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Abstract
Multi-modal multi-label emotion recognition (MMER) aims
to identify relevant emotions from multiple modalities. The
challenge of MMER is how to effectively capture discrim-
inative features for multiple labels from heterogeneous data.
Recent studies are mainly devoted to exploring various fusion
strategies to integrate multi-modal information into a unified
representation for all labels. However, such a learning scheme
not only overlooks the specificity of each modality but also
fails to capture individual discriminative features for differ-
ent labels. Moreover, dependencies of labels and modalities
cannot be effectively modeled. To address these issues, this
paper presents ContrAstive feature Reconstruction and Ag-
gregaTion (CARAT) for the MMER task. Specifically, we de-
vise a reconstruction-based fusion mechanism to better model
fine-grained modality-to-label dependencies by contrastively
learning modal-separated and label-specific features. To fur-
ther exploit the modality complementarity, we introduce a
shuffle-based aggregation strategy to enrich co-occurrence
collaboration among labels. Experiments on two benchmark
datasets CMU-MOSEI and M3ED demonstrate the effective-
ness of CARAT over state-of-the-art methods. Code is avail-
able at https://github.com/chengzju/CARAT.

Introduction
Multi-modal Multi-label Emotion Recognition (MMER)
aims to identify multiple emotions (e.g., happiness and sad-
ness) from multiple heterogeneous modalities (e.g., text, vi-
sual, and audio). Over the last decades, MMER has fueled
research in many communities, such as online chatting (Ga-
lik and Rank 2012), news analysis (Zhu, Li, and Zhou 2019)
and dialogue systems (Ghosal et al. 2019).

Different from single-modal tasks, multi-modal learning
synergistically processes heterogeneous information from
various sources, which introduces a challenge of how to cap-
ture discriminative representations from multiple modalities.
To this end, recent works propose various advanced multi-
modal fusion strategies to bridge the modality gap and learn
effective representations (Ramachandram and Taylor 2017).
According to the fusion manner, methods can be roughly
divided into three categories: aggregation-based, alignment-
based, and the mixture of them(Baltrušaitis, Ahuja, and
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Figure 1: An example of MMER (left) and correlations be-
tween two relevant emotions and the video sequence (right).

Morency 2019). The aggregation-based fusion employs av-
eraging (Hazirbas et al. 2017), concatenation (Ngiam et al.
2011) or attention (Zadeh et al. 2018a) to integrate multi-
modal features. The alignment-based fusion (Pham et al.
2018, 2019) adopts the cross-modal adaptation to align la-
tent information of different modalities. However, unifying
multiple modalities into one identical representation can in-
evitably neglect the specificity of each modality, thus los-
ing the rich discriminative features. Although recent works
(Hazarika, Zimmermann, and Poria 2020; Zhang et al.
2022) attempt to learn modality-specific representations,
they still utilize attention to fuse these representations into
one. Therefore, a key challenge of MMER is how to effec-
tively represent multi-modal data while maintaining modal-
ity specificity and integrating complementary information.

As a multi-label task (Zhang and Zhou 2013), MMER
also needs to deal with complex dependencies among la-
bels. Nowadays, massive studies attempt various methods
to explore label correlation, such as label similarity (Xiao
et al. 2019) and co-occurrence label graph (Ma et al. 2021).
However, these static correlations cannot reflect the collab-
orative relationship among labels. On the other hand, an-
other tricky conundrum for MMER is how to learn depen-
dencies between labels and modalities. Commonly, differ-
ent modalities have inconsistent emotional expressions, and
conversely, different emotions focus on different modalities,
which means that inferring each potential label largely de-
pends on the different contributions of different modalities.
As shown in Figure 1, we can infer sadness more easily from
the visual modality, while disgust can be predicted from both
textual and visual modalities. Therefore, another challenge
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of MMER is how to effectively model both label-to-label
and modality-to-label dependencies.

