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Abstract

Recently, the cross-modal pretraining model has been em-
ployed to produce meaningful pseudo-labels to supervise
the training of an image clustering model. However, nu-
merous erroneous alignments in a cross-modal pretraining
model could produce poor-quality pseudo labels and degrade
clustering performance. To solve the aforementioned issue,
we propose a novel Multi-Level Cross-Modal Alignment
method to improve the alignments in a cross-modal pre-
training model for downstream tasks, by building a smaller
but better semantic space and aligning the images and
texts in three levels, i.e., instance-level, prototype-level, and
semantic-level. Theoretical results show that our proposed
method converges, and suggests effective means to reduce the
expected clustering risk of our method. Experimental results
on five benchmark datasets clearly show the superiority of our
new method.

Introduction
Image clustering which groups images into different clus-
ters without labels is an essential task in unsupervised learn-
ing. Many methods are proposed to utilize the large-scale
pre-training models such as Resnet (He et al. 2016) or
ViT (Dosovitskiy et al. 2020) to extract high-quality repre-
sentations for image clustering (Ji, Vedaldi, and Henriques
2019; Li et al. 2021; Zhong et al. 2021; Wu et al. 2019;
Van Gansbeke et al. 2020; Dang et al. 2021). Then, to unsu-
pervised classification models, multiple indirect loss func-
tions are used (e.g. sample relations (Chang et al. 2017a),
invariant information (Ji, Vedaldi, and Henriques 2019; Li
et al. 2021), mutual information (Wu et al. 2019) and en-
tropy (Huang, Gong, and Zhu 2020; Van Gansbeke et al.
2020; Li et al. 2021). However, as pointed out in (Cai et al.
2023), the aforementioned techniques have difficulties in
handling examples that are semantically different but visu-
ally comparable by focusing only on images.

Recently, many vision-language pre-training (VLP) mod-
els have been developed to align images and texts into a uni-
fied semantic space (Li et al. 2019; Chen et al. 2020; Ramesh
et al. 2021; Li et al. 2020; Radford et al. 2021; Jia et al.
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Figure 1: The nearest noun for images in STL10 from Word-
Net, where the image and text embeddings are obtained via
CLIP. The green words correspond to the correct alignments,
while the red words indicate incorrect alignments.

2021). To utilize the VLP models for image clustering, Cai
et al. (Cai et al. 2023) proposed to use CLIP (Radford et al.
2021) to produce meaningful pseudo-labels and achieved
significant improvements on a wide range of datasets in
comparison with conventional image clustering methods.
Li et al. (Li, Savarese, and Hoi 2022) also used CLIP for
a zero-shot image classification task. The success of these
methods suggests a promising direction for image cluster-
ing. However, as depicted in Figure 1, there are instances
where the alignments between images and texts in CLIP
may be incorrect for downstream tasks, resulting in sub-
par pseudo labels and poor clustering performance. SIC (Cai
et al. 2023) simply uses CLIP to obtain the embeddings of
images and texts and cannot deal with incorrect alignments.
While MUST (Li, Savarese, and Hoi 2022) strives to opti-
mize the image encoder in CLIP, its efficiency is hampered
by using the pretraining task to update the image encoder,
resulting in a slow process.

To address the above problem, we propose a novel
method, namely Multi-Level Cross-Modal Alignment
(MCA), an efficient way to improve the alignments between
images and texts in CLIP for clustering tasks. In general, our
main contributions are as follows:

• We propose to use the hierarchical structure in WordNet
(see Figure 1) to filter irrelevant words and construct a
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smaller but better semantic space, thus reducing the af-
fection of unrelated nouns for clustering. Our experimen-
tal findings demonstrate that it can reduce the number of
words by up to 60% and significantly enhance clustering
performance compared to SIC.

• We propose to optimize both image and text embeddings
for downstream tasks, by aligning the images and texts
at three levels, i.e., instance-level, prototype-level, and
semantic-level. Our proposed method can better fix the
incorrect alignments in CLIP for downstream tasks when
compared to SIC and MUST.

• Theoretical findings demonstrate that our proposed
method converges at a sublinear rate and offers effective
strategies for lowering the expected clustering risk of our
method. These findings will provide valuable guidance
for the design of new image clustering methods.

