
Towards Multi-Mode Outlier Robust Tensor Ring Decomposition

Yuning Qiu1,2, Guoxu Zhou1,3 *, Andong Wang2, Zhenhao Huang1, Qibin Zhao2,1

1 School of Automation, Guangdong University of Technology, Guangzhou, 510006, China
2 RIKEN Center for Advanced Intelligence Project, Tokyo, 1030027, Japan

3 Key Laboratory of Intelligent Detection and The Internet of Things in Manufacturing, Ministry of Education, Guangzhou,
510006, China

{yuning.qiu, andong.wang, qibin.zhao}@riken.jp, {gx.zhou}@gdut.edu.cn, zhhuang.gdut@qq.com

Abstract
Conventional Outlier Robust Tensor Decomposition (ORTD)
approaches generally represent sparse outlier corruption
within a specific mode. However, such an assumption, which
may hold for matrices, proves inadequate when applied to
high-order tensors. In the tensor domain, the outliers are
prone to be corrupted in multiple modes simultaneously. Ad-
dressing this limitation, this study proposes a novel ORTD ap-
proach by recovering low-rank tensors contaminated by out-
liers spanning multiple modes. In particular, we conceptual-
ize outliers within high-order tensors as latent tensor group
sparsity by decomposing the corrupted tensor into a sum of
multiple latent components, where each latent component is
exclusive to outliers within a particular direction. Thus, it can
effectively mitigate the outlier corruptions prevalent in high-
order tensors across multiple modes. To theoretically guar-
antee recovery performance, we rigorously analyze a non-
asymptotic upper bound of the estimation error for the pro-
posed ORTD approach. In the optimization process, we de-
velop an efficient alternate direction method of multipliers
(ADMM) algorithm. Empirical validation of the approach’s
efficacy is undertaken through comprehensive experimenta-
tion.

1 Introduction
Recent advancements in acquisition and processing for ten-
sors (also referred to as multiway data) have facilitated
their broad application across various fields. However, the
disturbance on tensor data may amplify as the number of
tensor orders increases. This is particularly evident in re-
mote sensing imaging, where the data, influenced by mul-
tiple factors, often contains both ubiquitous low-amplitude
noise and diverse outliers (Xu et al. 2015; Sun et al. 2019;
Dao et al. 2021). Specifically, row-wise outliers stem from
sensor scanning inconsistencies or hardware glitches, while
column-wise outliers arise from abnormal sensor columns
due to equipment issues or external interferences. Tube-wise
outliers, spanning noise across spectral bands for a pixel, re-
sult from factors like sensor instability, hardware effects, or
electromagnetic disruptions. These distinct outliers, whether
appearing alone or together, present substantial hurdles to
the integrity and interpretation of tensor data, underscoring
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Nuclear Norm (TRNN), a powerful tool for effectively uti-
lizing the low-rank TR structures in various applications (Yu
et al. 2019; Huang et al. 2020a; He and Atia 2022; Zhang,
Zhang, and Wang 2022).
Definition 3 (TRNN (Yu et al. 2019)). Given aK-order ten-
sor X P Rd1ˆd2ˆ¨¨¨ˆdK , its TRNN is defined by }X}trnn :“∞K

k“1 ↵k}Xxky}˚, where ↵k ° 0, k P rKs and ∞K
k“1 ↵k “

1 denotes the weight parameter.
Lemma 2. (Qiu et al. 2022) Given an arbitrary K-order
tensor X, the dual norm of its TRNN is given by }X}t̊rnn “
infX“X1`X2`¨¨¨`ˆXK maxkPrKs ↵´1

k }Xxky}, where } ¨} de-
notes the matrix spectral norm, Xk, k P rKs are kth latent
component.

Multi-mode Outlier Robust Tensor Ring
Decomposition

Suppose that there is an observed corrupted tensor Y P
Rd1ˆd2ˆ¨¨¨dK . We assume that the intrinsic “clean” low-rank
tensor has a TR representation, and the outliers sparse tensor
contains outlier corruption across multiple modes. Thus, the
observation tensor can be given by

Y “ T ` S` E, (3)

where T and S represents the underlying low-rank tensor
and the outlier tensor, respectively, and E is dense noise ten-
sor following independent and identically distributed (i.i.d.)
Gaussian distribution N p0,�2q. To consistent with our key
question Q1, we further assume the outlier tensor S may
contain multi-mode outliers1. Subsequently, we formally
present the challenge of multi-mode outlier-robust tensor
decomposition: How can we proficiently reconstruct an un-
known tensor T from the observed data Y that is tainted by
multi-mode outliers S and dense noises E?
To address the previously mentioned challenge, it’s cru-

cial to consider the multi-mode nature of the unknown out-
liers. In light of this multi-mode characteristic, we propose
a novel norm to measure the complexity of the outlier ten-
sor S in Eq. (3). The objective is to represent the unknown
multi-mode outliers by a specific linear mixture of all single-
mode sparse outliers that retains the minimal overall group
sparsity.
Definition 4 (Multi-mode Tensor Group Sparsity, MTGS).
Given an arbitrary Kth-order tensor S, the multi-mode
group sparsity can be given by the latent tensor decompo-
sition model, where each latent component contains outliers
from one mode:

}S}mtgs :“ inf
S“S1`S2`¨¨¨`SK

Kÿ

k“1

�k}Sk
pkq}2,1, (4)

where the infimum is taken over theK tuple of latent tensors
S1, ¨ ¨ ¨ ,SK that sums to S, and Sk

pkq is the mode-k unfolding
of kth latent component Sk.

