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Abstract

In this paper we propose a method for the optimal allocation
of observations between an intrinsically explainable glass box
model and a black box model. An optimal allocation be-
ing defined as one which, for any given explainability level
(i.e. the proportion of observations for which the explainable
model is the prediction function), maximizes the performance
of the ensemble on the underlying task, and maximizes per-
formance of the explainable model on the observations al-
located to it, subject to the maximal ensemble performance
condition. The proposed method is shown to produce such
explainability optimal allocations on a benchmark suite of
tabular datasets across a variety of explainable and black box
model types. These learned allocations are found to consis-
tently maintain ensemble performance at very high explain-
ability levels (explaining 74% of observations on average),
and in some cases even outperform both the component ex-
plainable and black box models while improving explainabil-
ity.

Introduction
In most high stakes settings, such as medical diagnosis (Gu-
lum, Trombley, and Kantardzic 2021) and criminal justice
(Rudin 2019), model predictions have two viability require-
ments. Firstly, they must exceed a given global performance
threshold, thus ensuring an adequate understanding of the
underlying process. Secondly, model predictions must be ex-
plainable.

Explainability, however defined (Linardatos, Papaste-
fanopoulos, and Kotsiantis 2020), is a desirable character-
istic in any prediction function. Intrinsically interpretable
“glass box” models ((Agarwal et al. 2021), (Lemhadri,
Ruan, and Tibshirani 2021), (Rymarczyk et al. 2020)),
which are explainable by construction, are particularly ad-
vantageous as they require no additional post-hoc process-
ing ((Ribeiro, Singh, and Guestrin 2016), (Lundberg and Lee
2017)) to achieve explainability, and thus also avoid compli-
cations arising from post-hoc explanation learning ((Rudin
2019), (Garreau and Luxburg 2020)). Due to these advan-
tages, glass box models are uniquely suited to settings where
faithful explanations of predictions are required.

Copyright © 2024, Association for the Advancement of Artificial
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Figure 1: This figure shows a two-class classification task
in which the areas of expertise (the diamond pattern for the
glass box and the spiral pattern for the black box model) are
complementary. The glass box achieves a 92.7% accuracy,
the black box reaches 95.0% accuracy, and the allocated
ensemble of the two exceeds both with a 95.8% accuracy.
Thus, the resulting EEG allocation improves performance
over both component models while also providing explain-
ability (for 20% of observations in this case).

However, using an approach of “complete explainability”,
in which a glass box model is used as the prediction function
across the entire feature space, may not be viable. It may be
the case that, in a given setting, no glass box exists that can
adequately model the relationship of interest in all regions of
the feature space. Thus in some regions, the model’s predic-
tions will fail to exceed the performance threshold required
by the use-case. If, as a consequence, the model exceeds the
application’s global error tolerance (e.g. a low accuracy in
stroke prediction (Gage et al. 2001)), it may not be usable in
practice.

An alternative, “partial explainability” approach requires
instead that only a proportion of observations be provided
intrinsically explainable predictions. We will refer to this
proportion, which is the proportion of observations for
which the explainable model is the prediction function, as
the explainability level q. Such approaches, including our
proposed method, Ensembles with Explainability Guaran-
tees (EEG), can provide high performance while maximiz-
ing explainability, and work especially well in cases where
the explainable model can be paired with an alternate model
with complementary strengths. As demonstrated in Fig. 1,
by identifying the areas of expertise of the glass box and
black box models, the EEG approach can allocate predic-
tions accordingly to improve both performance and explain-
ability.
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Generally, implementations of a partial explainability ap-
proach consist of an ensemble of models including at least
one explainable model and alternate model (often a black
box model), and an allocation scheme by which observations
are distributed among the ensemble members for prediction.
Individual methods are characterized by their heterogeneity
in the following aspects.

Methods vary in the range of component models they can
accommodate. Some are defined for only one set of glass
box, black box, and allocator model types - for example LSP
(Wang and Saligrama 2012) and OTSAM (Wang, Fujimaki,
and Motohashi 2015), which use binary tree-type splitting to
define regions, and linear models and sparse additive mod-
els respectively to predict within regions. Other methods are
black box agnostic but still limited in glass box and allocator
model type - for example HyRS (Wang 2019), HyPM (Wang
and Lin 2021), CRL (Pan, Wang, and Hara 2020), and Hy-
bridCORELS (Ferry, Laberge, and Aı̈vodji 2023), which use
rule-based models as both glass box and allocator. EEG is
the only fully model-agnostic partial explainability method
which can be implemented with any combination of glass
box, black box, and allocator models.