To address these issues, we propose ContrAstive fea-
ture Reconstruction and AggregaTion for MMER (CARAT),
which coordinates representation learning and dependency
modeling in a coherent and synergistic framework. Specif-
ically, our framework CARAT encapsulates three key com-
ponents. First, we adopt the label-wise attention mechanism
to extract label-specific representations within each modal-
ity severally, which is intended to capture relevant discrim-
inative features of each label while maintaining modality
specificity. Second, to reconcile the complementarity and
specificity of multi-modal information, we develop an inge-
nious reconstruction-based fusion strategy that attempts to
generate features of any modality by exploiting the infor-
mation from multiple modalities. We leverage contrastive
learning (Khosla et al. 2020), which is unexplored in pre-
vious MMER literature, to facilitate the learning of modal-
separated and label-specific features. Third, based on the
reconstructed embeddings, we propose a novel sample-
wise and modality-wise shuffle strategy to enrich the co-
occurrence dependencies among labels. After shuffled, em-
beddings are aggregated to finetune a robust discrimina-
tor. Moreover, as for modeling the modality-to-label depen-
dency, we employ a max pooling-like network to discover
the most relevant modalities for different emotions per sam-
ple, and then impel these corresponding representations to
be more discriminative. 1 The main contributions of this pa-
per can be summarized as follows:

• A novel framework, ContrAstive feature Reconstruction
and AggregaTion, is proposed. To the best of our knowl-
edge, this work pioneers the exploitation of contrastive
learning to facilitate a multi-modal fusion mechanism
based on feature reconstruction. As an integral part of our
method, we also introduce a shuffle-based feature aggre-
gation strategy, which uses the reconstructed embeddings
to better leverage multi-modal complementarity.

• To preserve the modality specificity, CARAT indepen-
dently extracts label-specific representations from dif-
ferent modalities via label-wise attention. Then a max
pooling-like network is involved to select the most rel-
evant modal representation per emotion to explore po-
tential dependencies between modalities and labels.

• We conduct experiments on two benchmark datasets
CMU-MOSEI and M3ED. The experimental results
demonstrate that our proposed method outperforms pre-
vious methods and achieves state-of-the-art performance.

Related Works
Multi-modal Learning aims to build models that can pro-
cess and relate information from multiple modalities (Bal-
trušaitis, Ahuja, and Morency 2019). A fundamental chal-
lenge is how to effectively fuse multi-modal information.
According to the fusion manner, methods can be roughly

1This paper’s complete version with technical appendices is
available at https://arxiv.org/abs/2312.10201

divided into three categories: aggregation-based, alignment-
based, and hybrid methods. Aggregation-based methods use
concatenation (Ngiam et al. 2011), tensor fusion (Zadeh
et al. 2017; Liu et al. 2018) and attention (Zadeh et al. 2018a)
to combine multiple modalities, but suffer from the modal-
ity gap. To bridge the gap, alignment-based fusion (Pham
et al. 2018, 2019) exploits latent cross-modal adaptation by
constructing a joint embedding space. However, alignment-
based fusion neglects the specificity of each modality, result-
ing in the omission of discriminative information.
Multi-label Emotion Recognition is a foundational multi-
label (ML) task and ML approaches can be quickly ap-
plied. BR (Boutell et al. 2004) decomposes the ML task into
multiple binary classification ones while ignoring label cor-
relations. To exploit the correlations, LP (Tsoumakas and
Katakis 2006), CC (Read et al. 2011) and Seq2Seq (Yang
et al. 2018) are proposed. To further explore label relation-
ships, recent works leverage reinforced approach (Yang et al.
2019), multi-task pattern (Tsai and Lee 2020), and GCN
model (Chen et al. 2019b). Another important task is to learn
effective label representations. To compensate for the inabil-
ity of a single representation to capture discriminative infor-
mation of all labels, recent works (Chen et al. 2019a,b) uti-
lize label-specific representations to capture the most rele-
vant features for each label, which has been successfully ap-
plied to many studies (Huang et al. 2016; Xiao et al. 2019).
Contrastive learning (CL) is an effective self-supervised
learning technique (Li et al. 2021; Oord, Li, and Vinyals
2018; Hjelm et al. 2019) . CL aims to learn a discrim-
inative latent space where similar samples are pulled to-
gether and dissimilar samples are pushed apart. Motivated
by the successful application of CL in unsupervised learn-
ing (Oord, Li, and Vinyals 2018; He et al. 2020), Supervised
Contrastive Learning (SCL) (Khosla et al. 2020) is devised
to promote a series of supervised tasks. Recently, CL has
been applied to multi-modal tasks to strengthen the inter-
action between features of different modalities (Zheng et al.
2022; Franceschini et al. 2022; Zolfaghari et al. 2021). How-
ever, there has been no exploration of contrastive learning on
multi-modal tasks in the multi-label scenario.