• Experimental results on five benchmark datasets clearly
show the superiority of our new method, especially when
dealing with complex clusters.

Related Work
The early deep clustering methods simply combine repre-
sentation learning and shallow clustering (Xie, Girshick, and
Farhadi 2016; Yang et al. 2017; Tian, Zhou, and Guan 2017;
Shaham and Stanton 2018). With the rapid development
of the pre-training paradigm, many methods employ large-
scale pre-training models such as Resnet (He et al. 2016) or
ViT (Dosovitskiy et al. 2020) to extract high-quality repre-
sentations and train a classification model, by maximizing
the consistency between each image and its augmentation-
s/neighbors (Ji, Vedaldi, and Henriques 2019; Li et al. 2021;
Zhong et al. 2021; Wu et al. 2019; Van Gansbeke et al. 2020;
Zhong et al. 2021; Dang et al. 2021), or generating pseudo-
labels (Wu et al. 2019; Van Gansbeke et al. 2020). However,
as pointed out in (Cai et al. 2023), it is challenging for the
aforementioned techniques to handle examples that are se-
mantically different but visually comparable by only access-
ing visual information in images.

Cross-modal clustering has made significant progress in
recent years, which usually learns a shared subspace such
that the mutual agreement between multiple modalities is
maximized, by Canonical Correlation Analysis (CCA) (Gao
et al. 2020) or mutual information optimization (Mao et al.
2021). However, these methods require image-text pairs as
input, which may be cost-intensive to collect in real applica-
tions.

Recently, vision-language pre-training (VLP) models that
align multi-modal data in common feature space by differ-
ent pre-training tasks have been proposed. For example, Vi-
sualBert (Li et al. 2019), UNITER (Chen et al. 2020) and
DALL-E (Ramesh et al. 2021) use language-based training
strategies, including mask LM (Language Modeling) such as
Masked Language/Region Modeling, or autoregressive LM
such as image caption and text-grounded image generation.
CLIP (Radford et al. 2021) and ALIGN (Jia et al. 2021) uti-
lize cross-modal contrastive learning to align the visual and
textual information into a unified semantic space.

Since VLP captures the relationships among images and
texts (low-level semantics), it is natural to utilize VLP mod-
els to compensate for the semantic information for better im-
age clustering. Cai et al. (Cai et al. 2023) proposed to use
CLIP (Radford et al. 2021) to generate meaningful pseudo-
labels for image clustering. Li et al. (Li, Savarese, and Hoi
2022) also proposed to use CLIP for zero-shot image classi-
fication tasks.

Notation and Problem Definition
Suppose we have an image dataset X = {x1, x2, . . . , xn}
with n instances sampled i.i.d. from input space D, we
can obtain the embeddings of these images as U =
{u1,u2, . . . ,un} where ui = eI(xi) ∈ Rd×1 is ob-
tained via the image encoder eI(.) of CLIP, where d is
the embedding dimension. To capture the semantic mean-
ing of these images, we first introduce a noun vocabulary
T = {t1, t2, . . . , tm} that includes m noun phrases sam-
pled from WordNet (Miller 1995). Then we can obtain the
embeddings of these m words as V = {v1,v2, . . . ,vm}
where vi = eT (si) ∈ Rd×1, si is a sentence like
“A photo of a {ti}” and eT (.) is the text encoder of
CLIP. Let c be the number of categories, our goal is to group
the images in X into c clusters with the help of CLIP. Let
fI(eI(X );ϕ) denotes the image classification network with
parameters ϕ that maps an image xi into a soft cluster as-
signment probability vector qi ∈ Rc×1, and fS(eT (T ); θ)
denotes the text classification network with parameters θ
that maps a word ti into a soft cluster assignment probabil-
ity vector pi ∈ Rc×1. Notably, eI and eT in CLIP are kept
frozen during the training process.

Method
In this paper, we propose our method shown in Figure 2.
This new method mainly consists of three components:
1) Semantic space construction builds a proper semantic
space T , 2) Image consistency learning performs the con-
sistency learning in image space, and 3) Multi-level cross-
modal alignment aligns images and texts at three distinct
levels: instance-level, prototype-level, and semantic-level.