1The multi-mode assumption makes our observation model (3)
significantly different from existing works like (Gu, Gui, and Han
2014; Anandkumar et al. 2016; Wang et al. 2020)

By utilizing the well-defined TRNN and MTGS, we for-
mulate the following data recovery model:

min
T,S

1

2
}Y´ T ´ S}2F ` �}T}trnn ` ⌧}S}mtgs, (5)

where � ° 0 and ⌧ ° 0 are penalty parameters. A more
intuitive illustration of Eq. (5) is given in Figure x. The opti-
mization algorithm employed to solve the Eq. (5) hinges on
the utilization of the Alternating Direction Method of Multi-
pliers (ADMM) algorithm (Boyd et al. 2011). For a compre-
hensive understanding of the algorithm, please refer to the
Supplementary Material.

Theoretical Recovery Performance
To address the key Question2, we investigate a non-
asymptotic upper bound of estimation error. Before giving
the results, we present the following assumptions:
A 1. The `8 norm of the low-rank tensor T is not spiky, i.e.,
' :“ }T}8 † `8.
Note that Assumption 1 is relatively weak and quite rea-

sonable for many real-world recorded data such as images,
video sequences and etc. Next, we present an incoherence
Assumption 2 on the `2,8 norm of each latent component.

A 2. The `2,8 norm of each latent component Sk on l-th
unfolding is upper bounded by }Sk

plq}2,8 § %, l ‰ k, l P
rKs.
Let tT̂, Ŝ, Ŝku and tT˚,S˚,Sk,˚u be the estimated tensor

and intrinsic true tensors, respectively. The residual tensor
is given by �T :“ T˚ ´ T̂, �S :“ S˚ ´ Ŝ and �Sk :“
Ŝ
k ´ Sk,˚. We let ⌦k P Rd1ˆd2ˆ¨¨¨ˆdK be the support set of

outliers in the kth latent component Sk, ⌦ “ ∞K
k“1 ⌦

k be
the support set of S, and |⌦k

pkq| be the number of corrupted
columns. To clearly show the recovery performance of the
proposed model, we present the results in the following the-
orem.
Theorem 1. If penalty parameters � • }E}t̊rnn and
⌧ • maxk }Epkq}2,8{�k ` maxk 2D'{p?dk�kq `
maxk pK ´ 1q%{�k, then any feasible solution of the pro-
posed ORTRD model satisfy

}�T}2F `
Kÿ

k“1

}�Sk}2F § c1�
2

Kÿ

k“1

↵2
krkrk`s ` c2⌧

2
Kÿ

k“1

�2
k|⌦k

pkq|,

}�T}2F ` }�S}2F § c3�
2

Kÿ

k“1

↵2
krkrk`s ` c4⌧

2�2
k1 |⌦pk1q|,

(6)

where k1 “ argmink }Spkq}2,1.
Theorem 1 indicates that when penalty parameters p�, ⌧q

exceed some thresholds, then the estimation errors of low-
rank tensor T and structure sparse tensor S are upper bound
by the sum of latent structure sparsity |⌦k| and the sum of
the square of TR rank r2. However, the upper bound of `2,8
norm of Epk̂q and spectral norm of E is still unknown. To
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the square of TR rank r2. However, the upper bound of `2,8
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ror of Frobenius norm in the following theorem.

=

Observatio Dense Noise

+

+ +

+

G1

G2G3

G4

5 GK

d1

d2d3

d4

5
dK

r1

r2

r3

r4

5

G A(1)

A(2)

5

A(K)

r1

r2

5

rK

d1

d2

5

dK

G1G2

5 GK

d1d2

5 dK

Figure 2: Graphical representation of a tensor decomposition of a Kth-order tensor. (a) CP decomposition. (b) Tucker
decomposition. (c) TT decomposition.

computational complexity are usually higher than that of TT
decomposition.

3. Preliminaries
3.1. Tensor Algebra

We review some related concepts of tensor algebra as
the following. We first give a graphical representation to
simplify the tensor algebraic operations.
Definition 1 (Tensor Diagram). [37, 38] A tensor diagram
is a graphical representation of tensor algebraic operations.
The vertices (circles) and edges denote the tensors and their
modes, respectively, where the degree of each vertex is the
order of the corresponding tensor. The graphical represen-
tation is shown in Fig. 1 (a).

Definition 2 (Tensor Contraction). [37, 38] Given two ten-
sors A À Rd1ùd2ùr2 and B À Rd3ùd4ùr3 , the tensor
contraction betweenA andB is a tensor C À Rd1ùd2ùd3ùd4 ,
where the element-wise of tensor contraction can be given
by

C(i1, i2, i3, i4) =
r2…
↵

A(i1, i2, ↵)B(↵, i3, i4). (1)

The graphical representation is shown in Fig. 1 (b).

TT decomposition is one of the most highly-expressive
tensor network (TN) [37] decomposition models. Compared
with existing TN models, TT decomposition can e�ciently
avoid the curse-of-dimensional issue of Tucker decompo-
sition and the circular shifted sensitivity of tensor train
(TT) decomposition, and thus can be far more expressive.
Next, we introduce the definition and formulation of TT
decomposition.
Definition 3 (TT decomposition [39]). The tensor train
(TT) decomposition represents a Kth-order tensor T À
Rd1ù5ùdK by the circular tensor contraction over a se-
quence of third-order core tensors, i.e., T = TT(G1,5 ,GK ),
where Gk À Rrkùdkùrk+1 , k À [K], and rK+1 = r1 = 1.

Element-wisely, it can be represented as

T (i1, i2,5 , iK ) =
r1,5,rK…
�1,5,�K

K«
k=1

Gk(�k, ik, �k+1). (2)

The size of cores, rk, k = 1,5 ,K + 1 are called TT ranks.
For ease of presentation, in this paper, we simply let r =
r2 = 5 = rK .

To better understand the TN decomposition, we give the
graphical representation of di�erent tensor decomposition
methods of a Kth-order tensor in Fig. 2.