Methods also vary in the approach used to learn each en-
semble member model (i.e. glass box and black box). Most
methods first learn the black box model globally (on the full
dataset), and then learn the glass box model locally (on its
allocated subset of the data), either simultaneously with the
allocator (HyRS, HyPM, CRL, and HybridCORELS) or in
an alternating EM-style (LSP, OTSAM, and AdaBudg (Nan
and Saligrama 2017)). EEG on the other hand, learns both
ensemble member models globally first before learning the
allocations between them - similar to most general adaptive
ensembling methods, e.g. (Gao et al. 2019), (Inoue 2019).

Finally, methods are characterized by their allocation cri-
teria which commonly consist of an objective which com-
bines one or more of the following - the explainability level,
the underlying task performance of the ensemble, and the
complexity of the glass box model. Most methods optimize
a measure of post-allocation ensemble performance - LSP,
HyRS, HyPM, and HybridCORELS minimize a 0/1 mis-
classification loss, AdaBudg uses a more flexible logistic
loss, and CRL maximizes accuracy across a range of ex-
plainability levels. Several methods with rule-based glass
box/allocator hybrid models (HyRS, HyPM, CRL, and Hy-
bridCORELS) also include a penalty on the complexity of
these models. To control the explainability level, methods
either include a reward term in the loss (HyRS, HyPM,
and CRL), or directly restrict the model space to candidates
which achieve the explainability level (HybridCORELS). In
contrast, EEG optimizes an MSE loss between the predicted
and actual “glass box allocation desirability” percentile of
each observation.

More extensive reviews of the partial explainability ap-
proach and explainability methods in general are available
in (Linardatos, Papastefanopoulos, and Kotsiantis 2020),
(Nauta et al. 2022), and (Sahakyan, Aung, and Rahwan
2021).

As outlined above, our proposed method, Ensembles
with Explainability Guarantees (EEG), differs from exist-

ing works in its approach to the partial explainability prob-
lem. The key novelties of this new approach, and their cor-
responding advantages are summarized below.

Independent and Global Component Models: The first
key innovation of the EEG approach is the independent
learning of each component model (i.e. the ensemble mem-
ber models and allocator). As a result, EEG is agnostic to
task, data, and component model type. Thus, the most pow-
erful models can be used for each component as determined
by the setting - in contrast with previous works which are
more restricted.

Another important consequence of separate component
model learning is that glass box predictions are indepen-
dently explainable in the global context, and thus immune
from “explainability collapse” - a scenario in which the allo-
cator subsumes the glass box’s prediction role, diminishing
the value of the explainable prediction, in the extreme case
reducing the glass box to an uninformative constant func-
tion. On the other hand, methods which either learn glass
box models locally, or jointly with the allocator, are vulner-
able to this type of degeneration.

Allocation Desirability Ranking: The second novel as-
pect of the EEG approach is the concept of allocation desir-
ability. Given an ensemble of models, allocation desirabil-
ity quantifies how beneficial it is for a given observation to
be allocated to the default ensemble member model, say the
glass box. Thus, it induces a preference for glass box alloca-
tion between all pairs of observations and consequently also
defines a ranking of allocation preference across all observa-
tions that is optimal irrespective of the desired explainability
level.

A key advantage of such a ranking is that it is indepen-
dent of the training criteria of the ensemble member models,
and thus can be adapted to score allocation desirability using
metrics that best fit the setting. Indeed, the EEG desirabil-
ity metric builds a ranking using a combination of relative
sufficient performance and absolute performance measures
which can natively accommodate any underlying problem
type (e.g. regression, classification). This particular desir-
ability metric also offers several additional benefits includ-
ing allocation desirability percentile and sufficiency cate-
gory estimates for each observation.

Q-Complete Allocation Optimality: The final key point
of novelty of the EEG approach is the optimality of alloca-
tion, as defined in Proposition 1 and Proposition 2, which
is encoded in the allocation desirability ranking for any ex-
plainability level. Thus, the learned allocator, which esti-
mates this ranking, is an explicit function of q and provides
the allocation solution to any explainability level after train-
ing only once. This capability is in contrast with previous
works which provide, at most, several explainability level
solutions with varying degrees of stability (Ferry, Laberge,
and Aı̈vodji 2023).

These unique capabilities of the EEG method enable the
following practical use cases:
• Given a minimum performance requirement on the un-

derlying task, the method can be used to obtain the allo-
cation with the highest explainability level that achieves
or exceeds the performance threshold.
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• Given a minimum explainability level requirement, the
method can be used to obtain the allocation with the high-
est ensemble performance which meets or exceeds the
required explainability level.

• Given a minimal level of post-allocation glass box-
specific performance, the allocation that achieves the
highest explainability level while meeting or exceeding
this requirement can be found.