Semantic Space Construction
Constructing a proper semantic space T from Word-
Net (Miller 1995) such that the images can be well rep-
resented by the words in T is very important for image
clustering, because too small T may lose important rel-
evant words but too large T may contain too many ir-
relevant noisy words. In this step, we first build a candi-
date semantic space W as 82,000 nouns in the WordNet
dataset (Miller 1995). Considering an image dataset usu-
ally makes up a small part of semantics, we propose a two-
step filtering strategy to construct a proper semantic space
for an image dataset: 1) Uniqueness-based filtering selects
γr nearest words for each of c image cluster centers ob-
tained by kmeans of the most unique nouns whose unique-
ness scores (Cai et al. 2023) are greater than a given hyper-
parameter ρu. 2) Hierarchy-based filtering employs the hi-
erarchical structure in WordNet to further filter Wc to form
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Figure 2: The framework of MCA consists of three parts: (1) Semantic space construction. (2) Image consistency learning
(3) Multi-level cross-modal alignment. The thickness of lines in adaptive instance-level alignment reflects the magnitude of
attention scores.

the final semantic space T . Let T = ∅. Given an image xi,
we find its nearest noun wi ∈ Wc and search its hierarchical
structure from WordNet (Miller 1995) to form a hierarchi-
cal semantic tree. In general, the words in the lower layers
provide more fine-grained information for distinguishing the
images, while the words in the higher layers may be useless
for clustering. Figure 1 shows, for example, “mammal” is
the common parent of “dog” and “cat” and cannot distin-
guish the images in “dog” or “cat”. Therefore, we propose
a hierarchy-based filtering strategy that filters out the top γh
levels (excluding root node) and adds each of the remaining
words into T if it is also in Wc.

Image Consistency Learning
Intuitively, an image and its nearest images may have similar
soft cluster assignments. Therefore, we propose the follow-
ing loss function for image consistency learning:

LI(fI(eI(X );ϕ)) =− 1

n

n∑
i=1

∑
j=rn(N I

kI
(xi))

logqT
i qj

− η
c∑

l=1

q̄l log q̄l

(1)

where N I
kI
(xi) contains kI nearest images of xi and

rn(N I
kI
(xi)) randomly selects a sample from N I

kI
(xi). The

second item is the popular negative entropy loss for prevent-
ing trivial solutions that most samples belong to a small pro-
portion of clusters, where q̄l =

∑n
i=1 qil
n is the average clus-

ter assignment. η is a trade-off parameter.

Multi-Level Cross-Modal Alignment
When using a cross-modal pretraining model for image clus-
tering, the main challenge is to rectify incorrect alignments

between images and words in image data. In this paper,
we propose a novel Multi-Level Cross-Modal Alignment
method for this task, which is shown in Figure 2. Specifi-
cally, our method employs a three-level alignment approach.
Firstly, at the Instance-level Alignment, each image is
aligned with its neighboring texts. Secondly, the Prototype-
level Alignment aligns each image prototype with its near-
est text prototype. Lastly, at the Semantic-level Alignment,
each image is aligned with its neighboring texts in the se-
mantic space. The detailed descriptions of these three align-
ment processes are provided below.
Instance-level alignment: Given an image xi and its neigh-
boring texts N S

kS
(xi), we propose the following contrastive

loss function to facilitate the alignment:

Lia = − 1

n

n∑
i=1

∑
j=rn(NS

kS
(xi))

log
exp(qi

Tpj/τia)∑m
l=1,l ̸=j exp(qi

Tpl/τia)

(2)

where τia is a tempreature parameter.
Prototype-level alignment: Instancel-level alignment may
be affected by noisy neighborhood relationships, so we fur-
ther propose to align images and texts at prototype level
which is more robust to noisy texts. We first compute an
image prototype set HI , where hI

l ∈ HI is computed as
hI
l = 1

∥ql∥1

∑n
i=1 qilui. Then, for each image prototype

hI
l ∈ HI , we can identify the word in T that is closest to hI

l

and finally construct a prototype set HS . To further improve
the prototypes in HS , we find kp nearest neighborhoods for
each hS

l ∈ HS to compute the prototype of these neighbor-
hoods and replace hS to update HS .

