. Thus
as the subset ratio approaches zero, it begins to approximate
binary dropout, and as it approaches one, it approximates
Vanilla WTA. We use two baselines with the same network
to demonstrate this: one with MC dropout during inference
and another trained with vanilla WTA. This experiment is
repeated across K = 30 trials and results are presented in
Fig. 1.

In Fig. 1, notice that models with MC dropout and
Stochastic WTA at a lower subset ratio under 0.4 result in
higher SSD values. This implies that these models are in-
creasingly unable to capture the spread of targets. Stochastic
WTA with subset ratios between 0.5 and 0.7 provide a lower
SDD value; however, the SSD increases as the ratio rises
above 0.8.

These results suggests that the model has an optimal range
for noise to learn the spread of a target distribution, making it
a valuable tool for a range of problems. This finding aligns
with the work of Gal et al. (Gal 2016), which found that
the predictive variance of all subnetwork predictions corre-
sponds to the statistical variability in the targets. The dif-
ference is that while MC dropout can only provide variance
estimates for single-output problems, MH Dropout general-

izes this ability to situations with multiple outputs.

Mixture of Multiple-Output Functions
Model
In this section, we propose a model that combines multiple
MH Dropout Networks to learn the mean and variance of
multi-modal output distributions within a supervised learn-
ing setting. This model is structured in two main hierarchies
described below. Here, the superscript ω is omitted for ease
of reading.

Primary Hierarchy. At the top level, the primary hier-
archy consists of MH Dropout Networks represented as
F = {Fm}Mm=1, with separate sets of weights for each net-
work {ω}Mm=1. Additionally, a mixture coefficient layer is
employed, learning a discrete distribution ϕ over theM net-
works.

Within each network there is an encoder function qm :
X 7→ Z which transforms the input to latent vector z, sub-
sequently dividing it into two equal sized vectors (e, e′) The
latter vector is passed to the secondary hierarchy.

Secondary Hierarchy. The secondary hierarchy com-
prises of subnetworks derived from each of the primary hi-
erarchy’s MH Dropout Networks. For each network Fm, a
random subset of T subnetworks is:

Fm = {fm,1, . . . , fm,T } with Fm ∈ F (10)
During training, the vector e′ is passed to one of these

randomly selected subnetwork and combined with e to form
a hypothesis:

ŷm,t
n = e+ fm,t(e′) (11)

Loss Function. The supervised learning training objective
combines Stochastic WTA and a modified version of Eq. 5
into a single loss function. An issue with Eq. 5 is that the log-
coefficient error can dominate the distance error resulting in
sub-optimal behaviour. To address this, we simply scale the
log-coefficient error and sum the terms:

L(xn,yn) = −
M∑

m=1

T∑
t=1

wmvt(log(ϕm)λ− ||yn − ŷm,t
n ||22)

(12)

where wj =

{
1 if j = argminm ||yn − ŷm,t

n ||22
0 otherwise.

(13)

and vj =
{
1 if j = argmint ||yn − ŷm,t

n ||22;
0 otherwise.

(14)

where λ is the hyper-parameter used to scale the log-
coefficient term. The two gating variables, w and v, only
allow the gradients of the ”winning” primary hierarchy and
its respective ”winning” subnetwork to pass to the optimizer
during back-propagation.

Inference. During inference, the model generates predic-
tions by sampling from a parameterized multimodal Gaus-
sian distribution. This sampling process uses the means from
the M encoders and sample variance of the outputs from the
secondary hierarchy of T random subnetworks:

ŷm
n ∼ N (e;V ar[Fm(e′)]) (15)
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Figure 2: Reconstructions by three models trained on the inverse sine wave, a classic multi-modal output dataset introduced
by (Bishop 1994). Our proposed mixture of MH Dropout networks (MoM) accurately learns the center and spread of the sine
wave.

The Inverse Sine Wave Problem.
We demonstrate our proposed MoM’s ability to estimate
the mean and variance of multi-modal distributions using
the classical inverse sine wave problem. This problem was
initially proposed by Bishop in his work on mixture den-
sity models (Bishop 1994) (See Section 5). The inverse sine
wave function can be defined as: x = y + 0.3 sin 2πy + ϵ,
where x is an output variable, y is the input variable, and ϵ
is a random variable drawn from a uniform distribution over
the range (−0.1, 0.1). To create a dataset for this problem,
we generate 1000 evenly spaced inputs y in the range (0, 1).
Each y is passed through the function to output x.