Methodology
In this section, we describe our CARAT framework, which
comprises three sequential components (in Figure 2).

Problem Definition
We define notations for MMER. Let X t ∈ Rnt×dt , X v ∈
Rnv×dv and X a ∈ Rna×da be the heterogeneous feature
spaces for textual (t), visual (v) and acoustic (a) modality
respectively, where nm and dm denotes the sequence length
and modality dimension respectively (m ∈ {t, v, a} is used
to represent any modality). And Y is the label space with
C labels. Given a training dataset D= {(X{t,v,a}

i ,yi)}Ni=1,
MMER aims to learn a function F : X t×X v ×X a 7→ Y to
predict relevant emotions for each video. Concretely, Xm

i ∈
Xm are asynchronous coordinated utterance sequences and
yi={0, 1}C is the multi-hot label vector, where sign yi,j=1
indicates that sample i belongs to class j, otherwise yi,j=0.
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Figure 2: The overall structure of CARAT with three sequential steps (up). Detailed implementations of two-level feature
reconstruction network, contrastive representation learning network, and Max Pooling-like network (bottom).

Uni-modal Label-specific Feature Extraction
As the first step, this component aims to extract the relevant
discriminative features for each label in each modality.

Transformer-based Extractor. For each modality m, we
use an independent Transformer Encoder (Vaswani et al.
2017) to map raw feature sequences Xm ∈ Rnm×dm into
high-level embedding sequences Hm ∈ Rnm×d. Each en-
coder is composed of lm identical layers, where each layer
consists of two sub-layers: a multi-head self-attention sub-
layer and a position-wise feed-forward sub-layer. The resid-
ual connection (He et al. 2016) is employed around each of
the two sub-layers, followed by layer normalization.

Multi-label Attention. Considering that each emotion is
usually expressed by the most relevant part of the utterance,
we generate label-specific representations for each emotion
to capture the most critical information. After obtaining em-
bedding sequences Hm, we compute the combination of
these embeddings for each label j under each modality m
through a label-wise attention network. Formally, we repre-
sent the hidden state of each embedding as hm

i ∈ Rd(i ∈
[nm]). The attentional representation um

j is obtained as:

um
j =

nm∑
i=1

αm
ijh

m
i , αm

ij =
exp(wm

j
⊤hm

i )∑nm

i′=1 exp(w
m
j

⊤hm
i′ )

, (1)

where wm
j ∈ Rd denotes the attention parameter for the j-

th label and αm
ij is the normalized coefficient of hm

i . It is
worth noting that attention networks between modalities are
still independent of each other, thus generating label-specific
representations Um

o ∈ RC×d separately.

Contrastive Reconstruction-based Fusion
The second component aims to utilize information from
multiple modalities to restore the features of any modality.

Multi-modal Feature Reconstruction. Considering that
fusing multi-modal information into an identical represen-
tation can ignore the modality specificity, we propose a
reconstruction-based fusion mechanism, which restores fea-
tures of any modality with the feature distribution in the cur-
rent modality and the semantic information in other modal-
ities. We first use three modality-specific encoders Enm(·)
to project Um

o into latent vectors Zm
o ∈ RC×dz in the la-

tent space Sz . From the space Sz , we calculate the intrinsic
vectors Dm = {dm

j ∈ Rdz}Cj=1 to reflect the feature dis-
tribution of each label j in different modalities (explained
in the next sub-section). Then, three modality-specific de-
coders Dem(·) transform vectors Zm

o and Dm back to de-
coded vectors Ũm

o , D̃m ∈ RC×d respectively.
To realize cross-modal feature fusion, we employ a two-

level reconstruction process with three networks fva2t(·),
f ta2v(·) and f tv2a(·) (detailed analysis in Appendix A).
Taking the modality t as an example, we first concatenate
the intrinsic features D̃t and semantic features Ũ{v,a}

o in a
certain modality order, where the former reflects the feature
distribution of the current modality (t) and the latter provides
semantic information of other modalities (v, a). The con-
catenated vectors are input into fva2t(·) to obtain the first-
level reconstruction representations (FRR) U t