4. Methodology
In this section, we first introduce the TT decomposition

to compress the convolutional kernel, and then present the
established lightweight TYOLO model by using the TT
convolutional operations.
4.1. Lunar Impact Crater Dataset

The digital orthophotos with a resolution of 20 meters
used in experiments are collected by Chang’E-2 [40] at an
orbital height of 100 km of the moon. We randomly select
18000 and 5000 images to construct the training set and test
set, respectively.

During image processing, we crop images to have equal
width and height of 600, and save them as the first channel
of input images. Besides, images have an overlap area of
300 pixels to su�ciently detect all craters. Additionally, to
make full use of the recorded information of datasets, we
incorporate the digitally evaluated model (DEM) into the
second and third channels of input images. For the sake of
reducing training memory, we resize the images into the
416 ù 416 ù 3 pixels. As for the labels, we locate craters
within each image according to the label data given in [41].
We remove craters whose diameters are smaller than 0.1 km
or larger than 5 km so that the labeled craters have diameters
between 0.1 km and 5 km.
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To address the key Question2, we investigate a non-
asymptotic upper bound of estimation error. Before giving
the results, we present the following assumptions:
A 1. The `8 norm of the low-rank tensor T is not spiky, i.e.,
' :“ }T}8 † `8.

Note that Assumption 1 is relatively weak and quite rea-
sonable for many real-world recorded data such as images,
video sequences and etc. Next, we present an incoherence
Assumption 2 on the `2,8 norm of each latent component.

A 2. The `2,8 norm of each latent component Sk on l-th
unfolding is upper bounded by }Sk

plq}2,8 § %, l ‰ k, l P
rKs.

Let tT̂, Ŝ, Ŝku and tT˚,S˚,Sk,˚u be the estimated tensor
and intrinsic true tensors, respectively. The residual tensor
is given by �T :“ T˚ ´ T̂, �S :“ S˚ ´ Ŝ and �Sk :“
Ŝ
k ´ Sk,˚. We let ⌦k P Rd1ˆd2ˆ¨¨¨ˆdK be the support set of

outliers in the kth latent component Sk, ⌦ “ ∞K
k“1 ⌦

k be
the support set of S, and |⌦k

pkq| be the number of corrupted
columns. To clearly show the recovery performance of the
proposed model, we present the results in the following the-
orem.
Theorem 1. If penalty parameters � • }E}t̊rnn and
⌧ • maxk }Epkq}2,8{�k ` maxk 2D'{p?dk�kq `
maxk pK ´ 1q%{�k, then any feasible solution of the pro-
posed ORTRD model satisfy

}�T}2F `
Kÿ

k“1

}�Sk}2F § c1�
2

Kÿ

k“1

↵2
krkrk`s ` c2⌧

2
Kÿ

k“1

�2
k|⌦k

pkq|,

}�T}2F ` }�S}2F § c3�
2

Kÿ

k“1

↵2
krkrk`s ` c4⌧

2�2
k1 |⌦pk1q|,

(6)

where k1 “ argmink }Spkq}2,1.
Theorem 1 indicates that when penalty parameters p�, ⌧q

exceed some thresholds, then the estimation errors of low-
rank tensor T and structure sparse tensor S are upper bound
by the sum of latent structure sparsity |⌦k| and the sum of
the square of TR rank r2. However, the upper bound of `2,8
norm of Epk̂q and spectral norm of E is still unknown. To
clearly show its upper bound, we assume that the noise ten-
sor E P Rd1ˆd2ˆ¨¨¨ˆdK follows independent and identically
distributed (i.i.d.) Gaussian distribution N p0,�2q, and then
present a non-asymptotic upper bound on the estimation er-
ror of Frobenius norm in the following theorem.

Multi-mode Outlier 
Corruption

Figure 1: The problem addressed in this study: recover the
“clean” low-rank tensor from multi-mode outlier and dense
noise corrupted tensor.

the necessity for robust outlier resistance against multi-mode
outliers.

The robust tensor decomposition (RTD) (Gu, Gui, and
Han 2014; Anandkumar et al. 2016; Wang et al. 2020)
provides a viable solution to noise removal and outlier re-
silience effectively (Dong et al. 2018; Cao et al. 2016; Xie
et al. 2017). By modeling the corruption as a linear mix-
ture of small dense noise and sparse outlier corruptions,
the essence of RTD lies in distinguishing the inherent re-
dundancy captured in the low-rank tensor from the signif-
icantly corrupted sparse outliers and dense noise present
in high-order observations. Recent works have been exten-
sively exploring the low-rank tensor within several tensor
decompositions like CANDECOMP/PARAFAC decompo-
sition (Carroll and Chang 1970; Harshman et al. 1970),
Tucker decomposition (Tucker 1966), tensor train (TT) de-
composition (Oseledets 2011), tensor ring (TR) decomposi-
tion (Zhao et al. 2016a), and tensor singular value decompo-
sition (Kilmer and Martin 2011). Among the various tensor
decompositions, tensor ring (TR) decomposition preserves
circular shifting invariance, thereby capturing the intermodal
redundancy present in real-world tensors and achieving suc-
cess in numerous applications (Li and So 2021; Hou et al.
2019; Qiu et al. 2020; Peddireddy et al. 2022; Qiu et al.
2022a).

Nonetheless, contemporary advancements in RTD have
primarily focused on strategies for capturing the low-rank
structure within high-order tensor data, with relatively lim-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14713



ited emphasis on sparsity representation. This discrepancy
is largely attributed to the stability of element-wise sparsity
metrics in high-order tensors. In contrast, commonly uti-
lized group sparsity techniques for outlier removal and de-
tection lack the same favorable characteristics, as they can
solely be defined for a single mode. Consequently, these ap-
proaches struggle to adequately outliers that span multiple
modes within a tensor. To summarize, RTD proves effec-
tive in recovering low-rank tensors from data corrupted by
outliers. However, these approaches for addressing outlier
corruptions in multi-mode scenarios pose a burgeoning chal-
lenge. This prompts the following crucial questions:

Q1: Is it possible to formulate an Outlier Robust Ten-
sor Decomposition (ORTD) approach capable of recovering
low-rank tensors from multi-mode outlier corruptions?