Here we compare three models: (a) Feed-forward network
(FFN) (b) Mixture of FFNs trained with MC Dropout and (c)
Mixture of FFNs with MH Dropout (MoM). Each FFN con-
tains 6 hidden units, 6 layers, tanh activation functions. The
mixture models employ three FFNs trained with a dropout
rate of 0.5 and employ mixture coefficient layers. The mix-
ture model of MH Dropout networks is trained using a sub-
set ratio of 0.1.

As seen in Fig. 2, the feed-forward network learns an av-
erage of the labels (green line) because it is a single-output
function. The mixture model with MC dropout is unable to
provide a good fit either, struggling to learn the correct mean
or variance using the three components. It is clear that the
MoM model fits the tri-modal structure of the sine wave. It
accurately predicts the center (green) and the spread of the
sine wave, reconstructed with the samples (blue) drawn from
a parameterized Gaussian (Eq. 15).

Application to Generative Models
In this section, we turn to unsupervised learning, specifically
the autoencoder framework where the goal of the function
fω : X 7→ X is to produce a reconstruction x̂ of the input
x, such that it minimizes a loss function, L(x, x̂). This can
be thought of as a communication problem, where a sender
wishes to communicate a dataset D = (xn}Nn=1 to a receiver

as efficiently as possible. Among various approaches to this
problem, one particularly effective method is to map each
input to a latent posterior distribution and then sample from
this distribution during inference, introduced as Variational
Autoencoders (VAEs) (Kingma and Welling 2013).

The vector quantization variational autoencoder (VQ-
VAE) implements the continuous posterior distribution as
a mixture of embeddings from a codebook. We can con-
sider each embedding as centers of clusters in representa-
tional space. Below, we propose an extension to VQVAE
by learning both the centers and variances of these clusters
using separate codebooks and MH Dropout. This approach
promises to scale representational capacity more efficiently
by simply learning the parameters that represent a full pos-
terior distribution, instead of every point in the distribution.

Background: Vector quantization The VQ framework is
compromised of three key components: an encoder q, de-
coder p and a latent codebook containing a set of K embed-
dings ek ∈ Rd where k ∈ {1, . . . ,K}.

The encoder is a function q : X 7→ Y ⊆ Rd that maps
each input xn ∈ X from pixel space to an encoded latent
vector yn ∈ Y in latent space such that q(xn) = yn.

The codebook replaces the encoded vector with the in-
dices of the nearest embeddings, typically based on L2

norm: zn = argmink ||yn − ek||2 where zn is the spe-
cific index (or token) of the codebook. A lookup operation
is performed against the codebook to obtain an embedding
e∗ = ŷn ∈ Y . The symbol ∗ denotes the specific index
chosen in the codebook according to the token zn.

The decoder is a function p : Y 7→ X ⊆ RD that maps
the embeddings from latent space to a reconstruction of the
input x̂n ∈ X in pixel space such that p(ŷn) = x̂n.

The overall loss function is the sum of the reconstruction
and commitment loss. The reconstruction loss trains the
decoder to minimize the error between each input and the
reconstruction: Lrec(xn, x̂n) = ∥xn − x̂n∥22. This is pos-
sible by back-propagating through the codebook using the
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straight-through gradient estimator (Bengio, Léonard, and
Courville 2013) which passes the gradients directly from the
decoder to the encoder with the following codebook loss:
Lcb(yn, ŷn) = ∥sg[yn]− ŷn∥22 + β∥yn − sg[ŷn]∥22 (16)

where sg refers to the stop-gradient operation. This is com-
monly referred to as the ”commitment loss” proposed in
(Van Den Oord, Vinyals et al. 2017).

In a secondary training stage, a probabilistic model learns
a distribution over the observed tokens z, more formally
known as the categorical posterior distribution, using
cross-entropy loss. During generation time, the tokens are
sampled from the categorical posterior distribution to recon-
struct a continuous posterior distribution using codebook
embeddings.