α ∈ RC×d.
Then, Um

α of all modalities are concatenated and feed into
fva2t(·) to generate the second-level reconstruction repre-
sentations (SRR) U t

β ∈ RC×d. The reconstruction-based fu-
sion process of all modalities is expressed as,
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U t
α=fva2t([D̃t; Ũv

o ; Ũ
a
o ]),U

t
β=fva2t([U t

α;U
v
α;U

a
α]),

Uv
α=f ta2v([Ũ t

o; D̃
v; Ũa

o ]),U
v
β =f ta2v([U t

α;U
v
α;U

a
α]),

Ua
α=f tv2a([Ũ t

o; Ũ
v
o ; D̃

a]),Ua
β =f tv2a([U t

α;U
v
α;U

a
α]).

(2)
To ensure that the reconstructed feature vectors can re-

store the original information, we use the mean square error
to formulate the reconstruction loss as:

Lrec =
M∑
m

(
∥Um

o − Ũm
o ∥F + ∥Um

o −Um
α ∥F

)
, (3)

where ∥ · ∥F returns the Frobenius norm of the matrix.
Due to the modality heterogeneity, different modalities

express each emotion with different contributions. There-
fore, we introduce a Max Pooling-like network to impel each
label to focus on its most relevant modality. Specifically,
we utilize three modality-specific classifiers h{t,v,a}(·) on
Um

o ,Um
α ,Um

β to calculate label prediction for {t, v, a}
modalities, respectively. Then, we connect a Max-Pooling
layer on these predictions to filter the most relevant modal-
ity of each label. Taking Um

o as an example, the final output
via the above network is calculated as,

so = MaxPool
(
ht(U

t
o), hv(U

v
o ), ha(U

a
o )
)
∈ RC . (4)

In the same way, we can also obtain sα and sβ . Finally, we
calculate the binary cross entropy (BCE) losses as,

Llsr
cls = γol(s

o,y) + γαl(s
α,y) + γβl(s

β ,y), (5)

where l is the BCE loss and γo,α,β are trade-off parameters.

Contrastive Representation Learning. To enable intrin-
sic vectors Dm to reflect the feature distribution of each
label in different modalities, we utilize contrastive learn-
ing to learn a distinguishable latent embedding space Sz .
For samples in a batch of size B, after obtaining Um

o , Um
α ,

Um
β , we feed them into the corresponding encoder Enm(·)

to generate L2-normalized latent embeddings Zm
o , Zm

α ,
Zm

β ∈ RC×dZ , respectively. We follow the SCL (Khosla
et al. 2020) and additionally maintain a queue storing the
most current latent embeddings, and we update the queue
chronologically. Thus, we have the contrastive embedding

pool as E = {Z{t,v,a}
{o,α,β}}

B
i=1 ∪ queue. Given an anchor em-

bedding e ∈ E, the contrastive loss is defined by contrasting
its positive set with the remainder of the pool E as,

Lscl(e,E) = − 1

|P (e)|
∑

e+∈P (e)

log
exp

(
e⊤e+/τ

)∑
e′∈E(e)

exp (e⊤e′/τ)
,

(6)
where P (e) is the positive set and E(e) = E\{e} . τ ∈ R+

is the temperature. The contrastive loss of the batch is:

Lscl =
∑

e∈E
Lscl(e,E). (7)

To construct the positive set, considering the purpose of
learning the modality-specific feature distribution of each
label, we redefine the label for each e. According to the
modality m, label category j and label polarity k, the new
label is defined as ỹ = lmj,k,m ∈ {t, v, a}, j ∈ [C], k ∈
{pos, neg}. Thus, the positive examples are selected as
P (e) = {e′|e′ ∈ E(e), ỹ′ = ỹ}, where ỹ′ is the label for
e′. In other words, the positive set is those embeddings from
the same modality with the same label category and polarity.
Importantly, we keep a prototype embedding µm

j,k ∈ Rdz

corresponding to each class lmj,k, which can be deemed as
a set of representative embedding vectors. To reduce the
computational toll and training latency, we update the class-
conditional prototype vector in a moving-average style as,

