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Abstract

Large language models (LLMs) show their powerful auto-
matic reasoning and planning capability with a wealth of
semantic knowledge about the human world. However, the
grounding problem still hinders the applications of LLMs in
the real-world environment. Existing studies try to fine-tune
the LLM or utilize pre-defined behavior APIs to bridge the
LLMs and the environment, which not only costs huge human
efforts to customize for every single task but also weakens
the generality strengths of LLMs. To autonomously ground
the LLM onto the environment, we proposed the Hypothesis,
Verification, and Induction (HYVIN) framework to automati-
cally and progressively ground the LLM with self-driven skill
learning. HYVIN first employs the LLM to propose the hy-
pothesis of sub-goals to achieve tasks and then verify the fea-
sibility of the hypothesis via interacting with the underlying
environment. Once verified, HYVIN can then learn general-
ized skills with the guidance of these successfully grounded
subgoals. These skills can be further utilized to accomplish
more complex tasks that fail to pass the verification phase.
Verified in the famous instruction following task set, BabyAI,
HYVIN achieves comparable performance in the most chal-
lenging tasks compared with imitation learning methods that
cost millions of demonstrations, proving the effectiveness of
learned skills and showing the feasibility and efficiency of our
framework.

Introduction
Large language models (LLMs) have shown their powerful
capability in automatic reasoning and planning with a wealth
of semantic knowledge about the human world (Wei et al.
2022, 2021; OpenAI 2023; Kojima et al. 2022). However,
there still remains a large gap in adopting LLMs to auto-
matically solve problems in specific environments. This is
because of the misalignment between the LLM’s semantic
planning and the grounded-specific implementation, which
is also known as the grounding problem (Ichter et al. 2022;
Driess et al. 2023). Solving this problem can unlock the
LLMs’ capacity of understanding and affecting the real
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world, which is a solid step towards real-world applications
of artificial intelligence.

To address the grounding problem, existing studies try to
fine-tune the LLM to predict feasible actions (Carta et al.
2023; Li et al. 2022; Wang et al. 2022) or utilize a set of
behavior APIs (i.e. low-level skills) that serve as a bridge
between the LLMs and the environment (Ichter et al. 2022;
Raman et al. 2022; Liang et al. 2022). On the one hand, fine-
tuning LLMs is of low sample efficiency and may also dam-
age the reasoning ability of LLMs. On the other hand, exist-
ing methods relying on behavior APIs often assume the APIs
are pre-defined by the environment (Liang et al. 2022) or
pre-trained using expert demonstrations (Ichter et al. 2022),
which not only costs huge human efforts to customize for ev-
ery single task but also weakens the generality strengths of
LLMs. Therefore, how to autonomously ground the LLM
onto the environment still remains an open problem and is
the key challenge of LLM-based agents.

It is challenging to achieve the goal of autonomous
grounding that maps the LLM’s semantic plan to practi-
cal implementation, because of the following reasons: 1)
The prerequisite of grounding, obtaining successful experi-
ences, is difficult because of the sparse rewards in the phys-
ical world. 2) Even obtaining rare success experiences, the
grounding is usually closely related to specific tasks with-
out a shared API library, therefore is of low generality and
invaluable for general tasks. To address these issues, we pro-
duce intrinsic rewards based on LLM-generated subgoals
and their check functions, which increase successful expe-
riences by alleviating the sparse reward issue. We then pro-
pose the language-aligned general skill learning methodol-
ogy by forcing each skill to achieve a group of goals with
similar semantic descriptions. These skills show good gen-
erality in solving other or even more complex tasks.

In summary, we propose a Hypothesis, Verification, and
Induction (HYVIN) framework that intimately combines the
LLM and the reinforcement learning process within the fol-
lowing key stages: 1) Hypothesis: the LLM not only acts
as the planner by decomposing tasks into small subgoals but
also provides the check functions so that RL agents can eval-
uate whether they can complete these subgoals. Such intrin-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14599



sic rewards from the LLM significantly alleviate the sparse
reward issue. 2) Verification: with the subgoals and corre-
sponding check functions, RL agents learn the policies of the
subgoals based on intrinsic rewards and finally are verified
through whether the tasks are accomplished. 3) Induction:
RL agents cluster verified subgoals through semantic sim-
ilarity and learn generalized skill policy upon them. With
these general skills, the LLM can generate solutions for un-
seen or even more complex tasks through minimal and effi-
cient interaction.