Q2: Is there theoretical support for the estimation error
of low-rank and sparse outlier tensors?

To answer these questions, our study introduces a novel
approach called multi-mode outlier-robust tensor ring de-
composition (ORTRD) for the recovery of low-rank ten-
sors from noisy observations. The key innovation lies in
our utilization of multi-mode tensor group sparsity (as de-
fined in Definition 4) to present outliers in high-order ten-
sors, allowing for their presence across multiple directions.
In conjunction with the classical tensor decompositions, we
employ a TR structure to capture the underlying low-rank
structure. To ensure reliable recovery performance, we rig-
orously analyze the deterministic upper bound (Theorem 1)
and non-asymptotic upper bound (Theorem 2) of the esti-
mation error. Our comprehensive investigation demonstrates
that the proposed approach achieves significant improve-
ments over conventional robust matrix/tensor decomposition
techniques. This enhanced capability makes ORTRD excep-
tionally versatile in representing low-rank tensors that are
subjected to outlier corruptions across multiple modes (re-
fer to Figure 1). In summary, our work contributes in the
following ways:
• To estimate the clean low-rank tensors, we develop a

novel ORTD approach by incorporating a newly estab-
lished multi-mode tensor group sparsity alongside a TR
rank representation.

• We theoretically reveal a non-asymptotic upper bound
for the estimation error to justify the potential effective-
ness of the proposed ORTRD approach.

• The proposed ORTRD is versatile for various tensor data
recovery tasks, including synthetic low-rank tensor data,
hyperspectral videos (HSVs), and light field images. Ex-
tensive experiments validate the superiority of the pro-
posed approach compared to state-of-the-art approaches.

2 Notations and Preliminaries
First, we introduce necessary notations in this paper. We set
the scalars to be the lowercase letters, e.g., a P R, vectors to
be the bold lowercase letter, e.g., a P Rd, and matrices be the
bold upper-case letters, e.g., A P Rd1ˆd2 , and tensors be the
Euler script letters, e.g., X P Rd1ˆd2ˆd3 . We use c1, c2, and
so forth, to represent universal constants whose values might
change from one context to another. The pi1, i2, ¨ ¨ ¨ , iKqth

entry of tensor X is given by Xpi1, i2, ¨ ¨ ¨ , iKq, and ith col-
umn of matrix X is denoted by Xp:, iq. We let the set of
all positive integers 1, 2, ¨ ¨ ¨ ,K be rKs. We let the nuclear
norm of a matrix X be }X}˚. The ℓ2,1 norm and its dual
norm of a matrix X is defined by }X}2,1 and }X}2,8, re-
spectively. The mode-k unfolding (or matricization) (Kolda
and Bader 2009) of a tensor X is given by Xpkq.

Next, we delve into several pivotal concepts of TR de-
composition.

Definition 1 (Tensor Ring (TR) Decomposition (Zhao
et al. 2016a)). Given an arbitrary Kth-order tensor
X P Rd1ˆd2ˆ¨¨¨ˆdK , TR decomposition represents it by
the circular contraction over K third-order tensors as
X “ TRpGp1q,Gp2q, ¨ ¨ ¨ ,GpKqq, where core tensors Gpkq P
Rrkˆdkˆrk`1 , k P rKs, and rK`1 “ r1. Alternatively, it can
be represented as the following element-wise formulation:

Xpi1, i2, ¨ ¨ ¨ , iKq “
r1,r2,¨¨¨ ,rKÿ

u1,u2,¨¨¨ ,uK

Kź

k“1

Gpkqpuk, ik, uk`1q,
(1)

where the vector rr1, r2, ¨ ¨ ¨ , rKs is denoted as TR rank.

Low-rank TR finds applications in diverse fields such as
signal/image processing (Li and So 2021), quantum physics
(Peddireddy et al. 2022), machine learning (Hou et al. 2019),
and more, enabling efficient analysis and manipulation of
high-order data. For handling low-rank TR structures, the
circular unfolding of tensors provides an effective approach
to leverage matrix analysis techniques.

Definition 2 (Tensor Circular Unfolding (Yu et al. 2018,
2019)). Given an arbitrary Kth-order tensor X P
Rd1ˆd2ˆ¨¨¨ˆdK , its mode-k circular unfolding matrix is
Xxky P Rd1,kˆd2,k , where d1,k “ śk´1

u“l`1 du and d2,k “śl
u“k du, and s “ rK{2s denotes the number of indexes

maintain in d2,k, and l is given by

l “
"
k ` s ´ 1, k ` s ď K,

k ` s ´ 1 ´ K, otherwise.
(2)

Alternatively, its element-wise form is denoted by
Xpi1, i2, ¨ ¨ ¨ , iKq “ Xxkypil`1, ¨ ¨ ¨ , ik´1, ik, ¨ ¨ ¨ , ilq.

Lemma 1. (Yu et al. 2019) Given a Kth-order tensor X P
Rd1ˆd2ˆ¨¨¨ˆdK with TR rank rr1, r2, ¨ ¨ ¨ , rKs, the rank of
circular unfolding matrix Xxky is bounded by rkrk`s.

Lemma 1 allows us to relax the intractable TR rank mini-
mization problem to K matrix rank minimization problems.
By utilizing its convex surrogate, the matrix nuclear norm,
to replace the rank, we proceed to introduce the Tensor Ring
Nuclear Norm (TRNN), a powerful tool for effectively uti-
lizing the low-rank TR structures in various applications (Yu
et al. 2019; Huang et al. 2020a; He and Atia 2022; Zhang,
Zhang, and Wang 2022).