µm
j,k = Normalize(ϕµm

j,k + (1− ϕ)e), if ỹ = lmj,k, (8)

where the momentum prototype µm
j,k is defined by the mov-

ing average of the normalized embedding whose defined
class conforms to lmj,k. ϕ is a hyperparameter. During train-
ing, we leverage prototypes to obtain the intrinsic vectors
Dm = [dm

1 , . . . ,dm
C ] via the soft-max pattern as,

dm
j =

{pos,neg}∑
k

αm
j,ku

m
j,k, α

m
j,k =

exp(e⊤um
j,k)

{pos,neg}∑
k′

exp(e⊤um
j,k′)

,

(9)
while during prediction, the hard-max pattern is used as,

dm
j =I[αm

j,pos>α
m
j,neg]

um
j,pos + I[αm

j,pos≤αm
j,neg]

um
j,neg, (10)

where I[·] is the indicator function.
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Shuffle-based Feature Aggregation
Although exploiting the most relevant modality is suffi-
cient to find discriminative features, multi-modal fusion can
use complementary information to obtain more robust rep-
resentations. Therefore, we design a shuffle-based aggre-
gation to exploit cross-modal information, which includes
sample- and modality-wise shuffle processes. The motiva-
tions of the sample- and modality-wise shuffle are to en-
rich the co-occurrence relations of labels and realize ran-
dom cross-modal aggregation, respectively. As shown in
Figure 3, after obtaining the SRR of a batch of samples, two
shuffle processes are performed sequentially and indepen-
dently. Specifically, we stack the vectors Um

β of the batch as

V = Stack
({

[U t
β ;U

v
β ;U

a
β ]i

}B

i=1

)
∈ RB×M×C×d, where

M is the number of modalities. Firstly, on each modality m,
we perform the sample-wise shuffle (sws) as,

V[:,m] := [vm
1 , . . . , vm

B ]
sws→ Ṽ[:,m] :=

[
vm
r1 , . . . , v

m
rB

]
,

(11)
where {ri}B1 are new indices of samples. Then, for each
sample, the modality-wise shuffle (mws) is performed as,

Ṽ[i,:] :=
[
ṽ1
i , . . . , ṽ

M
i

] mws→ V̂[i,:] := [ṽr1
i , . . . , ṽrM

i ] ,
(12)

where {ri}M1 are new indices of modalities. Then, V and V̂
are concatenated on the label dimension, respectively, as,

Q =
{{

qm
i = [vm

i,1; . . . ;v
m
i,C ]

}{t,v,a}
m

}B

i
∈ RB×M×C·d,

Q̂ =
{{

q̂m
i = [v̂m

i,1; . . . ; v̂
m
i,C ]

}{t,v,a}
m

}B

i
∈ RB×M×C·d.

(13)
It is worth noting that unlike qm

i , which is concatenated by
features from a single modality and a single sample, the fea-
tures constituting q̂m

i are randomly sampled from 1 to M

modalities and 1 to C samples. Finally, the Q and Q̂ are
used to fine-tune a classifier hc(·) with the BCE loss as,

Lagg
cls =

1

M

M∑
m

(
l(hc(q

m),yqm) + γsf l(hc(q̂
m),yq̂m)

)
,

(14)
where γsf is the trade-off parameter. Combing the Equation
3, 5, 7 and 14, the final objective function is formulated as,

L = Lagg
cls + Llsr

cls ++γsLscl + γrLrec, (15)

where γs, γr are trade-off parameters. During prediction, to
utilize both the most relevant modality and multi-modal fu-
sion, the prediction of the test sample i′ is obtained as,

ŷi′ =
1

2
(
1

M

∑M

m
hc(q

m
i′ ) + sβi′) ∈ RC . (16)

Experiments
Experimental Settings
Dataset and Evaluation Metrics. We evaluate CARAT
on two benchmark MMER datasets (CMU-MOSEI (Zadeh

et al. 2018b) and M3ED (Zhao et al. 2022)), which main-
tained settings in the public SDK23 . Four evaluation metrics
are employed: Accuracy (Acc), Micro-F1, Precision (P), and
Recall (R). More detailed descriptions and preprocessing of
datasets are shown in Appendix B.