Finally, to align images and texts at the prototype level,
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we propose the following loss function:

Lpa = −1

c

c∑
j=1

log
exp(fI(h

I
j , ϕ)

T fS(h
S
j , θ)/τpa)∑c

l=1,l ̸=j exp(fI(h
I
j , ϕ)

T fS(hS
l , θ)/τpa)

(3)

where τpa is a tempreature parameter.
Semantic-level alignment: Given an image xi and its neigh-
bouring texts N S

kS
(xi), we let vj = eT (sj) be the the

embeddings of tj ∈ N S
kS
(xi) and sj is a sentence like

“A photo of a {tj}”, and pj = fS(vj , θ). It makes
sense that the neighboring texts of an image can help de-
termine the cluster assignment of this image. Note that the
alignment relationships between images and texts may vary
in different downstream tasks, we propose to use the atten-
tion mechanism (Vaswani et al. 2017) to quantify the corre-
lations between an image and its neighboring texts. Specif-
ically, we compute p′

i as the weighted combination of the
neighboring texts’ assignments as:

p′
i =fA(ui,V

S ,PS ;WI ,WS)

=
∑

j∈NS
kS

(xi)

softmax((WIui)
TWSvj)pj (4)

where fA(· · · ;WI ,WS) is the attention network to quan-
tify the correlations between an image and its neighbor-
ing texts and WI ,WS ∈ Rd×d are two parameter matri-
ces. Then we use the argmax operation to generate one-hot
pseudo-label for xi as:

q′
i = one-hot (c, argmaxl p

′
il) (5)

where one-hot(c, l) generates a c-bit one-hot vector with the
l-th element as 1.

Here, q′
i can be considered as the semantic cluster assign-

ment of xi. Therefore, we perform alignment for each image
xi by aligning the semantic cluster assignment q′

i to the im-
age cluster assignment qi with the following loss function:

Lsa =
1

n

n∑
i=1

CE(qi,q
′
i) (6)

where CE(.) is the cross entropy function.
The overall alignment loss function is:

LA(fI(eI(X );ϕ), fS(eT (T ); θ), fA(· · · ;WI ,WS))

= Lia + λpaLpa + λsaLsa

(7)

where λpa and λsa are two trade-off parameters.

The Overall Objective
LA(fI(eI(X );ϕ), fS(eT (T ); θ), fA(· · · ;WI ,WS)) de-
note as L(g(S;φ)) for simplicity, where S = (X , T ),
φ = (ϕ, θ,WI ,WS) and g consists of fI , fS and fA.
Finally, the overall objective can be formulated as

L(g(S;φ)) =LI(g(S;φ)) + λaLA(g(S;φ)) (8)

where λa is a trade-off parameter.

Theoretical Analysis
In this part, we first analyze the convergence of our pro-
posed method and then analyze its expected clustering risk.
We first introduce the following assumptions: Image Neigh-
borhood Consistency Bound: ∀xi ∈ X , xj ∈ N I

kI
(xi),

qT
i qj ∈ [µI , 1]. Cross-modal Neighborhood Consistency

Bound: ∀xi ∈ X , tj ∈ N S
kS
(xi), qT

i pj ∈ [µC , 1]. Image
Prediction Confidence Bound: ∀xi ∈ X , ∥qi∥∞ ≤ µp.
Image Neighborhood Imbalance Bound: ∀xi ∈ X , xi is
in at most k′I samples’ (in X ) nearest neighborhoods.

We first give the following theorem demonstrating that the
optimization algorithm theoretically converges to the local
optima in a sublinear speed.

Suppose that g(S;φ) is twice differential with bounded
gradients and Hessians, and L(g(S;φ)) has L-Lipschitz
continuous gradient. Suppose that the learning rate ηφ
satisfies ηφ = min{1, C√

T
} for some C > 0, such

that C√
T

≥ L. Then our proposed method can achieve

min0≤t≤T E
[∥∥∇L(g(S);φ(t))

∥∥2
2

]
≤ ϵ in O

(
1/ϵ2

)
steps,

where ϵ is a very small positive real number.
Next, we analyze the ability of our method to achieve

cluster performance on unseen data. Let L̂n(g) be the em-
pirical clustering risk of MCA and its expectation can be
denoted as L(g). The family of g is defined as G. Then we
can obtain the following theorem by analyzing the general-
ization bound of our proposed method.