• Given a set of observations, sufficiency category esti-
mates can be obtained for each, identifying which obser-
vations are likely to yield incorrect decisions and describ-
ing the likely failure mode for each such case to inform
potential post-hoc remedies.

In the following sections, we first describe our method
in detail and provide some theoretical assurances on the
characteristics of the resulting allocator in the Methods sec-
tion. Then, in the Experiments section, we describe the ex-
perimental settings and the estimation of the allocator, and
demonstrate the method’s favorable performance.

Methodology
Setting
First, we define the underlying task as the estimation of the
function f(x) = y where x ∈ X , y ∈ Y . We also define ob-
servations as z = (x, y) ∈ X × Y = Z , the training dataset
Dn = {zi : i ∈ {1, ..., n}, zi ∈ Z}, and loss function
for the underlying task lU : Y × Y → R. Next, we define
the ensemble component models - first, the intrinsically ex-
plainable glass box model as g : X → Y and the alternate,
black box model as b : X → Y , both of which are learned
independently on the full training dataset Dn.

Next, we define the allocation task. We define the class
of all allocator functions as A = {a : V → {0, 1}} and
the class of all “proper” allocator functions as Â = {a :

V̂ → {0, 1}}, where V is a general space of inputs (typi-
cally Z) and V̂ ⊆ V containing only information available
at allocation time. Next we define the class of q-explainable
allocators as Aq = {aq : aq ∈ A, 1

n

∑n
i=1 aq(vi) = q}

and the corresponding class of “proper” q-explainable allo-
cators as Âq = {aq : aq ∈ Â, 1

n

∑n
i=1 aq(vi) = q}, for

q ∈ Q = { i
n : i ∈ {1, ..., n}} ⊆ [0, 1], with q being the

explainability level. Note, the set A is used to define the op-
timal allocator, whereas the set Â is searched to obtain an
estimator of this optimum.

We next define indicators of performance sufficiency.
These functions s : Z → {0, 1} should be thought of as
context-dependent indicators of whether performance within
a region of the feature space is sufficiently high to use the
model in question reliably for explanation. Although the
EEG approach holds for any such function s, sufficiency
functions used in the Experiments section are defined as fol-
lows. For classification tasks, we define performance suffi-
ciency as sf (z) = I{f(x) = y}, and for regression tasks as
sf (z) = I{lU (f(x), y) < ϵ}, with f : X → Y . In prac-
tice ϵ should be selected based on problem-specific context,
however, lacking such context in the regression experiments

Obs lU (g) sg lU (b) sb
z1 0 1 2 1
z2 3 1 4 0

Table 1: This table describes the loss values (lU ) and suf-
ficiencies (s) of two observations (z1, z2), for both a glass
box (g) and black box model (b). In the constrained alloca-
tion case, in which only one observation can be allocated to
g, the optimal allocation changes depending on whether loss
or sufficiency is used to determine allocation preference.

conducted for this study, ϵ was selected to be the lower of the
average validation losses of g and b, as a reasonable thresh-
old for prediction correctness. These sufficiency indicators
generate the following partition of the data: Z0 = {z :
z ∈ Z, sg(z) + sb(z) = 0}, Z2 = {z : z ∈ Z, sg(z) +
sb(z) = 2}, Zg = {z : z ∈ Z, sg(z) = 1, sb(z) = 0},
and Zb = {z : z ∈ Z, sg(z) = 0, sb(z) = 1}, with
n0 = |Z0|, n2 = |Z2|, ng = |Zg|, nb = |Zb|, and nq = nq.

Next we motivate the use of the sufficiency perspective.
Sufficiency functions are critical for defining coherent allo-
cations when, as is often the case, the absolute performance
measures used to learn ensemble component models do not
match allocation preference (e.g. loss minimization vs ac-
curacy maximization). Consider the constrained allocation
decision in Table 1, in which only one observation can be
allocated to g.

In this case, loss minimization dictates an allocation of z1
to g and z2 to b, which would allocate z2 to an insufficient
prediction. Sufficiency maximization would however yield a
more satisfactory allocation of z2 to g and z1 to b. This ex-
ample demonstrates the utility of sufficiency allocation - dis-
tinguishing between a case where the user is willing to sac-
rifice “a bit of performance” (as quantified by sufficiency)
for explanation (z1), and a case where even a small perfor-
mance drop results in an explanation that is not sufficiently
trustworthy to use (z2).

In the next section, we define the objective of the alloca-
tion task and introduce our proposed approach for address-
ing it.