Baselines. We compare CARAT with various approaches
of two groups. The first group is Multi-Label Classifica-
tion (MLC) methods. Specifically, in these approaches, the
multi-modal inputs are early fused (simply concatenated) as
a new input. For classic methods: (1) BR (Boutell et al.
2004) transforms MLC into multiple binary classifications
while ignoring label correlations. (2) LP (Tsoumakas and
Katakis 2006) breaks the initial label set into several ran-
dom subsets and trains a corresponding classifier. (3) CC
(Read et al. 2011) transforms MLC into a chain of binary
classification problems by considering high-order label cor-
relations. For deep-based methods: (4) SGM (Yang et al.
2018) views MLC as a sequence generation problem via la-
bel correlation. (5) LSAN (Xiao et al. 2019) explores the
semantic connection between labels and documents to con-
struct label-specific document representation. (6) ML-GCN
(Chen et al. 2019b) employs GCN to map label representa-
tions and captures label correlations for image recognition.

The second group is multi-modal multi-label methods. (7)
MulT (Tsai et al. 2019) uses cross-modal interactions to
fuse information from one modality to another. (8) MISA
(Hazarika, Zimmermann, and Poria 2020) learns modality-
invariant and modality-specific representations for the fu-
sion. (9) MMS2S (Zhang et al. 2020) handles the modal-
ity and label dependence in a sequence-to-set approach. (10)
HHMPN (Zhang et al. 2021) models feature-to-label, label-
to-label and modality-to-label dependencies via graph mes-
sage passing. (11) TAILOR (Zhang et al. 2022) adversari-
ally depicts commonality and diversity among modalities to
obtain discriminative representations. (12) AMP (Ge et al.
2023) learns robust representations with adversarial tempo-
ral masking and Adversarial Parameter Perturbation.

Implementation Details. We set the size of hidden states
as d = 256, dz = 64. The size of the embedding queue
is set to 8192. All encoders Enm(·) and decoders Dem(·)
are implemented by 2-layer MLPs. We set hyper-parameters
γo=0.01, γα=0.1, γβ=1, γs=1, γsf =0.1 and γr=1 and
the analysis of different weight settings is presented in Ap-
pendix A. We set lt =6, lv = la =4 for the layer number of
Transformer Encoders. We employ the Adam (Kingma and
Ba 2014) optimizer with the initial learning rate of 5e−5 and
a liner decay learning rate schedule with a warm-up strategy.
The batch size B is set to 64. During training, we train meth-
ods for 20 epochs to select the model with the best F1 score
on the validation set as our final model. All experiments are
conducted with one NVIDIA A100 GPU.

Experimental Results
Performance Comparison. We show performance com-
parisons on CMU-MOSEI and M3ED (only partial multi-

2https://github.com/A2Zadeh/CMU-MultimodalSDK
3https://github.com/AIM3-RUC/RUCM3ED
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Approaches Methods Aligned Unaligned
Acc P R Micro-F1 Acc P R Micro-F1

Classical
BR 0.222 0.309 0.515 0.386 0.233 0.321 0.545 0.404
LP 0.159 0.231 0.377 0.286 0.185 0.252 0.427 0.317
CC 0.225 0.306 0.523 0.386 0.235 0.320 0.550 0.404

Deep-based
SGM 0.455 0.595 0.467 0.523 0.449 0.584 0.476 0.524
LSAN 0.393 0.550 0.459 0.501 0.403 0.582 0.460 0.514

ML-GCN 0.411 0.546 0.476 0.509 0.437 0.573 0.482 0.524

Multi-modal

MulT 0.445 0.619 0.465 0.531 0.423 0.636 0.445 0.523
MISA 0.430 0.453 0.582 0.509 0.398 0.371 0.571 0.450

MMS2S 0.475 0.629 0.504 0.560 0.447 0.619 0.462 0.529
HHMPN 0.459 0.602 0.496 0.556 0.434 0.591 0.476 0.528
TAILOR 0.488 0.641 0.512 0.569 0.460 0.639 0.452 0.529

AMP 0.484 0.643 0.511 0.569 0.462 0.642 0.459 0.535
CARAT 0.494 0.661 0.518 0.581 0.466 0.652 0.466 0.544

Table 1: Performance comparison between CARAT and baselines on CMU-MOSEI dataset with aligned and unaligned settings.