Definition 3. (Yu et al. 2019) Given a Kth-order tensor
X P Rd1ˆd2ˆ¨¨¨ˆdK , its TRNN is defined by }X}trnn :“řK

k“1 αk}Xxky}˚, where αk ą 0, k P rKs and
řK

k“1 αk “
1 denotes the weight parameter.
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Lemma 2. (Qiu et al. 2022b) Given an arbitrary Kth-order
tensor X, the dual norm of its TRNN is given by }X}t̊rnn “
infX“X1`X2`¨¨¨`XK maxkPrKs α´1

k }Xk
xky}, where } ¨ } de-

notes the matrix spectral norm, and Xk is the kth latent ten-
sor component.

Lemma 2 plays a crucial role in the analysis of the statis-
tical performance of the proposed approach.

3 Multi-mode Outlier Robust Tensor Ring
Decomposition

Suppose that there is an observed corrupted tensor Y P
Rd1ˆd2ˆ¨¨¨dK . We assume that the intrinsic “clean” low-rank
tensor has a TR representation, and the sparse tensor con-
tains outlier corruptions across multiple modes. Thus, the
observation problem can be given by

Y “ T ` S ` E, (3)

where T and S represent the underlying low-rank tensor and
the outlier tensor, respectively, and E is dense noise tensor.
We provide insight into the underlying low-rank tensor T,
which is relatively weak and quite reasonable for many real-
world recorded data like images and videos:
Assumption 1. The ℓ8 norm of the low-rank tensor T is not
spiky, i.e., φ :“ }T}8 ă `8.

Subsequently, we formally present the challenge of multi-
mode outlier-robust tensor decomposition: How can we pro-
ficiently reconstruct an unknown tensor T from the observed
data Y that is tainted by multi-mode outliers S and dense
noises E?

To address the challenge, it’s crucial to consider the multi-
mode nature of the unknown outliers. In light of this multi-
mode characteristic, we propose a novel norm to measure the
complexity of the outlier tensor S in Eq. (3). The objective is
to represent the unknown multi-mode outliers by a specific
linear mixture of all single-mode sparse outliers that retains
the minimal overall group sparsity.
Definition 4 (Multi-mode Tensor Group Sparsity, MTGS).
Given an arbitrary Kth-order tensor S, the multi-mode ten-
sor group sparsity can be given by the latent tensor decom-
position approach, where each latent component contains
outliers from one mode:

}S}mtgs :“ inf
S“S1`S2`¨¨¨`SK

Kÿ

k“1

βk}Sk
pkq}2,1, (4)

where the infimum is taken over the K tuple of latent tensors
S1, ¨ ¨ ¨ ,SK that sums to S, and Sk

pkq is the mode-k unfolding
of the kth latent component Sk, βk ą 0 denotes the weight
parameter.

To be consistent with our key question Q1, we further as-
sume the outlier tensor S may contain multi-mode outliers
and further satisfy the following incoherence assumption1.

1The multi-mode assumption makes our observation model (3)
significantly different from existing works like (Gu, Gui, and Han
2014; Anandkumar et al. 2016; Wang et al. 2020)

Assumption 2. The ℓ2,8 norm of the lth unfolding of each
latent component Sk of the outlier tensor S is bounded as
}Sk

plq}2,8 ď ϱ, for all l, k P rKs, l ‰ k.

Consequently, under TRNN and MTGS regularizations
on low-rank tensor and multi-mode outliers, we have the fol-
lowing ORTRD approach:

min
T,S

1

2
}Y ´ T ´ S}2F ` λ}T}trnn ` τ}S}mtgs,

s.t. }T}8 ď φ, }Sk
plq}2,8 ď ϱ, l ‰ k,

(5)

where λ ą 0 and τ ą 0 are penalty parameters. The opti-
mization algorithm employed to solve the Eq. (5) hinges on
the utilization of the Alternating Direction Method of Mul-
tipliers (ADMM) algorithm (Boyd et al. 2011). For a com-
prehensive understanding, please refer to Appendix B.

4 Theoretical Recovery Performance
To address the key question Q2, we theoretically investigate
the statistical performance of the ORTRD approach.

Let tT̂, Ŝ, Ŝku and tT˚,S˚,Sk,˚u be the estimated tensor
and intrinsic true tensors, respectively. The residual tensor
is given by ∆T :“ T˚ ´ T̂, ∆S :“ S˚ ´ Ŝ and ∆Sk :“
Sk,˚ ´ Ŝ

k
. We let Ωk P Rd1ˆd2ˆ¨¨¨ˆdK be the support set of

outliers in the kth latent component Sk, Ω “ řK
k“1 Ω

k be
the support set of S, and |Ωk

pkq| be the number of corrupted
columns. To clearly show the recovery performance of the
proposed approach, we first present the deterministic bound
in the following theorem.
Theorem 1. If we set the penalty parameters by λ ě }E}t̊rnn
and τ ě maxk }Epkq}2,8{βk ` maxk 2Dφ{p?

dkβkq `
maxk pK ´ 1qϱ{βk, then any optimal solution of the pro-
posed ORTRD satisfies

}∆T}2F `
Kÿ

k“1

}∆Sk}2F ď c1λ
2

Kÿ

k“1

α2
krkrk`s ` c2τ

2|Ω̂|,

}∆T}2F ` }∆S}2F ď c3λ
2

Kÿ

k“1

α2
krkrk`s ` c4τ

2β2
k1 |Ωpk1q|,

where |Ω̂| “ řK
k“1 β

2
k|Ωk

pkq| and k1 “ argmink }Spkq}2,1.