Optimal Allocation
In the allocation task, the objective is to construct an al-
locator aq that will determine which model, either the ex-
plainable g or the black box b, is used for prediction on
any given observation z, in a manner that is optimal rel-
ative to the following criteria. Firstly, for any given ex-
plainability level q, the allocator should distribute obser-
vations in a way that maximizes sufficient ensemble per-
formance, defined as t̄(aq) = 1

n

∑n
i=1 sg(zi)aq(vi) +

sb(zi)(1 − aq(vi)). Secondly, and again for any q, the al-
locator should maximize sufficient explainable prediction
t̄g(aq) = 1

n

∑n
i=1 sg(zi)aq(vi), i.e. the performance of the

model g on the subset of observations it has been allocated,
subject to maintaining maximal t̄(aq). Finally, the allocator
should also be consistent in its allocations across the values
of q, meaning that if an observation is allocated to g for a
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given q, it should remain allocated to the glass box for all
higher explainability levels as well. Next, we define our al-
locator, and show that it meets the three criteria introduced
above.

Our proposed allocation function is defined as a′q(z) =
I{r(z) > 1 − q}, where rescaled ranking r(z) =
rankDn (r̃(z))

n , and ranking r̃(z) = 2sg(z) − sb(z) −
σ(lU (g(x), y)− lU (b(x), y)), with σ(x) = 1

1+e−x .
The intuition behind the allocator is as follows. First, all

observations are sorted in sufficient performance maximiz-
ing order, i.e. allocation of observations in Zg to g is prior-
itized over allocation of observations in Z2 and Z0, which
in turn are prioritized over Zb. Next, observations are sorted
in explainable sufficient performance maximizing order, i.e.
Z2 is prioritized ahead of Z0 for allocation to g. Then, within
each sufficiency category, observations are ordered in abso-
lute performance maximizing order, i.e. observations with
large relative performance of g over b are prioritized for al-
location to g. Next, this ranking is normalized, yielding the
glass box allocation desirability percentile r . An important
feature of this percentile is that it is constant with respect to
q, thus the optimal observations to allocate to g, for any level
of q, are simply the nq most highly ranked, resulting in the
allocator a′q .

Note that in the described methodology, sufficiency based
allocation can be viewed as a generalization of allocation via
absolute performance, and can thus be reduced to the latter
by selecting either sf (z) = 0 or sf (z) = 1, ∀z, f .

Next, we state the optimality properties of the proposed
allocator a′q . The proofs are available in the long form paper
on arxiv.org in the Theoretical Results section of the Ap-
pendix.
Proposition 1. (Maximal Sufficient Performance) ∀q ∈
Q, a′q ∈ A∗

q where A∗
q = {a∗q : a∗q = argmaxaq∈Aq

t̄(aq)}
and t̄(aq) = 1

n

∑n
i=1 t(aq, zi) = 1

n

∑n
i=1 sg(zi)aq(zi) +

sb(zi)(1− aq(zi))

Proposition 2. (Maximal Sufficient Explainable Perfor-
mance) ∀q ∈ Q, a′q ∈ A∗

q|g where A∗
q|g = {a∗q|g : a

∗
q|g =

argmaxa∗
q∈A∗

q
t̄g(a

∗
q)} and t̄g(a

∗
q) = 1

n

∑n
i=1 tg(a

∗
q , zi) =

1
n

∑n
i=1 sg(zi)a

∗
q(zi)

Proposition 3. (Monotone Allocation) ∀qi < qj ∈ Q, {z :
z ∈ Z, a′qi(z) = 1} ⊆ {z : z ∈ Z, a′qj (z) = 1}

Experiments
In this section we describe the data, model training proce-
dures, performance evaluation metrics, and results of our ex-
periments.

Datasets
Tabular data is used to evaluate the proposed methodology
as it the setting for which the required intrinsically explain-
able glass box models are most readily available. Follow-
ing the tabular data benchmarking framework proposed by
(Grinsztajn, Oyallon, and Varoquaux 2022), we conduct ex-
periments on a set of 31 datasets (13 classification, 18 re-
gression). These datasets represent the full set of provided

datasets with quantitative features less the four largest scale
datasets (omitted due to computational limitations). These
datasets are summarized in the Appendix of the long form
paper available on arxiv.org.

Each dataset is split (70%, 9%, 21%) into training,
validation, and test sets respectively, following (Grinsztajn,
Oyallon, and Varoquaux 2022). All features and regression
response variables are rescaled to the range [-1,1].