Methods Acc P R Micro-F1
MMS2S 0.645 0.813 0.737 0.773
HHMPN 0.648 0.816 0.743 0.778
TAILOR 0.647 0.814 0.739 0.775
AMP 0.654 0.819 0.748 0.782
CARAT 0.664 0.824 0.755 0.788

Table 2: Performance comparison on the M3ED dataset.

modal baselines) in Table 1,2, and observations are as fol-
lows: 1) CARAT significantly outperforms all rivals by a
significant margin. Although MISA has a prominent recall,
its precision drops to a poor value and its performance is
far inferior to CARAT on more important metrics (Micro-
F1 and accuracy). Furthermore, CARAT still maintains a
decent performance boost in the unaligned setting, which
proves that CARAT can break the barrier of the modality
gap better than others. 2) Among uni-modal approaches,
the superior performance of deep-based methods, i.e. SGM,
LSAN and ML-GCN, over classic methods, i.e. BR, CC
and LP, indicates that deep representation can better cap-
ture semantic features and label correlations help to cap-
ture more meaningful information. 3) Compared with uni-
modal approaches, multi-modal methods typically exhibit
better performance, which shows the necessity of modeling
multi-modal interactions. 4) Among all baselines, TAILOR
achieves competitive performance, which validates the ef-
fectiveness of leveraging commonality and diversity among
modalities to obtain the discriminative label representations.

Ablation Study. To demonstrate the importance of each
component, we compare CARAT with various ablated vari-
ants. As shown in Table 3, we can see:

1) Effect of exploiting both specificity and complementar-
ity: By using both features of the most relevant modality
(MRM) and aggregated features (AGG), (1) is better than (2)
and (3), which indicates the significance of binding modality
specificity and complementarity.

2) Effect of the contrastive representation learning: With-
out conducting the loss Lscl, (4) is worse than CARAT,
which illustrates the significance of leveraging contrastive

Approaches Acc P R Micro-F1
(1) MRM + AGG 0.475 0.647 0.507 0.569
(2) only MRM 0.474 0.641 0.502 0.563
(3) only AGG 0.472 0.639 0.506 0.565
(4) w/o Lscl 0.481 0.640 0.515 0.571
(5) w/o En,De 0.475 0.638 0.514 0.569
(6) w/o Lrec 0.482 0.644 0.516 0.573
(7) w/o α-recon 0.483 0.636 0.520 0.572
(8) w/o β-recon 0.482 0.631 0.513 0.566
(9) w/o α&β-recon 0.475 0.619 0.503 0.555
(10) w/o sw-shf 0.491 0.659 0.511 0.575
(11) w/o mw-shf 0.490 0.656 0.514 0.576
(12) w/o shf 0.489 0.658 0.509 0.574
(13) CARAT 0.494 0.661 0.518 0.581

Table 3: Ablation tests on the aligned CMU-MOSEI.
”MRM” and ”AGG” respectively denote using features
of the Most Relevant Modality and AGGregated features.
”w/o” means removing. ”w/o En,De” denotes removing
the encoding and decoding. ”w/o {α, β, α&β}-recon” de-
notes removing the first-level reconstruction, second-level
reconstruction, or both. ”w/o { sw-, mw-, ϕ}shf” denotes re-
moving the sample-, modality-wise shuffle process or both.
Detailed implementations are in Appendix A.

learning to learn distinguishable representations. Further, by
removing the process of encoding and decoding, (5) is worse
than (4), which validates the rationality of exploring the in-
trinsic embeddings in the latent space.