We validate the self-driven grounding framework in in-
struction following tasks, which is common and reason-
able for LLM-based agents because of textural task instruc-
tion. Verified in BabyAI, a grid world platform to study
language-grounded tasks, our automatic grounding frame-
work achieves comparable performance in the most difficult
tasks compared with imitation learning methods that cost
millions of demonstrations. The experiment results not only
proves the effectiveness of learned skills but also show the
feasibility and efficiency of our framework.

Related Work
LLM-assisted Agents LLMs show their great power in
automatic reasoning and planning with a wealth of semantic
knowledge about the human world. Therefore, it is promis-
ing to involve LLMs in developing intelligent agents. The
key challenge in LLM-assisted agents is how to ground the
LLM’s knowledge (in linguistic form) to the tasks at hand.
Regarding this challenge, there are two mainstream meth-
ods: (1) utilizing a set of behaviour APIs with detailed lin-
guistic annotations. Such APIs can be pre-defined by the
environment (Liang et al. 2022) or pre-trained using expert
demonstrations (Ichter et al. 2022; Huang et al. 2022; Yuan
et al. 2023). For example, Code as Policies (Liang et al.
2022) uses the LLM to generate executable codes for ac-
complishing instructions which can invoke behaviour APIs
under certain conditions. SayCan (Ichter et al. 2022) invites
humans to rate the success of given demonstrations, which
are utilized to train API policies and then derive an affor-
dance function. Voyager (Wang et al. 2023) stores and re-
trieves executable code, which calls pre-implemented basic
APIs, to handle complex scenarios. To better interact with
the environment, some approaches (Huang et al. 2022; Ra-
man et al. 2022) introduce the environment feedback to re-
generate new plans, which can be seen as another kind of
trial-and-error learning. Although these methods have made
impressive progress by utilizing APIs, their applications are
also limited by the behaviour APIs in that the agent can only
accomplish tasks that can be solved by arranging these ba-
sic APIs. (2) fine-tuning the LLMs. The LLM can be fine-
tuned to predict the agent’s feasible action given the state
descriptions. Such fine-tuning can be performed using ex-
pert demonstrations (Wang et al. 2022; Li et al. 2022) or on-
line RL (Carta et al. 2023). However, fine-tuning a model as
large as the LLM is quite time expensive and requires much
training data.

Instruction Following In instruction following, an agent
is given an instruction and the goal is to accomplish the

task described by the instruction. Such a paradigm makes
the agent able to assist human beings by following human
instructions, which has wide real-world applications. The
works for instruction following can be divided into three
categories: (1) Semantic-parsing methods (Artzi and Zettle-
moyer 2013; Misra et al. 2016), which directly parses the
instruction into the agent’s actions via lexical analysis and
other pre-defined rules. These methods require great hu-
man efforts to design proper rules, and can not general-
ize to complex environments. (2) Learning-based methods,
which directly train a language-conditioned policy to ac-
complish instructions (Peng et al. 2023). Many prior works
require expert demonstrations in their training loops. For ex-
ample, expert demonstrations are often used in policy im-
itation learning (Lynch and Sermanet 2021; Chaplot et al.
2018), hindsight instruction relabelling (Röder, Eppe, and
Wermter 2022; Chen, Gupta, and Marino 2021), and learn-
ing the language-conditioned reward function (Bahdanau
et al. 2019). Some works try to sidestep the need for expert
demonstrations (Ranzato et al. 2021; Huang et al. 2023), but
at the cost of much lower sample efficiency. All learning-
based approaches are typically trained using hard-coded in-
struction templates, which can not provide diverse, ambigu-
ous and long-term planning instructions as humans. There-
fore, they can only deal with simple and low-level instruc-
tions such as pick-and-place tasks. (3) LLM-based methods,
which use LLMs to assist the understanding and planning
of instructions (Ichter et al. 2022; Liang et al. 2022; Raman
et al. 2022). See the last paragraph for more details.