Models

Both glass box and black box models are learned on the
full training dataset for each underlying task. For classifi-
cation datasets, two types of glass box model are fitted, a
logistic regression and a classification tree, as well as two
types of black box model, a gradient boosting trees classifier
and a neural network classifier. Analogously, for regression
datasets, two types of glass box model are fitted, a linear re-
gression and a regression tree, as well as two types of black
box model, a gradient boosting trees regressor and a neural
network regressor. In all cases, the architecture of the neural
networks is the “Wide ResNet-28” model (Zagoruyko and
Komodakis 2016) adapted to tabular data with the replace-
ment of convolutional layers with fully connected layers.

An allocator is subsequently also learned on the full train-
ing dataset. Both gradient boosting trees regressors and neu-
ral networks are fitted as allocators for each allocation task.
For allocator training, the features x are augmented with
four additional constructed features, the predictions g(x)
and b(x), and two distance measures d(g(x), b(x)) between
them, the cross-entropy and MSE. In our experiments, inclu-
sion of these features improved allocator learning - likely by
removing the need for the allocator to attempt to learn these
quantities on its own. Allocation performance is further im-
proved by ensembling the feature-dependent learned alloca-
tor a′q with a strong feature-independent allocator a′′q , where
a′′q (d(g(z), b(z))) = I{ rankDnd(g(z),b(z))

n < q}. a′′q can be
viewed as an “assume the black box is correct” allocation
rule which is more likely to assign an observation to g if the
distance between the predictions of g and b is low. Which of
the two allocators is used for a given q is determined by their
respective performances on the validation set.

Hyperparameter Tuning

Hyperparameter tuning for all models is done using 4-fold
cross-validation, with the exception of the neural network
tuning which is done using the validation set. A grid search
is done to select the best hyperparameters for each model
with search values available in the Appendix of the long
form paper available on arxiv.org.
Each glass box and black box model is tuned on the full set
of hyperparameters each time it is replicated. The gradient
boosting trees allocator models are retuned on the full hy-
perparameter set each time as well. The neural network al-
locator is not retuned however, and instead uses the optimal
settings found in the fitting of the black box on each dataset.
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Metrics
We define the following metrics which are used to measure
performance of our method. First we define the Percentage
Performance Captured over Random (PPCR) for a given al-
locator as follows: PPCR(aq) =

AUC(aq)−AUC(rq)
AUC(oq)−AUC(rq)

where
AUC(fq) is the area under the curve of function fq over all
values of q in its domain, oq is the oracle allocator which
has perfect information on the whole dataset, and rq is the
random allocator which selects a subset from the data being
allocated uniformly at random. The PPCR metric is a per-
centage and represents the proportion of the oracle AUC, in
excess of that also covered by random allocation, that the
learned allocator is able to capture. Thus a value of zero in-
dicates performance on par with rq and a value of one rep-
resents perfect allocation.

Next, we define the Percent Q Equal or Over Max
(PQEOM) as the percentage of q values for which the al-
locator is performing at least as well as the most accurate
ensemble member model (i.e. g or b) and Percent Q Over
Max (PQOM) as the percentage of q values for which the
allocator is performing better than the most accurate ensem-
ble member model (i.e. g or b).

Next, we define the Percent Contribution of Feature-
dependent Allocator (PCFA) as the percentage of q values
for which the feature dependent allocator a′q is used for allo-
cation decisions as opposed to the feature-independent allo-
cator a′′q . A value close to one indicates that a′q is used often,
while a value close to zero indicates it is a′′q instead.

Next, we define the 95% Threshold Q Max (95TQM) as
the highest value of q for which the ensemble performance
meets or exceeds 95% of the performance of the better of g
and b. Thus this is a measure of how much explainability can
be utilized before the performance price becomes material.

Next, we define the maximum accuracy achieved by the
allocator across all q (Max Acc), and the highest value of q
for which this accuracy is maintained (Argmax q). The Max
Acc can be benchmarked against the AUC, interpretable as
the average accuracy across q. Each of these metrics is a
percentage and higher values correspond with higher per-
formance and higher explainability at this maximum perfor-
mance level, respectively.

Finally, we define the accuracy with which the four suffi-
ciency categories (Zg , Zb, Z2, and Z0) can be estimated as
the sufficiency accuracy (s Acc). The higher this accuracy,
the better able the allocator is to inform the user of which
category a given observation is likely to be a member of.

Results
Evaluation of allocator performance using the metrics de-
fined previously as well as visual inspection of the perfor-
mance vs explainability trade-off curves (Fig. 2) revealed
both the benefits and some of the limitations of learned allo-
cation in the tabular data setting.

Firstly, performance was found to consistently and sig-
nificantly outperform random allocation, as quantified by a
cross-dataset PPCR of 37% (Table 2), indicating that the
learned allocation captured close to 40% of the area under
the curve available and in excess of random allocation. It

was also found that on some datasets in particular, learned
allocation performed close to oracle allocation (e.g. 89% and
71% on the IsoletR and BrazilianHousesR datasets).