Multiple Hypothesis VQVAE (MH-VQVAE)
Our proposed extension to VQVAE learns the variances of
the multi-modal posterior distribution using MH Dropout.
In contrast to the supervised learning setting, MH Dropout
is applied in the latent representational space. To learn the
variance, we also introduce a secondary branch composed of
an encoder q′ and a secondary latent codebook of K embed-
dings e′k ∈ Rd where k = 1 . . .K. This new structure can
be thought of as a hierarchical VQVAE, however, in contrast
to previous works, the secondary branch learns the variance
of the latent mixture components.

The secondary encoder is a function q′ : X 7→ Y ′ ⊆ Rd

that maps each input xn ∈ X from pixel space to a sec-
ondary encoded vector y′

n ∈ Y ′ in secondary latent space
such that q′(xn) = y′

n.
The secondary codebook replaces the secondary en-

coded vector y′
n with the indices of the nearest embed-

dings, z′n = argmink ||y′
i−e′k||2 where z′n is the secondary

codebook token. Similarly, a lookup operation is performed
against the codebook to obtain an embedding e′∗ ∈ Y ′ that
corresponds to the secondary codebook token.

Here, the MH Dropout network is a multiple-output
function Fω : Y ′ 7→ YT that maps the secondary embed-
ding e′∗ to a T -tuple of hypotheses in primary latent space
Ŷn = {ŷ1

n, . . . , ŷ
T
n |ŷt

n ∈ Y} where:
ŷt
n = e∗ + f t(e′∗) (17)

Here Fω is composed of T randomly sampled subnetworks
{f t}Tt=1. Notice the similarity to Eq. 11.

During training, the MH Dropout network employs the
Stochastic WTA loss function, thus only the hypothesis ŷt

n
nearest to the primary encoded vector yn is passed to the de-
coder. During inference, the model samples from a parame-
terized multi-modal Gaussian distribution using the primary
embedding (as the mean) and the variance of the hypothe-
ses (as the variance): ŷn ∼ N (e∗;V ar[Fω(e′∗)]). In the
following section, we conduct an extensive range of experi-
ments that assess the performance of our proposed model.

Experiments
Here we focus on understanding the impact of adopting our
approach by integrating it into two well-known VQ architec-
tures: VQVAE-2 and VQGAN. We first discuss our experi-
mental setup and then conduct a range of experiments.

Setup

Model Comparisons. We compare our method with hi-
erarchical VQ as proposed in (Razavi, Van den Oord, and
Vinyals 2019). MH-VQVAE and MH-VQGAN directly re-
places the top-bottom hierarchy of VQVAE-2 and VQGAN
respectively. However all models utilize the same encoder
and decoder as VQVAE-2 due to GPU memory constraints.
The models differ in their use of PixelCNN and Transformer
models for categorical posterior modeling, as proposed in
previous work (Rombach et al. 2021).

Hyper-parameters. We study the effects of MH Dropou-
ton performance by varying two hyper-parameters: the num-
ber of codebook entries (total of K split between primary
and secondary codebooks) and tokens per image (S + S′).
The number of hypotheses per pass was 64. Following ex-
isting practices (Esser, Rombach, and Ommer 2021), high
down-sampling factors 𭟋 = (14, 16, 32) and compression
rates above 38.2 bits per dimension are applied.

Datasets. Experiments utilize medium resolution image
datasets: FashionMNIST 28×28, CelebA 64×64, and Im-
ageNet 64×64 (Xiao, Rasul, and Vollgraf 2017; Liu et al.
2018; Deng et al. 2009). Token numbers vary by dataset,
with primary tokens in the range 4–16 and a single sec-
ondary token per image.

Metrics. Sample quality is assessed using Fréchet Incep-
tion Distance (FID) (Heusel et al. 2017), where lower val-
ues indicate better similarity between real and generated
samples. Two F-score numbers (Sajjadi et al. 2018) are
also reported to quantify model precision (F1/8) and recall
(F8), with higher values denoting better performance. Fur-
ther metrics, such as MSE and perceptual loss (LPIPS) are
reported in (Nguyen et al. 2023).