Suppose fI(.;ϕ) is Lipschitz smooth with constant
LI and ∥u∥∞ ≤ Mu. Suppose β( 1n

∑n
i=1 qilui) =

fI(h
I , ϕ)T fS(h

S , θ) is LIS-Lipschitz continious, where hI
l

and hS are computed according to the method in Section .
For any 0 < δ < 1, we can guarantee that with a probabil-
ity of at least 1 − δ for any g ∈ G, the following inequality
holds.

L(g) ≤ L̂n(g) +
c̃1√
n
+ c̃2

√
1

2n
log δ−1 +

2dLISMu

nτpa
.

where c̃1 = 2µ−1
I + 2ηC + 2λam/τia +

2λaλpadLISMu/τpa + 2λaλsac log µ
−1
p and

c̃2 = (2 + 2k′I) log µ
−1
I + ηC + 2λa(1−µC)

τia
+

λaλpa
dcLIM

2
u

τpa
+ 2λaλsac log µ

−1
p are constants de-

pendent on {n,m, µI , µC , µp, k
′
I , c, LIS , LI ,Mu, d, C}. C

is a constant.
Theorem shows that our proposed method, with high

probability 1 − δ, is with a bounded expected clustering
risk on the unseen data. To summarize, the expected clus-
tering risk of MCA is theoretically guaranteed in clustering
tasks. Note that the margin L(g) − L̂n(g) is inversely pro-
portional to µI and µC which reflect the neighborhood con-
sistency in both image domain and cross-domain, and µp

which reflects the prediction confidence, indicating that im-
proving the neighborhood consistency in both image domain
and cross-domain and prediction confidence reduces the ex-
pected risk of MCA. Meanwhile, the margin L(g) − L̂n(g)
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Dataset STL10 Cifar10 Cifar100-20 ImageNet-Dogs Tiny-ImageNet
Metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

kmeans 19.2 12.5 6.1 22.9 8.7 4.9 13.0 8.4 2.8 10.5 5.5 2.0 2.5 6.5 0.5
SC 15.9 9.8 4.8 24.7 10.3 8.5 13.6 9.0 2.2 11.1 3.8 1.3 2.2 6.3 0.4
NMF 18.0 9.6 4.6 19.0 8.1 3.4 11.8 7.9 2.6 11.8 4.4 1.6 2.9 7.2 0.5
JULE 27.7 18.2 16.4 27.2 19.2 13.8 13.7 10.3 3.3 13.8 5.4 2.8 3.3 10.2 0.6
SAE 32.0 25.2 16.1 29.7 24.7 15.6 15.7 10.9 4.4 – – – – – –
DAE 30.2 22.4 15.2 29.7 25.1 16.3 15.1 11.1 4.6 19.0 10.4 7.8 3.9 12.7 0.7
AE 30.3 25.0 16.1 31.4 23.4 16.9 16.5 10.0 4.7 18.5 10.4 7.3 4.1 13.1 0.7
VAE 28.2 20.0 14.6 29.1 24.5 16.7 15.2 10.8 4.0 17.9 10.7 7.9 3.6 11.3 0.6
DEC 35.9 27.6 18.6 30.1 25.7 16.1 18.5 13.6 5.0 19.5 12.2 7.9 3.7 11.5 0.7
ADC 53.0 – – 32.5 – – 16.0 – – – – – – – –
DC 33.4 – – 37.4 – – 18.9 – – – – – – – –
DAC 47.0 36.6 25.6 52.2 40.0 30.1 23.8 18.5 8.8 27.5 21.9 11.1 6.6 19.0 1.7
DDC 48.9 37.1 26.7 52.4 42.4 32.9 – – – – – – – – –
DCCM 48.2 37.6 26.2 62.3 49.6 40.8 32.7 28.5 17.3 38.3 32.1 18.2 10.8 22.4 3.8
IIC 59.6 49.6 39.7 61.7 51.1 41.1 25.7 22.5 11.7 – – – – – –
PICA 71.3 61.1 53.1 69.6 59.1 51.2 33.7 31.0 17.1 35.2 35.2 20.1 9.8 27.7 4.0
GCC 78.8 68.4 63.1 85.6 76.4 72.8 47.2 47.2 30.5 52.6 49.0 36.2 13.8 34.7 7.5
CC 85.0 76.4 72.6 79.0 70.5 63.7 42.9 43.1 26.6 42.9 44.5 27.4 14.0 34.0 7.1
TCL 86.8 79.9 75.7 88.7 81.9 78.0 53.1 52.9 35.7 64.4 62.3 51.6 – – –