Preliminaries
Problem Formulation
We consider adopting an LLM-based agent to solve instruc-
tion following (IF) tasks.Each instruction I ∈ T describes a
task coarsely in the environment. Given the instruction, only
when the agent accomplishes the task using primitive action
set A can receive a positive reward from the environment.
For example, in BabyAI, which is a famous instruction fol-
lowing task set, instructions like “Open the green door” or
“Put the red box next to the blue ball” specify some macro-
scopic object manipulation tasks, while the agent needs to
accomplish them in a grid world using primitive actions like
“turn right”, “move forward”, “pick” and so on.

An LLM-based agent takes instructions I and environ-
ment observation o as input and outputs actions to accom-
plish tasks. As shown in Figure 1, the general framework of
LLM-based agents contains a high-level planner and some
low-level skills that can unitize the semantic knowledge in
the LLM to accomplish instruction following tasks. Given
the coarse instruction, the planner (often LLMs) will de-
compose it into a sub-instruction sequence or generate a
program to solve it. At the same time, the low-level skills
consist of pre-trained policies or pre-implemented scripts to
execute the plan or program. Researchers usually assume the
environment provides textual descriptions of state and task-
related feedback to adapt to the LLM setting. With the im-
mediate translation from the semantic output to execution
in the environment through low-level APIs, the high-level
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planner can get adequate feedback and iteratively refine its
plan to accomplish tasks.

Current methods leverage semantic knowledge in the
high-level planner to reason and decompose the coarse in-
struction, but meanwhile, bypass the grounding problem by
translating the semantic plan into implementation through
pre-defined low-level APIs. In order to maximize the use
of priors in LLMs to reduce human effort, our framework
aims to automatically learn generalized skills in the environ-
ment to build low-level APIs to solve the grounding prob-
lem.Besides, in this paper, we assume the LLM could call
basic perception functions P = {p1, p2, ...}, like “GetOb-
servedObjects()”, to get environment status instead of pre-
designed textual observation and feedback mechanisms.

Challenges
The essential problem of building an LLM-based agent is
to ground semantic knowledge of LLM in the environment.
To automatically solve the grounding problem, there are two
main challenges:

• How to obtain successful grounding experiences from
scratch? Without pre-defined low-level APIs, the agent
cannot interact with the environment to attempt the se-
mantic plan directly and efficiently explore the reward
of task accomplishment. To address the challenge, we
make the LLM hypothesize the plan for each task and
generate corresponding checks for each sub-step. Based
on these intrinsic rewards provided by checks, we can
quickly train small policies to execute and verify the plan,
then collect successful trajectories as grounding experi-
ences. Although such experience obtained through quick
attempts may belong to simple tasks, we can also lever-
age them to enhance the grounding ability of the agent to
accomplish more complex and long-term tasks progres-
sively.

• How to efficiently train generalized low-level behavior
APIs under the guidance of experience? The subgoals in
successful experience are proposed by the LLM based on
specific instruction, and cannot be applied to new scenar-
ios as general behavior APIs. Inspired by inductive ideas
in mathematics, we introduce a mechanism to group sub-
goals with similar semantics together, then train skill
policies that can achieve a group of subgoals as gener-
alized behavior APIs. Unlike standard online reinforce-
ment learning, which suffers from data efficiency issues,
we make skills training efficient through dense rewards
provided by checks, and initial state restoration by the
successful trajectories.

Method
In this section, we will first give an overview of our proposed
HYVIN framework, which can automatically and progres-
sively ground LLM in the environment.

Overview
As shown in Figure 2, HYVIN can be divided into four
phases.

Figure 1: A general framework of LLM-based agents

• Hypothesis: For each instruction, LLM tries to decom-
pose it into subgoals and generate check functions for
each subgoal.