Learned allocation was also found to perform at least at
the level of the best ensemble member model across an aver-
age of 74% of the explainability range (PQEOM in Table 2).
This indicates that for many datasets, there is a substantial
explainability “free lunch” to be taken advantage of without
performance loss. On a few datasets, performance of the al-
located ensemble was found to outperform both g and b for
a majority (93%) of the q range (PolR and FifaR PQOM).
The 95TQM metric also supported these conclusions, with
a cross-dataset average value of 94% indicating that allo-
cation performance was within 5% of maximal individual
model performance across approximately all values of q.

Assessing the PCFA metric suggests some limits to the
upside of learned, feature dependent allocation - at least
in the tested tabular data setting. A cross-dataset average
value of 35% ± 34% indicates that on average, the range
for which the feature dependent allocator is used over the
feature-independent one is indistinguishable from zero. This
is consistent with a visual inspection of the representative
performance-explainability curve e.g. Fig. 2 (b) where there
is no improvement to be had in excess of a′′q . However, it is
noted that the only possibility for “homerun” allocations is
through the feature dependent a′q as seen in Fig 2 (a) with the
PolR dataset and also in Table 2 for datasets SulfurR, Bike-
SharingR, and FifaR. Thus the ensembled allocation scheme
offers this upside without downside risk of low performance
in either a′q or a′′q .

Evaluation of the case in which a single allocation is
needed is also positive. On a cross-dataset average, the
84% maximal accuracy achieved is quite high, and is also
achieved at a high average explainability level (64%). Par-
ticularly strong individual results can be seen in the Pol
and SulfurR datasets (Table 2). We also find that on a
observation-level, the allocation is an accurate estimator of
sufficiency category, with a cross-dataset average of 76%
and with few datasets with accuracy under 60%.

Ablation Studies
Allocator Feature Set Selection In addition to the fea-
tures x used to learn the glass box and black box models,
the allocation task also has access to their predictions g(x)
and b(x), and any functions of the two - since the alloca-
tor is learned subsequent to the training of these models. To
obtain the optimal feature set for allocation, standard tuning
procedures (e.g. cross validation) can be employed to eval-
uate all feature sets of interest. However, as each candidate
feature set requires the training of a corresponding allocator
for evaluation, this approach can be prohibitively costly.