3) Effect of the two-level feature reconstruction: First, (6)
is worse than CARAT, which reveals the effectiveness of us-
ing loss Lrec to constrain feature reconstruction. Removing
the first- and second-level reconstruction processes, (7) and
(8) have different degrees of performance degradation com-
pared to CARAT. When the entire reconstruction process is
removed, the performance of (9) is further reduced than (7)
and (8), which confirms the effectiveness of multi-level fea-
ture reconstruction to achieve multi-modal fusion.

4) Effect of different shuffling operations: Excluding any
round of the shuffling process, (10) and (11) are worse than
CARAT, and (12) is even worse when both shuffling pro-
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Anyhow, it was really good they did, they did not really 

do a whole bunch of background info on why she has 

to fight and be prepared. I guess they should live up 

with more, but besides that it was all over pretty good. 

There was a lot of action, oh my god, a lot of action.

Textual
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Happiness, Surprise

I'm sorry and disappointed to say this. I didn't like it. I 

couldn't get into it. I actually knew what I was getting 

myself into. I knew obviously the movie would be gory 

maybe a lot more than the expendables but I feel that 

the movie was not really concerned with being exciting.
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Fear, Disgust, Anger By TAILOR
Sadness, Disgust, Anger By CARAT (ours)
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Figure 4: (a) The visualization of modality-to-label dependencies, indicating the correlation of labels in each row to modality
in each column, where darker colors indicate stronger correlations. (b) Two cases of emotion recognition by multiple methods.

cesses are removed, which confirms the effectiveness of per-
forming shuffling in both sample and modality dimensions.
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Figure 5: t-SNE visualization of embeddings without/with
(left/right) CL. Different colors represent different modali-
ties and different shades represent different emotions.

Analysis

Visualization of Distinguishable Representations. To
investigate the efficacy of contrastive learning (CL) on dis-
tinguishable representations, we visualize embeddings Zm

o
in space Sz using t-SNE (Van der Maaten and Hinton 2008)
without or with contrastive learning on the aligned CMU-
MOSEI dataset. As shown in Figure 5, without CL (left sub-
figure), although embeddings belonging to different modal-
ities can be well distinguished, the embeddings of differ-
ent classes in each modality are lumped together. In con-
trast, in the right subfigure, embeddings belonging to differ-
ent modalities and labels are explicitly separated from each
other, and embeddings of the same modality still maintain a
tighter distribution. Thus, with CL, CARAT produces well-
separated clusters and more distinguishable representations.

Visualization of Modality-to-label Correlations. We vi-
sualize the correlation of labels with their most relevant
modalities. As shown in Figure 4 (a), each label focuses on
different modalities unequally and usually has its own prone
modality. The modality-to-label correlations differ from la-
bel to label, e.g., emotion surprise and sad are highly corre-
lated with the visual and textual modality, respectively. More
visualization examples are shown in Appendix E.

Case Study. To further demonstrate the effectiveness of
CARAT, Figure 4 (b) presents two cases. 1) Emotions ex-
pressed by different modalities are not consistent, which re-
flects the modality specificity. E.g., in Case 2, emotion angry
can be mined intuitively from the visual and audio, but not
the text. 2) HHMPN wrongly omitted relevant labels due to
neglecting modality specificity, which results in the inabil-
ity to capture richer semantic information. In contrast, TAI-
LOR gives wrong related labels. Since TAILOR uses self-
attention that can only explore label correlations within each
sample, global information cannot be exploited. Overall, our
CARAT achieves the best performance.

Conclusion
In this paper, we propose ContrAstive feature Reconstruc-
tion and AggregaTion (CARAT) for MMER, which inte-
grates effective representation learning and multiple de-
pendency modeling into a unified framework. We pro-
pose a reconstruction-based fusion mechanism by con-
trastively learning modal-separated and label-specific fea-
tures to model fine-grained modality-to-label dependen-
cies. To further exploit the modality complementarity, we
introduce a shuffle-based aggregation strategy to enrich
co-occurrence collaboration among labels. Experiments on
benchmark datasets CMU-MOSEI and M3ED demonstrate
the effectiveness of CARAT over state-of-the-art methods.
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