• Verification: Based on the reward provided by the check
function, we train separate policies for each subgoal
within limited steps until the task is accomplished to ver-
ify the feasibility of the hypothesis of LLM.

• Induction: We group the subgoals in successful hypothe-
ses with similar semantics to train generalized skills re-
inforcement learning.

• Deduction: Based on learned skills as low-level actors,
we use LLM as a few-shot high-level planner to generate
programs to solve unseen and more complex tasks.

Hypothesis
The hypothesis phase aims to solve tasks separately regard-
less of generality to collect grounding experience. Consider-
ing the gap between the semantic knowledge in LLM and the
environment, the hypothesis phase decomposes the task into
several subgoals rather than directly giving the solution, and
leaves correctness verification to the next process. As shown

in Figure2(a), the hypothesis can be formed as I
Prompt−−−−−→

G,F . We use LLM as the zero-shot planner, which takes
an instruction I and necessary decomposition prompt as in-
put, then outputs a subgoal sequence G = {g1, g2, ...} and
corresponding check functions F = {f1, f2, ...}. The sub-
goal gi is a small instruction labeled with the explicit mark
“Goal X” to facilitate further processing. Each check func-
tion fi : S → {0, 1} is a program that checks the achieve-
ment of corresponding sub-goal gi via invoking perception
functions provided by the environment. To make the LLM
output as we want, except for the instruction I , we add role
definition, perception APIs descriptions, and explanation of
the task space to the decomposition prompts.

Verification
After getting the subgoals and check functions, we need to
verify their feasibility in the environment to collect success-
ful grounding experiences.The feasibility of decomposition
is verified by the consistency between achieved signals gen-
erated by check functions and the tasks accomplished sig-
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Figure 2: Overview of Hypothesis, Verification, and Induction (HYVIN) framework. (a) Hypothesis: try to decompose tasks;
(b) Verification: leverage efficient interaction with the environment to verify the results of hypothesis; (c) Induction: group
successful experience to train generalized skills; (d) Deduction: build few-shot planner to solve tasks using acquired skills.

nal. Specifically, as shown in Figure 2(b), we train indepen-
dent policies for each subgoal based on the bool reward pro-
vided by its check function. Once the subgoal is achieved,
we stop the training and save the action sequence. The saved
action sequence can be used as the restoring mechanism to
prepare the initial state for further skill training. Until all
sub-goals are achieved and the task is also accomplished,
we can verify the decomposition is successful. Meanwhile,
the grounding experiences (including subgoal descriptions,
check functions, and restore action sequences) are collected
for skill learning in the future phase. Considering some com-
plex and long-term tasks cannot be solved by direct decom-
position, the above mechanism is only suitable for solving
simple tasks within an acceptable environment interaction
steps to collect experience. We set the maximum number of
verification steps Tverify as a threshold to distinguish in-
tractable complex tasks for the next stage to solve.

Induction
After collecting successful grounding experiences, the in-
duction phase aims to discover and learn generalized skills
from separate grounding trajectories of different instructions
so that we can reuse them in more unseen and complex tasks.

Discovery As described above, we have collected task-
solving experience through efficient hypothesis and verifi-
cation, including subgoal descriptions, corresponding check
functions, and start state restore action sequences. However,

such successful experiences can only be used on specific in-
structions that are easy to decompose for LLM. To make
the LLM-based agent able to solve more unseen and com-
plex tasks, we must further abstract and learn skills to build
the generalized low-level actor.To this end, we cluster the
collected subgoals according to their semantics to ensure a
certain generalized skill can accomplish a category of sub-
goals as shown in Figure 2(c). Specifically, we first use LLM
to translate each subgoal description gi into API descrip-
tion gi,api and parameter gi,param. For example, the sub-
goal “discover the green box” is translated into the API “dis-
cover” and parameter “green box”. Then we use the k-means
algorithm to conduct unsupervised clustering based on the
semantic distance between subgoal descriptions computed
by the following cosine similarity:

C(gi,api, gj,api) =
emb(gi,api) · emb(gj,api)

||emb(gi,api)|| · ||emb(gj,api)||
, (1)

where gi,api is the API description and emb(·) is the embed-
ding functions of LLM.