SCAN∗ 75.52.0 65.41.2 59.01.6 81.80.3 71.20.4 66.50.4 42.23.0 44.11.0 26.71.3 55.61.5 58.71.3 42.81.3 41.10.5 69.40.3 32.70.4
SCAN† 76.71.9 68.01.2 61.61.8 87.60.4 78.70.5 75.80.7 45.92.7 46.81.3 30.12.1 59.20.2 60.80.4 45.30.4 – – –
SCAN† 80.9 69.8 64.6 88.3 79.7 77.2 50.7 48.6 33.3 59.3 61.2 45.7 42.0 69.8 33.2
NNM 76.81.2 66.31.3 59.61.5 83.70.3 73.70.5 69.40.6 45.90.2 48.00.4 30.20.4 58.61.5 60.40.5 44.90.2 37.80.1 66.30.1 27.10.1
SIC1 95.50.1 92.70.2 91.10.2 78.30.1 74.30.1 66.90.1 51.30.1 53.90.1 36.80.1 59.00.2 57.71.8 41.13.2 55.70.8 77.40.1 44.90.6
SIC2 96.70.1 93.70.1 93.20.1 91.80.1 83.40.1 83.10.1 54.00.1 54.40.4 38.60.4 61.81.1 63.91.9 49.81.4 61.00.2 80.40.1 51.20.2
SIC3 98.10.1 95.30.1 95.90.1 92.60.1 84.70.1 84.40.1 58.30.1 59.30.1 43.90.1 69.71.1 69.01.6 55.81.5 60.20.3 79.40.1 49.40.2
SIC 98.1 95.4 95.9 92.67 84.8 84.6 58.4 59.3 44.0 71.3 71.8 58.6 61.2 80.5 51.4
MCA 98.10.1 95.50.1 96.00.1 92.70.2 84.90.2 84.60.2 59.70.9 59.80.5 44.00.9 74.92.5 73.31.5 61.62.5 61.20.5 79.70.7 51.90.8
MCA 98.2 95.5 96.0 92.8 85.0 84.9 61.2 60.6 45.5 77.9 75.1 64.3 61.9 81.1 52.3

Table 1: Clustering results on five benchmark datasets. The best results are highlighted in bold.

is proportional to k′I which reflects the neighborhood over-
lapping in the image domain, indicating that reducing the
neighborhood imbalance (e.g., by setting a smaller number
of neighbors kI or filtering neighborhoods to reduce neigh-
borhood imbalance) also reduces the expected risk of MCA.

Experiments and Analysis
In this section, experiments are conducted on five image
benchmark datasets to validate the effectiveness of our pro-
posed method.

Experimental Setup
Benchmarks and implementation details. We used the
following five benchmark datasets in our experiment:
STL10 (Coates, Ng, and Lee 2011), Cifar10 (Krizhevsky
2009), Cifar100-20 (Krizhevsky 2009), ImageNet-
Dogs (Chang et al. 2017b) and Tiny-ImageNet (Le
and Yang 2015).
Evaluation Metrics. We used three evaluation metrics
to evaluate clustering results, including clustering Accu-
racy (ACC), Normalized Mutual Information (NMI) (Mc-
Daid, Greene, and Hurley 2011), and Adjusted Rand Index

(ARI) (Hubert and Arabie 1985). For these metrics, a higher
value means better performance.