Results
Precision and Recall. We provide an empirical analysis
demonstrating the improvement in the representational ca-
pacity of existing VQ models when utilizing our proposed
MH-VQ framework instead. Our findings emphasizes the
robustness of our MH-VQ framework at higher compression
rates which can be attributable to its ability to learn a richer
posterior distribution by utilizing variance estimates.

To demonstrate this, we conduct an experiment involving
multiple instances of each model trained on each dataset.
The models were subjected to the same hyper-parameters
except for the total codebook entries, which measure the
model’s overall representational capacity.

First we compare the performance of VQVAE2 and MH-
VQVAE on the FashionMNIST dataset using precision and
recall. We train multiple copies of each model using dif-
ferent total codebook entries and plot their precision and
recall on Figure 3. The scatter plot shows that the MH-
VQVAE framework (cross) significantly improves precision
and recall compared to similar-sized VQVAE2 (circle). Our
findings show that MH-VQVAE can outperform VQVAE2
across both metrics with considerably fewer codes (32 vs
256).
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Figure 3: Recall and precision for multiple VQVAE2 (cir-
cle) and MH-VQVAE (cross) on the FashionMNIST dataset.
This shows MH-VQVAE improves both scores and can out-
perform VQVAE2 with 1/4 of the codebook size.

Figure 4: Recall and precision for VQGAN (circle) and MH-
VQGAN (cross). These scores show that MH-VQ improves
recall and precision across all datasets, reflecting its ability
to learn a richer posterior distribution.

The same comparisons were applied to VQGAN and MH-
VQGAN using all proposed datasets as shown in Fig. 4.
These results also show that MH-VQ improves precision and
recall across all VQ models. We notice that recall improves
slightly more than precision, possibly connected to the ob-
servation that GANs already induce higher precision, as seen
in (Sajjadi et al. 2018).

Sample Quality In Fig. 5, we report the FID scores,
shown as bar charts, which provide a direct comparison be-
tween pairs of VQ and MH-VQ models. The steepness of
the FID scores for both VQVAE-2 (dark red) and VQGAN
(blue) signifies the standard VQ framework’s dependence on
increasing codebook entries to achieve good reconstruction
quality. Conversely, the MH-VQ models demonstrate a more
gradual decrease in FID scores relative to codebook size, at-
taining optimal performance with fewer entries.

Our findings show that the adoption of MH-VQ leads
to a considerable reduction in codebook entries—up to 4

Figure 5: FID ↓ for validation samples. MH-VQ models out-
perform their counterparts at all codebook sizes and also
scales to their performance limit with less codes.

Figure 6: Samples generated by MH-VQGAN using 4 code-
book entries for FashionMNIST (left 6 columns) and 64
codebook entries for CelebA64 (middle 4 columns) and Im-
ageNet64 (right 4 columns).

times smaller with VQVAE-2, 8 times smaller with VQGAN
on the FashionMnist dataset, and an impressive 16 times
on the CelebA64 dataset, comparing MH-VQGAN with a
codebook size of 16 to VQGAN at 256. The improvements
recorded over the Imagenet64 dataset were relatively lower
at a 4-fold reduction, an outcome we attribute to the ex-
tended sequence length of 17.

In Fig. 6, we present samples of MH-VQGAN across each
dataset, visually demonstrating the realism and diversity in
the generated outputs, achieved even with a minimalistic
codebook design. This reinforces our argument for using the
MH-VQ framework as an alternative to VQ for efficient la-
tent representational learning.

Conclusion
This paper presents several novel concepts based on Mul-
tiple Hypothesis Dropout, a novel variant of dropout that
creates multiple-output functions that stably and efficiently
capture the statistical variability of targets. We build on this
key component by introducing two similar architectures for
two problems: Mixture of Multiple-Output functions (MoM)
and MH-VQVAE. MoM can fit multi-modal distributions in
output space while MH-VQVAE is designed for distribu-
tions in latent space. They both demonstrate improvements
in quality, stability and scalability over existing approaches
for these types of problems. We suspect these tools can gen-
eralize to other domains, such as robotics and reinforcement
learning. We also believe that the predictive variance of MH
Dropout networks has some correlation to uncertainty esti-
mation but leave this connection for future work.
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