Training We have divided subgoals with similar seman-
tics into different categories through the clustering pro-
cess.Then we build reinforcement learning (RL) environ-
ments to train skills that can achieve a cluster of subgoals
separately. Unlike common RL environments, the skill train-
ing environment is like a multitask learning scenario. Each
subgoal of a cluster can be seen as a single task, the subgoal
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Figure 3: An example of BossLevel task in BabyAI

parameter gi,param is the task description, the reward is pro-
vided by the corresponding check function fi, and the initial
state is set by the saved restore action sequence. Trained in
such a multiple tasks environment consists of subgoals that
have the same semantics, the skill is supposed to have gen-
eralization in tasks with similar scenarios. Besides, subgoals
belonging to the same cluster are divided into training and
verification sets to monitor the generalization ability of the
trained skill to prevent overfitting.

Deduction

Through the above process, we have overcome the chal-
lenges of obtaining successful grounding experience from
scratch and training generalized skills efficiently. In other
words, we have autonomously built the low-level skills for
the LLM-based agent without human effort. To apply auto-
matically learned skills to solve unseen and complex instruc-
tions following tasks, we next introduce the high-level plan-
ner in this section. As shown in Figure 2(d), we use LLM
as a few-shot planner to generate programs to accomplish
tasks. The process can be divided into a program generation
phase and a debugging phase.

Generation The generation prompt for LLM contains the
role definition and API descriptions (including skills and
perception functions). Besides, considering the complexity
of the task, the generation prompt follows a few-shot in-
context learning paradigm. We include some skill API de-
scriptions and a hand-written example that leverages the
learned skills to solve a complex instruction-following task.

Debugging To better solve complex tasks, we also de-
signed an interaction debugging process in our high-level
planner. Besides the task instruction and the generated pro-
gram to be modified, the debugging prompt also includes
the error message and some general debugging suggestions
to fix the possible bugs. Benefiting from the feasibility and
robustness of adaptive learned skills, the basic error report-
ing mechanism based on illegal action detection can ef-
fectively improve the accuracy of the generated programs,
which greatly reduces human effort.

Task Method Type Demos Success rates

GoTo

Original IL 10K 99.8
LID-Text IL 10K 99.5
ChatGPT LLM 0 44
HYVIN LLM 0 99.9

HYVIN-action LLM 0 55.1
HYVIN-no-skills LLM 0 82.1

Pickup

Original IL 10K 99.8
LID-Text IL 10K 99.8
ChatGPT LLM 0 0
HYVIN LLM 0 92.9

HYVIN-action LLM 0 47.6
HYVIN-no-skills LLM 0 73.8

PutNext

Original IL 10K 97.7
LID-Text IL 10K 99.9
ChatGPT LLM 0 0
HYVIN LLM 0 91.9

HYVIN-action LLM 0 0
HYVIN-no-skills LLM 0 85.4

Open

Original IL 1M 100
ChatGPT LLM 0 0
HYVIN LLM 0 92.4

HYVIN-action LLM 0 0
HYVIN-no-skills LLM 0 62.5

Synth

Original IL 1M 87.7
LISA IL 100K 61.2

ChatGPT LLM 0 0
HYVIN LLM 0 78.9

HYVIN-action LLM 0 0
HYVIN-no-skills LLM 0 13.5

Boss

Original IL 1M 77
LISA IL 100K 69.8

ChatGPT LLM 0 0
HYVIN LLM 0 75.9

HYVIN-action LLM 0 0
HYVIN-no-skills LLM 0 8.6

HYVIN-GPT4 LLM 0 85.9

Table 1: Overall results. “IL” means “Imitation Learning”,
“LLM” means “LLM-based agent”.