Comparisons with State-of-the-arts
Setup. We took the entire list of nouns in the WordNet
dataset (Miller 1995) to form an initial semantic dataset for
filtering which contains more than 82, 000 nouns. To evalu-
ate the effectiveness of our proposed method, we compare
it with 22 state-of-the-art clustering methods on the five
datasets, including kmeans (MacQueen 1967), SC (Zelnik-
Manor 2005), NMF (Cai et al. 2009), JULE (Yang, Parikh,
and Batra 2016), SAE (Ng et al. 2011), DAE (Vincent
et al. 2010), AE (Bengio et al. 2006), VAE (Kingma and
Welling 2013), DEC (Xie, Girshick, and Farhadi 2016),
ADC (Haeusser et al. 2018), DeepCluster (DC) (Caron
et al. 2018), DAC (Chang et al. 2017a), DDC (Chang
et al. 2019), DCCM (Wu et al. 2019), IIC (Ji, Vedaldi,
and Henriques 2019), PICA (Huang, Gong, and Zhu 2020),
GCC (Zhong et al. 2021), CC (Li et al. 2021),TCL (Li et al.
2022),SCAN(Van Gansbeke et al. 2020), NNM (Dang et al.
2021) and SIC (Cai et al. 2023). We repeated the training
five times independently on each dataset and reported their
mean and standard deviation values.
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Steps Cifar10 ImageNet-Dogs
UF 91.4 65.3

UF+HF 91.9 71.8

Table 2: Ablation studies of semantic space construction
(UF: Uniqueness-based filtering, HF: Hierarchy-based filter-
ing.)

Loss Components Result
LI Lia Lpa Lsa ACC NMI ARI
✓ 46.7±0.5 48.9 ±0.7 32.6 ±0.5
✓ ✓ ✓ 66.0 ±3.4 67.7 ±2.5 50.7 ±4.1
✓ ✓ ✓ 63.5 ±2.5 69.7 ±2.1 52.7 ±3.5
✓ ✓ ✓ 53.1 ±3.8 55.4 ±2.8 37.4±2.4
✓ ✓ ✓ ✓ 74.8 ±2.7 72.7 ±2.0 61.9 ±2.5

Table 3: Ablation studies on ImageNet-Dogs.

Results. The comparison results with the state-of-the-art
methods in terms of ACC, NMI, and ARI are presented in
Tabel 1. From this table, we can observe that our method
outperforms all other methods on five benchmark datasets.
Especially, MCA improves ACC, NMI, and ARI by 2.8%,
1.3%, and 1.5% on Cifar100-20, and 6.6%, 3.3%, and 5.7%
on ImageNet-Dogs, demonstrating that MCA better amend
the incorrect alignments and thus achieve significant per-
formance improvement. Especially for fine-grained images
such as Imagenet-dogs whose categories are difficult to
distinguish, our method can give useful clustering support
information for images through the three alignment strat-
egy, especially for fine-grained images like ImageNet-Dogs
whose categories are difficult to distinguish.

Ablation Studies
Semantic space construction.

We first conduct an experiment on Cifar10 and ImageNet-
Dogs to verify the effectiveness of our semantic space con-
struction method and show the results in Table 2. The re-
sults demonstrate that hierarchy-based filtering can signifi-
cantly enhance the semantic space compared to uniqueness-
based filtering, especially when dealing with complex clus-
ters that are challenging to distinguish, such as those in the
ImageNet-Dogs dataset.
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Figure 3: The average accuracy of 10 runs of pseudo-labels
with epochs on Cifar100-20 and ImageNet-Dogs evolves.

Figure 4: Example of pseudo-label generation in MCA. The
words below (on the right side of) the images are ground-
truth/ neighboring labels and the red color indicates irrele-
vant texts. The blue block in the semantic probability indi-
cates the class the left word is assigned to (with the largest
probability).