Thus, the following study was conducted to determine
whether a consistently best feature set exists for the tabu-
lar data context used in the experiments. First, the universe
of candidate features was selected to be the original features
x used as inputs for the ensemble component models, the
predictions of both of these models g(x) and b(x), and fi-
nally two measures of discrepancy between the predictions,
the cross-entropy dce(g(x), b(x)) and the mean squared er-
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Dataset AUC PPCR PQEOM PQOM PCFA 95TQM Max Acc Argmax q s Acc
Wine 79 ± 0 21 ± 0 71 ± 0 0 ± 0 7 ± 0 98 ± 0 80 ± 0 70 ± 0 78 ± 0
Phoneme 87 ± 0 12 ± 1 78 ± 4 7 ± 2 6 ± 1 100 ± 0 87 ± 0 50 ± 34 81 ± 2
KDDIPUMS 88 ± 0 17 ± 1 65 ± 3 34 ± 5 17 ± 7 100 ± 0 88 ± 0 66 ± 9 80 ± 1
EyeMovements 66 ± 0 33 ± 0 55 ± 1 7 ± 6 15 ± 2 70 ± 0 68 ± 0 31 ± 24 52 ± 0
Pol 98 ± 0 49 ± 0 98 ± 0 2 ± 0 0 ± 0 100 ± 0 99 ± 0 98 ± 0 96 ± 0
Bank 76 ± 0 -19 ± 0 4 ± 1 0 ± 0 0 ± 0 100 ± 0 79 ± 0 100 ± 0 71 ± 0
MagicTelescope 86 ± 0 39 ± 0 87 ± 2 12 ± 11 10 ± 0 100 ± 0 86 ± 0 47 ± 28 82 ± 1
House16H 89 ± 0 40 ± 0 84 ± 4 9 ± 6 6 ± 2 98 ± 0 89 ± 0 82 ± 8 86 ± 0
Credit 78 ± 0 5 ± 1 56 ± 4 14 ± 19 95 ± 0 100 ± 0 78 ± 0 76 ± 6 72 ± 0
California 90 ± 0 52 ± 0 88 ± 0 0 ± 0 7 ± 0 98 ± 0 91 ± 0 88 ± 0 90 ± 0
Electricity 92 ± 0 58 ± 0 88 ± 0 0 ± 0 7 ± 0 98 ± 0 93 ± 0 88 ± 0 92 ± 0
Jannis 79 ± 0 30 ± 0 53 ± 5 21 ± 5 14 ± 1 98 ± 0 79 ± 0 35 ± 6 76 ± 0
MiniBooNE 94 ± 0 54 ± 0 90 ± 0 0 ± 0 5 ± 0 100 ± 0 94 ± 0 90 ± 0 92 ± 0
WineR 73 ± 0 43 ± 0 85 ± 0 10 ± 0 20 ± 0 90 ± 0 74 ± 0 78 ± 0 67 ± 0
IsoletR 91 ± 0 89 ± 0 68 ± 0 0 ± 0 49 ± 10 73 ± 0 95 ± 0 68 ± 0 87 ± 1
CPUR 75 ± 0 40 ± 2 52 ± 18 0 ± 0 29 ± 11 80 ± 0 77 ± 0 70 ± 0 59 ± 1
SulfurR 98 ± 0 63 ± 2 73 ± 9 1 ± 2 79 ± 4 100 ± 0 98 ± 0 84 ± 22 96 ± 0
BrazilianHousesR 96 ± 0 71 ± 1 83 ± 0 64 ± 6 1 ± 2 93 ± 0 98 ± 0 8 ± 3 88 ± 0
AileronsR 75 ± 0 13 ± 0 70 ± 10 5 ± 7 4 ± 2 100 ± 0 76 ± 0 40 ± 35 64 ± 0
MiamiHousingR 76 ± 0 44 ± 0 76 ± 0 0 ± 0 67 ± 10 80 ± 0 78 ± 0 75 ± 0 65 ± 0
PolR 88 ± 0 44 ± 1 96 ± 1 93 ± 1 88 ± 0 100 ± 0 88 ± 0 81 ± 2 84 ± 0
ElevatorsR 75 ± 0 25 ± 0 64 ± 4 2 ± 2 17 ± 0 88 ± 0 75 ± 0 51 ± 29 63 ± 0
BikeSharingR 77 ± 0 26 ± 1 88 ± 4 22 ± 16 82 ± 1 100 ± 0 78 ± 0 21 ± 13 72 ± 0
FifaR 77 ± 0 33 ± 0 95 ± 0 93 ± 0 78 ± 0 100 ± 0 77 ± 0 50 ± 0 69 ± 0
CaliforniaR 78 ± 0 38 ± 0 73 ± 0 68 ± 0 68 ± 0 93 ± 0 79 ± 0 42 ± 0 63 ± 0
HousesR 78 ± 0 41 ± 0 73 ± 0 0 ± 0 48 ± 1 80 ± 0 79 ± 0 73 ± 0 62 ± 0
SuperconductR 83 ± 0 42 ± 0 60 ± 13 24 ± 11 95 ± 0 95 ± 0 83 ± 0 57 ± 1 76 ± 0
HouseSalesR 76 ± 0 50 ± 1 64 ± 12 0 ± 0 56 ± 6 85 ± 0 78 ± 0 78 ± 0 63 ± 0
House16HR 92 ± 0 55 ± 0 90 ± 0 0 ± 0 6 ± 0 98 ± 0 92 ± 0 90 ± 0 86 ± 0
DiamondsR 70 ± 0 19 ± 0 83 ± 0 34 ± 6 73 ± 0 100 ± 0 71 ± 0 20 ± 6 65 ± 0
MedicalChargesR 86 ± 0 24 ± 0 91 ± 1 85 ± 1 0 ± 0 100 ± 0 86 ± 0 67 ± 2 83 ± 0
Average 83 ± 9 37 ± 21 74 ± 19 20 ± 29 35 ± 34 94 ± 9 84 ± 8 64 ± 24 76 ± 12

Table 2: This table summarizes allocation performance across several metrics on each dataset and, in the bottom row, across
the datasets (all metrics are reported as percentages). Averages and standard deviations are reported over 5 replicates. Metric
definitions can be found in the Metrics section, and discussion of results can be found in the Results section.
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Figure 2: This figure shows two examples of the explain-
ability (x-axis) vs sufficient performance (y-axis) trade-off,
comparing the random (blue), oracle (orange), and learned
(green) allocation curves. The PolR dataset is an example
of complementary g and b models, resulting in an allocated
ensemble that outperforms both component models across
most of the q range. The SuperconductR dataset is an exam-
ple of an explainability “free lunch” in which the b accuracy
is maintained while increasing explainability using the allo-
cator. Curves for all datasets are available in the Appendix
of the long form paper available on arxiv.org.

ror dmse(g(x), b(x)). The measures of disagreement were
included as features as they translate to the “feature inde-
pendent” strategy of allocation to model b for low values of
d(a(x), b(x)) - in other words the optimal allocation strategy
assuming a is always correct.