Proof of Theorem 1 is given in Appendix A.1. Theo-
rem 1 indicates that when penalty parameters pλ, τq exceed
some thresholds, then the estimation error of low-rank ten-
sor T and structure sparse tensor S is upper bound by the
sum of latent structure sparsity |Ωk| and the sum of the
square of TR rank r2. However, the upper bound of ℓ2,8
norm of Epkq and spectral norm of E is still unknown. To
clearly show its upper bound, we assume that the noise ten-
sor E P Rd1ˆd2ˆ¨¨¨ˆdK follows i.i.d. Gaussian distribution
N p0, σ2q, and then present a non-asymptotic upper bound
on the estimation error in the following theorem.
Theorem 2. For Gaussian noise tensor E, if the penalty pa-
rameters λ “ 2σK´2

řK
k“1pa

d1,k ` a
d2,kq{αk and τ “

maxk σp?
dk ` 3

?
logDq{βk ` maxk 2Dφ{p?

dkβkq `
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maxk pK ´ 1qϱ{βk, then with high probability, any optimal
solution of the proposed ORTRD satisfies:

}∆T}2F `
Kÿ

k“1

}∆Sk}2F ď

c5σ
2

K4

Kÿ

k“1

p d̃
k
1,2

αk
q2

Kÿ

k“1

α2
krkrk`s ` c6τ

2
Kÿ

k“1

β2
k|Ωk

pkq|,

}∆T}2F ` }∆S}2F ď
c7σ

2

K4

Kÿ

k“1

p d̃
k
1,2

αk
q2

Kÿ

k“1

α2
krkrk`s ` c8τ

2β2
k1 |Ωpk1q|,

(6)

where d̃k1,2 “ a
d1,k ` a

d2,k,@k P rKs.
The proof of Theorem 2 is presented in Appendix A.2.

Compared with the exact subspace recovery guarantee in
ORPCA or OTRPCA (Xu, Caramanis, and Sanghavi 2012;
Zhou and Feng 2017), the established theorem relaxes the
strong matrix/tensor incoherence condition on the low-rank
matrix/tensor. Moreover, Theorem 2 gives the estimation er-
ror bound on the recovered low-rank and outlier corrupted
tensor, while ORPCA or OTRPCA can only guarantee the
subspace recovery on the low-rank matrix/tensor.

By letting dk “ d, αk “ 1{K and βk “ β, we can ob-
serve that the upper bound of the estimation error Eq. (6) in
Theorem 2 is established in the following oracle inequality
with high probability

}∆T}2F
D

` }∆S}2F
D

À σ2p r2

dtK{2u
` ξ2

|Ωpk1q|
D

q, (7)

where À denotes that the inequality holds up to a multiplica-
tive absolute constant and a factor, ξ :“ ?

d ` 3
?
logD.

From Eq. (7), it is clear that Theorem 2 shows substantial
improvements compared with the matrix’s and tensor’s case
(Klopp, Lounici, and Tsybakov 2017; Zhou and Feng 2017;
Wang, Jin, and Tang 2020). Theorem 2 breaks down the rank
limitation of r ď d in classical low-rank recovery tasks.
This is because, even if r ě d, a sufficiently small upper
bound for the estimation error can still be achieved due to
the possibility that r2 ď dtK{2u. This contrasts with previous
robust matrix/tensor decomposition approaches where low-
rank recovery typically falters once r ě d. Moreover, the
estimation error of outlier components is determined by the
minimum number of corrupted columns in kth-mode, i.e.,
|Ωpk1q|. The result is equivalent to mode-specific ORTD ap-
proaches by simply setting the outlier direction to k1 (Klopp,
Lounici, and Tsybakov 2017; Wang, Jin, and Tang 2020).
However, the proposed approach does not require this prior,
which demonstrates the flexibility of the proposed approach.

5 Experimental Results
In this section, we evaluate the performance of the pro-
posed approach by conducting experiments on both syn-
thetic data and real-world datasets, including light field
images and hyperspectral videos. We compare the experi-
mental results with some state-of-the-art robust matrix/ten-
sor decomposition approaches, including, RPCA (Candès
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Figure 2: RE versus the number of outliers: (a) when out-
lier corruptions are distributed in the first mode; (b) when
outlier corruptions are distributed in the first and the third
modes. RE versus the square of TR rank: (c) when outlier
corruptions are distributed in the first mode; (d) when outlier
corruptions are distributed in the first and the third modes.

et al. 2011), ORPCA (Xu, Caramanis, and Sanghavi 2010),
BRTF (Zhao et al. 2016b), HoRPCA (Goldfarb and Qin
2014), RTRC (Huang et al. 2020b), TTRPCA (Yang et al.
2020), and ORTPCA (Zhou and Feng 2017). We evalu-
ate the performance of the compared approaches in terms
of the relative squared error (RSE), which is defined by
}T˚ ´ T̂}2F{}T˚}2F. The implementation code is available at
https://github.com/ynqiu/MORTRD.

5.1 Verifying the Correctness of Theorem 2
In this part, we conduct synthetic low-rank tensor recovery
experiments to investigate the correctness of the established
upper bound in Theorem 2. To generate synthetic low rank
tensor T˚ P Rd1ˆd2ˆ¨¨¨ˆdK with TR rank rr1, r2, ¨ ¨ ¨ , rKs,
we first generated K core tensors Gpkq P Rrkˆdkˆrk`1

where each entry is produced by the i.i.d. Gaussian distribu-
tion N p0, 1q. To construct the latent structural tensor Sk,˚,
we let the support set of Sk

pkq be Ωk, and then randomly se-
lect |Ωk

pkq| columns of Sk
pkq as outliers whose entries obey

i.i.d. N p0, 1q. Thus, the outlier is given by S “ řK
k“1 S

k.
The additive noise tensor is produced by N p0, σ2q, where
σ “ 10´3}T˚}F{?