Loss components effectiveness. We perform an ablation
analysis on ImageNet-Dogs to measure the importance of
four loss components in our model, i.e., image consistency
loss LI , instance-level alignment loss Lia, prototype-level
alignment loss Lpa and semantic-level alignment Lsa. The
results are shown in Tabel 3, indicating that each of the four
components plays an important role. The integration of three
cross-modal alignment strategies significantly enhances the
clustering performance, even obtaining 28.1%, 23.8%, and
29.3% performance gains when all three strategies are si-
multaneously used. Among the three cross-modal alignment
strategies, introducing semantic-level alignment yields the
most significant improvement in clustering performance, in-
dicating that operating at the semantic level can effectively
address incorrect alignments. These results confirm the ef-
fectiveness of our proposed cross-modal alignment methods.
Comparison of three pseudo-label generation methods.
In our method, semantic-level cross-modal alignment can be
considered self-training with cross-modal pseudo-labels. To
verify the effectiveness of our method, we compared three
pseudo-label generation methods implemented in our frame-
work: 1) Single Modal Pseudo-labeling (SMP) that directly
generates one-hot pseudo-labels via the argmax operation
on the soft cluster assignments only from images, 2) Proto-
type Mapping based Cross-modal Pseudo-labeling (PMCP,
is the adjusted center-based method in (Cai et al. 2023)) that
generates pseudo-labels from the prototype level alignments
in the original CLIP, and 3) Ours that generates pseudo-
labels by simultaneously learning relationships among im-
ages and neighboring texts, while also updating the image
and text embeddings. The comparison results on Cifar100-
20 and ImageNet-Dogs are shown in Figure 3, demonstrat-
ing that our method significantly outperforms the other two
methods on both datasets. These results indicate that learn-
ing adaptive relationships at the semantic level substantially
improves the quality of pseudo-labels.
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Figure 5: Sensitivity analysis of kS and kp.
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Figure 6: Sensitivity analysis of trade-off parameters η, λa, λpa and λsa.

Sensitivity Analysis
Figure 4 shows an example of our proposed pseudo-label
generation method. We select an example from each of the
three classes and three neighboring words for each image.
Although these exist irrelevant neighboring words for an im-
age, our method can identify irrelevant words and eliminate
the affection of incorrect alignments in CLIP.
Sensitivity on neighborhood parameters kS and kp in
cross-modal alignment. In our alignment method, kS con-
trols the number of neighboring texts in the instance-level
and semantic-level alignments, and kp controls the number
of neighboring texts to recompute the semantic prototype in
the prototype-level alignment. Figures 5a and 5b show that
too large kS causes performance degeneration due to the in-
troduction of irrelevant texts. Figures 5c and 5d show that kp
does not change the performance too much.
Sensitivity on trade-off parameters η, λa, λpa and λsa.
Figure 6 shows the sensitivity analysis of trade-off param-
eters η, λa, λpa and λsa. We can see that the performance
of our method improves with increasing values of η, λpa,
and λsa. Notably, our method appears to be more sensitive
to changes in λsa than λpa on ImageNet-Dogs.

Compare with Zero-shot Learning
We compared MCA with two zero-shot learning methods,
i.e., CLIP and MUST. Compared to CLIP, MUST improve
CLIP by 3.3% on Caltech101 and 18% on UCF101. Com-
pared to MUST, our method deteriorates MUST by -8.2%

on Caltech101 and -8.5% on UCF101. Although the re-
sults show that our method performs worse than CLIP and
MUST, our method has the advantage of not requiring class
names as input, which is necessary for zero-shot learning.
This makes our approach more versatile and applicable to a
broader range of real-world scenarios.

Conclusion

We have proposed a novel method to address the incorrect
alignments in CLIP for image clustering. Our method in-
cludes the construction of a proper semantic space and a
multi-level cross-modal alignment approach for aligning im-
ages and texts in downstream tasks at three levels. Theoret-
ical results have shown interesting insights, and experimen-
tal results have demonstrated the superiority of our method.
However, we acknowledge that our method may not be as
cost-effective as SIC, as it involves three types of align-
ments. The proper setting of hierarchy levels also remains a
challenge that needs further investigation. Additionally, our
method exhibits lower performance compared to MUST, pri-
marily due to the absence of class names. For future work,
we will focus on enhancing the performance of our method
and exploring new avenues for improvement. Leveraging the
theoretical results to augment our method holds promise and
will be a key research direction we pursue.
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