The candidate features were grouped into the sets listed
in Table 3 and then used to train allocators on a subset of
the benchmark datasets (Wine, WineR, Phoneme, SulfurR,
Bank, BrazilianHousesR, FifaR, KDDIPUMS) with 6 repli-
cates per model.

Next each feature set was evaluated as follows. First,
within each dataset, each feature set’s performance (defined
as the AUC) was compared to the performance of the best al-
ternative set of features. Then, the proportion of datasets for
which the feature set being evaluated was not significantly
worse (i.e. either significantly better or not significantly dif-
ferent) than the best alternative was recorded and reported in
Table 3 for three significance levels (10%, 5%, 1%).

The results support the following three conclusions. First,
no one feature set proved universally best across the tested
datasets and thus a full search across feature sets would
be advised in settings without resource constraint. Second,
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Feature Set α : 0.01 α : 0.05 α : 0.1
x 18.75% 18.75% 12.50%
g, b 43.75% 43.75% 31.25%
dce 31.25% 18.75% 18.75%
dmse 50.00% 43.75% 37.50%
x, dce 37.50% 25.00% 18.75%
x, dmse 56.25% 37.50% 25.00%
g, b, dce 31.25% 25.00% 25.00%
g, b, dmse 50.00% 50.00% 37.50%
x, g, b 56.25% 43.75% 37.50%
x, g, b, dce 50.00% 43.75% 37.50%
x, g, b, dmse 56.25% 37.50% 37.50%
x, g, b, dce, dmse 75.00% 56.25% 43.75%

Table 3: This table reports the percentage of datasets for
which the allocator learned on the corresponding feature
set is significantly better than or not significantly different
from the best alternative feature set trained allocator. Re-
sults across three significance levels are reported and show
that the “kitchen sink” x, g, b, dce, dmse feature set is most
consistently best (bolded) while the “unaugmented” original
feature set of x is consistently the worst across all α.

although no universally best feature set was found, the
“kitchen sink” set of all candidate features (x, g, b, dce,
dmse) was found to be best most consistently and was thus
used to train all allocators reported in Table 2. Finally, allo-
cators trained on just the original features x were found to
be consistently worst among all alternatives thus supporting
the augmentation of the original features in some form. This
finding is consistent with the intuition that the predictions
of the component models would be very useful to learning
the optimal allocation and would be either very difficult or
impossible to learn from r , the optimal allocation ranking
response, alone during training.

Ensemble Component Model Selection The perfor-
mance of any allocated ensemble is highly dependent not
only on the individual performance of its component mod-
els (i.e. g and b) but on their level of synergy as well. In
particular, it may be the case that the component model pair
in (g0, b0, a0) individually outperforms the respective com-
ponent models in (g1, b1, a1) but that the allocator a0 trained
with (g0, b0) underperforms a1. In this case, the high relative
advantages of (g1, b1) in different segments of the feature
space overcome their global performance disadvantages as
individual models compared to their counterparts in (g0, b0)
to yield a stronger ensemble.

Thus, to determine how often high relative advantage
overcomes superior individual performance in allocator
training, the following study was conducted. For each
dataset, an allocator was trained on each combination of
available glass box (tree and regression) and black box (gra-
dient boosting trees and neural network) models (i.e. four
allocators per dataset). Then the allocator aI , trained us-
ing the pair of component models (gI , bI) with the high-
est individual validation performance, was identified along
with the allocator aC , trained using the pair of component

models (gC , bC) resulting in the highest ensemble valida-
tion performance. Finally the difference in test performance
was measured between aC and aI (AUC∆ = AUC(aC)−
AUC(aI)).

The resulting AUC∆ values support the following two
conclusions. Firstly, while a relatively high proportion
(41.9%) of datasets yield different allocators depending
on which of the two different component model selection
processes (individual vs. combined performance) they uti-
lize, the cross-dataset average difference in allocator perfor-
mance is not significantly different from zero (0.01± 0.03).
This result suggests that the glass box and black box model
types used for the experiments did not exhibit high relative
expertise in different parts of the feature space, indicating
that it may be beneficial to use a more diverse set of com-
ponent models in this setting. However, in rare cases (e.g.
IsoletR, BrazilianHousesR) the combined performance se-
lection method yields as much as 15% in additional perfor-
mance. Thus, in resource constrained settings, or in cases in
which many glass box and black box model types are under
consideration, the individual performance selection method
appears relatively low risk, although a full search across all
component model combinations (the method used for Table
2) is recommended when feasible.
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