D to guarantee a constant signal-to-
noise ratio (SNR). All the experiments are repeated 10 times
and their mean values are reported.

According to Eq. (7), the upper bound of the entry-wise
estimation error of our proposed approach is linearly scaled
with variables r2{dtK{2u and |Ωpk1q|{D. Thus, by fixing one
of these two variables, and linearly increasing the other one,
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Figure 3: Column-wise Frobenius norm versus column in-
dex. (a) Frobenius norm versus column index when outliers
are distributed across the first mode; (b) Frobenius norm ver-
sus column index on the first mode when outliers are dis-
tributed across the first and the third modes; (c) Frobenius
norm versus column index on the third mode when outliers
are distributed across the first and the third modes.

the estimation error should also increase linearly. We adopt
reconstruction error RE “ p}∆T}2F `}∆S}2Fq{D as the eval-
uation metric. We first investigate RE value versus TR rank.
We generate the synthetic tensor of size 20 ˆ 20 ˆ 20 ˆ 20
with TR rank r P t2, 3, ¨ ¨ ¨ , 8u. In Figure 2 (a)-(b), we de-
pict the RE versus the square of TR rank when outliers are
distributed in the first mode, and in both the first and the third
modes. It can be observed that the RE value increases lin-
early with r2, which verifies the results in Eq. (7). In Figure
2 (c)-(d), we plot the RE versus |Ω1

p1q| and |Ω1
p1q|`|Ω3

p3q|, re-
spectively. Similarly, the estimation error increases linearly
with the minimum number of non-zero fibers in multi-mode
outlier corrupted tensor, which is consistent with the theo-
retical results in Eqs (6) and (7).

5.2 Verifying the Effectiveness of Outlier
Detection

The approach for generating low-rank and outlier corrup-
tions is the same as the preceding section. The low-rank
tensor is of size 20 ˆ 20 ˆ 20 ˆ 20 with TR rank r “ 3.
The outlier corruptions are distributed on the first mode
S “ S1 with |Ω1

p1q| “ 240. We compute column-wise Frobe-

nius norm of Ŝ
1

p1q and S1,˚
p1q , and visualize the first 50 out-

liers in Figure 3(a). We can easily find that all the outliers
are successfully detected by the proposed approach. Subse-
quently, we conduct the experiment on multiple latent com-
ponents by generating outlier tensors S “ S1 ` S3 with
|Ω1

p1q| “ |Ω3
p3q| “ 240. Figure 3(b)-(c) depict the column-

wise Frobenius norm on S1
p1q and S3

p3q, respectively. All of
the outliers in the first mode are successfully detected, but
there is one column in S3

p3q being misclassified as outliers,

HSV
data

Outlier
modes ORPCA RTRC ORTPCA Ours

bus

1 0.0755 0.0464 0.0488 0.0452
1,2 0.3712 0.0555 0.0600 0.0450

1,2,3 0.5210 0.0578 0.0665 0.0451
1,2,3,4 0.6385 0.0603 0.0713 0.0452

coin

1 0.1180 0.0449 0.0911 0.0417
1,2 0.7354 0.0890 0.1184 0.0415

1,2,3 1.0401 0.0908 0.1328 0.0416
1,2,3,4 1.2892 0.0934 0.1471 0.0416

face

1 0.0773 0.0458 0.0438 0.0448
1,2 0.4226 0.0548 0.0557 0.0445

1,2,3 0.5953 0.0564 0.0638 0.0446
1,2,3,4 0.7308 0.0583 0.0695 0.0445

hand

1 0.0710 0.0461 0.0407 0.0456
1,2 0.3435 0.0529 0.0516 0.0454

1,2,3 0.4823 0.0544 0.0587 0.0455
1,2,3,4 0.5908 0.0559 0.0643 0.0453

Table 1: Comparison of RSE values of compared approaches
on 4 HSVs. Best in boldface.

which demonstrates the effectiveness of the proposed ap-
proach in detecting multi-mode outlier corruptions.

5.3 Hyperspectral Video Recovery
In this part, we compare the recovery results for all the ap-
proaches. We randomly select four HSV datasets2. These
HSVs can be viewed as fourth-order tensors of size 64 ˆ
d2 ˆ 16 ˆ 50, where d2 is distinct from each video. The
entries in each spectral are rescaled in an interval r0, 1s.
The additive Gaussian noise is set as Section 5.1 with
σ “ 0.05}T˚}F{?

D. The multi-mode outliers are gener-
ated with |Ωk

pkq| “ roundp10´2
ś

j,j‰k djq, and each out-

lier Sk
pkqp:, iq is generated by a uniform discrete distribution

on r´1, 1s.
Table 1 gives RSE values of different compared methods

on four HSV datasets under varying outlier corruptions. Due
to space limitations, only part of the results are depicted.
The full comparisons can be obtained in Appendix C.1. The
proposed approach obtains the lowest RSE in most cases,
and RTRC obtains the second-best performance, which ver-
ifies the superiority of the proposed multi-mode robust ten-
sor decomposition framework and low-rank approximation
ability of TR representation. ORTPCA and ORPCA also ob-
tain comparable performance when outliers only lie on the
first mode, but the performance degenerates as the number
of outlier modes increases. Thus, these mode-specific outlier
robust matrix/tensor decomposition is effective when out-
liers exactly match the specific column space.

5.4 Light Field Image Recovery and Outlier
Detection

In this part, we investigate recovery performance and out-
liers detection results of all compared methods. We adopt
a publicly accessible light field images dataset3, and ran-

2https://www.hsitracking.com/contest/
3https://lightfield-analysis.uni-konstanz.de/
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Figure 4: Comparison of the RSE values of 8 compared methods for image denoising on 6 light field images. The numbers
behind the light field images denote the outliers aligned in different modes.