Results
Experiment Setting
Environment To evaluate the efficiency and effectiveness
of our proposed framework that automatically discovers,
learns, and applies skills, we test HYVIN on the BabyAI en-
vironment (Chevalier-Boisvert et al. 2019). BabyAI is a grid
world environment for instruction following. Given the lan-
guage instruction and a 7× 7× 3 partial and local view, the
agent must learn to accomplish various tasks of arbitrary dif-
ficulty levels. In this paper, we choose the following six lev-
els of instruction with different types and difficulties (more
details of the environment can be found in the Appendix):
GoToLocal: Go to an object inside a single room. Picku-
pLocal: Pick up an object inside a single room. PutNext-
Local: Pick up an object and put it next to another object
inside a single room. Open: Open a door in a 3 × 3 room
maze, the door may in another room. SynthSeq: Union of
all instructions from PutNext, Open, Goto, and PickUp and
may with multiple commands. BossLevel: The hardest task
of BabyAI as shown in Figure 3. The command can be any
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Figure 4: Training curves of skills. The blue curve repre-
sents skill learning through restoring the initial state, while
the green curve doesn’t. The dotted curve represents test per-
formance in the held-out verification set.

Figure 5: Successful rates of different interaction times

sentence drawn from the Baby Language grammar.

Baselines We verify the effectiveness of HYVIN by com-
paring it with several baselines, including Imitation Learn-
ing methods relying on expert demonstrations and a variant
of our LLM-based agent: ChatGPT takes textual observa-
tion and obtains actions through dialog (following settings
in GLAM (Carta et al. 2023)). Original is the baseline from
the original BabyAI paper, which trained the GRU + CONV
model with imitation learning using one million demonstra-
tion episodes for each level. LID-Text (Li et al. 2022) is
an approach that first represents goals and observations as a
sequence of embeddings, then uses a policy network initial-
ized with a pre-trained LM and trained with demonstrations
to predict the next action. LISA (Garg et al. 2022) is a hier-
archical imitation learning framework that can learn diverse,
interpretable skills from language-conditioned demonstra-
tions. HYVIN-action is the variant of HYVIN that main-

Figure 6: Successful rates of different attempts times

Figure 7: Task verification results

tains the same high-level planner but employs primitive ac-
tions instead of the acquired skills. HYVIN-no-skills is the
variant of HYVIN that only has hypothesis and verification
phases without inductive skill learning. HYVIN-GPT4 is
the variant that uses GPT-4 instead of ChatGPT to enhance
performance.

Implementation In this paper, we use ChatGPT (GPT-
3.5-turbo) as the large language model to complete task
decomposition, the semantic embedding of API, high-level
planning, and debugging. More details on the prompt con-
tents are shown in the Appendix. In the verification and
skill learning phase, we use the standard model proposed
in BabyAI, and train the policy using the PPO algorithm.

Overall Results Comparison
The main performance results are shown in Table 1. We sep-
arately compare HYVIN with baselines in each level task.
For each level task, we randomly sample 100 instructions
that never occurred in the skill training phase. Considering
the randomness of ChatGPT’s answers, we repeat the exper-
iment of each instruction 3 times to get the average results.
The results showed that HYVIN can achieve comparable
performance using automatically learned skills rather than
a large number of expert demonstrations, which shows the
effectiveness of our framework. Besides, the results of Chat-
GPT, HYVIN-action, and HYVIN-no-skills showed it can-
not directly solve BabyAI’s tasks. The main cause is LLMs
cannot cooperate with low-level primitive actions without
proper grounding, which also emphasizes the importance of
self-driven skill learning in the LLMs grounding scenario.
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Ablation Results
Skill Learning Ablation We first investigate the data ef-
ficiency when learning skills through reinforcement learn-
ing as shown in Figure 4 . Although the difficulty varies be-
cause the clustering process only relies on the semantics of
subgoals and ignored the difficulty, skills can be learned ef-
ficiently. The verification phase proves that the instruction
has been decomposed into small enough subgoals and can
be trained in limited steps. Therefore, the skill training en-
vironment consisting of verified subgoals can lead to an ef-
ficient skill training process. Besides, results also demon-
strate that restoring actions that make the skill start at an ex-
pected state is important to learning efficiency. Without the
start state reset, the learning efficiency drops obviously, and
some skills even cannot be learned. Some learning curves
show overfitting trends in the late period, which is different
from the normal reinforcement learning process and Illus-
trates the role of the hold-out validation set. For some skills
like “enter unexplored room”, the green curves seem better
than the blue ones. This is because without restoring the ini-
tial state, the difficulty decreases a lot since the agent can
enter any room.

Deduction Ablation We also explored the effect of the in-
teraction debugging times and multiple attempts of skills.
The ablation results show the importance of interactive de-
bugging and multiple attempts.

A. Interaction Times: Figure 5 shows the results of dif-
ferent interaction times between the high-level planner and
the environment. For some tasks like “GoToLocal”, the suc-
cessful rate promotion is limited because of simplicity. For
complex tasks like “BossLevel”, repeat debugging can bring
more than 40% promotion, which shows the adaptability and
feasibility of learned skills. However, when the performance
reaches some ceiling bound, more interaction seems useless.

B. Multiple Attempts: Different from pre-defined APIs
with scripts, our learned skills are stochastic policies. Thus,
we also investigate the effect of multiple attempts of skill
policy on the final success rate. Figure 6 shows similar re-
sults with interaction times, the multiple attempts improve
complex tasks greater.

Method Details
To show more insight into HYVIN, we show some key in-
termediate results. Task Verification: Figure 7 shows the
verification results of different level tasks. In the implemen-
tation, we random sample 100 instructions from each level
task, and set the verification steps threshold Tverify equals
to 3000. The results prove our assumption, for some simple
task levels, like “GoToLocal”, “PickupLoc” and “PutNext-
Local”, the LLM can decompose the instruction into reason-
able subgoals and check functions, so that the verification
training be successful in limited steps. For hard levels which
also include some simple tasks, direct decomposition can
accomplish few instructions, which means it cannot solve
complex and long-term tasks. We also show more details of
Skill Clustring in Appendix.

Tools 0 → wood wood → stone stone → iron
66.9% 25.8% 2.1%

Table 2: Verification in simple tasks with 50k steps

HYVIN DreamerV2

0 →wood 92.3% 92.7%

0 →wood pickaxe 90.6% 59.6%

0 →stone 31.4% 42.7%
0 →stone pickaxe 32.5% 0.2%

0 →iron 0.7% 0%

0 →iron pickaxe 0% 0%

Table 3: Deduction in complex tasks

A Complex Case Study
We make a case study on a more complex Minecraft-like
environment, Crafter (Hafner 2021), to show the effective-
ness of HYVIN. In the hypothesis and verification phases,
HYVIN initially accomplishes simple tasks that only in-
clude one-stage complexity and collects grounding experi-
ences, as shown in Table 2. Then in the induction phase,
HYVIN learns some useful skills like collecting materials
and making tools to solve complex tasks, as shown in Table
3. The results show that HYVIN significantly outperforms
the SOTA learning-based method, DreamerV2, in Crafter.

Conclusion
In this paper, we propose a framework called Hypothesis,
Verification, and Induction (HYVIN) to address the chal-
lenge of automatically grounding LLM onto specific envi-
ronments. In order to alleviate the problem of grounding ex-
perience acquisition, we make the LLM not only decompose
tasks but also generate intrinsic rewards to help RL agents
efficiently verify the decomposition results. We also pro-
pose a language-aligned general skill learning methodology
by forcing each skill to achieve a group of goals with similar
semantic descriptions to enhance their generality. Compared
with imitation learning methods that cost millions of demon-
strations, HYVIN can achieve comparable performance in
the hardest tasks in BabyAI. The ablation study also shows
the flexibility and feasibility of learned skills in the interac-
tions between the high-level planner and the environment.

We leave introducing multi-modal LLMs to extend the ap-
plications of HYVIN as future works. Besides, considering
HYVIN only contains a single cycle of hypothesis, verifica-
tion, and induction. It is an interesting and promising direc-
tion to design a mechanism of multiple cycles in HYVIN,
allowing HYVIN to learn more powerful and diverse hierar-
chical skills to accomplish more flexible tasks.
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