Figure 5: The visual comparison of the recovered sparse outlier tensors by different methods.

domly select 6 of these images. These images can be viewed
as fourth-order tensors of size 64 ˆ 64 ˆ 9 ˆ 9. The sup-
port set of outlier corruptions are generated with |Ωk

pkq| “
roundp10´3

ś
j,j‰k djq. The remaining settings are set as

the HSV recovery section.
Figure 4 depicts the RSE values of the compared ap-

proaches on 6 light field images. From the comparisons, we
can observe that: 1) The proposed method achieves the low-
est RSE in all tested images and all experiment settings,
which indicates the effectiveness of the proposed method;
2) Both RTRC and TTRPCA achieve comparable recovery
performance, demonstrating the superiority of low-TT/TR-
rank approximation for high-order tensor recovery; 3) As the
number of outlier modes increases, the RSE of all the com-
pared methods shows slight increases; 4) When outliers only
appear in the first mode, ORPCA also obtains comparable
recovery results. However, when outliers appear in multiple
modes, ORPCA performs worse since it can only estimate
outliers from one pre-fixed mode.

Subsequently, we investigate the outlier detection results.
For the compared methods, we adopt Kmeans clustering to
group all }Spkqp:, iq}2F into two classes (outliers vs. non-
outliers) for outlier detection. The proposed approach auto-
matically separates outliers into different latent components,
thus we can directly cluster }Sk

pkqp:, iq}2F into two classes.
We repeat 10 times clustering to eliminate the local con-
vergence effect of Kmeans. Then, we present the average
clustering accuracy from all corrupted modes in Table 2. We

can find that the proposed method obtains the best cluster-
ing accuracy in all cases. Besides, when the outliers are only
distributed in the spatial dimensions, i.e., the first and the
second modes, most of the compared methods obtain 100%
clustering accuracy. To elucidate the factors leading to the
observed outlier detection results, we visually present the
detected sparse outliers for an intuitive interpretation with
|Ωk

pkq| “ roundp10´3
ś

j,j‰k djq, k P t1, 2, 3u. Then we
reshape the outlier tensors into third-order tensors of size
64 ˆ 64 ˆ 81 and then visualize them in Figure 5. It can be
observed that the proposed method can accurately separate
the outlier tensor whereas other methods are either incapable
of recovering outliers across multiple modes (as is the case
with ORPCA), or yield sparse components that significantly
deviate from the original outliers (as is the case with RPCA,
BRTF, HoRPCA, and ORTPCA). Consequently, these re-
sults verify that the proposed method is adept at effectively
segregating outliers corrupted from multiple directions.

5.5 Convergence Behaviour
In this part, we investigate the convergence behavior of the
proposed algorithm on light field images. We plot the rela-
tive change of the recovered low-rank tensor in Figure 6(a)
on antinous and bedroom datasets, where we let |Ωk

pkq| “
p10´2

ś
j,j‰k djq, k P t1, 2, 3u. It can be observed that the

proposed algorithm usually converges within 50 iterations.
In Figure 6(b)-(d), we plot the relative change of each latent
component by setting the outliers modes k “ 1, k P t1, 2u
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Data Outlier
modes ORPCA RTRC ORTPCA Ours

antinous
1 100 100 100 100

1,3 80.64 82.04 82.02 99.70
1,2,3 72.53 85.55 85.56 99.75

dishes
1 100 100 100 100

1,3 81.28 82.62 82.59 99.61
1,2,3 71.88 85.55 85.58 99.73

herbs
1 100 100 100 100

1,3 81.28 82.62 82.62 99.65
1,2,3 72.14 85.55 85.55 99.72

pillows
1 100 100 100 100

1,3 80.87 82.17 82.15 99.74
1,2,3 71.67 85.55 85.57 99.76

table
1 100 100 100 100

1,3 81.54 82.62 82.56 99.57
1,2,3 72.12 85.55 85.60 99.69

tower
1 100 100 100 100

1,3 80.38 82.17 82.16 99.64
1,2,3 71.56 85.55 85.56 99.70

Table 2: Outliers detection ACC (%) on compared methods

and k P t1, 2, 3u, respectively. In cases where a given mode
is devoid of outliers, the relative change of associated latent
components shows a zig-zag from iterations 20 to 60 but fi-
nally converges the NaN. This is reasonable since the latent
component will approach zeros if the corresponding mode
does not contain any outlier corruptions. These results fur-
ther substantiate the capability of our approach to automati-
cally identify the corrupted modes from high-order tensors.

6 Related Works
While RTD is often seen as an extension of robust principal
component analysis (RPCA) for higher-order tensors, mak-
ing such extensions isn’t straightforward due to the intricate
multilinear structures inherent in high-order tensor data. Un-
like matrices, definitions of tensor rank are not straightfor-
ward and come with variations, stemming primarily from
tensor decomposition approaches introduced in the Intro-
duction section. To characterize the sparse corruption for
high-order tensor, the convex element-wise sparsity mea-
sure, i.e., ℓ1 norm, stands out as one of the most exten-
sively employed strategies (Goldfarb and Qin 2014; Lu et al.
2020), since it is far easier to be extended from vector or
matrix to high-order tensor. However, it breaks down when
outliers are distributed column-wise, i.e., large errors con-
centrate only on a number of fibers rather than scattering
uniformly across the sparse component. One alternative so-
lution is to unfold the high-order tensor into a matrix along
the outliers so that they can be well captured with ℓ2,1 norm
(Hu and Work 2020; Zhou and Feng 2017). These meth-
ods approximate the intrinsic low-rank tensor with a well-
defined tensor decomposition approach and matrix-based
group sparsity penalty (Xu, Caramanis, and Sanghavi 2010).

Some typical research works for the ORTD are developed
recently. (Zhang et al. 2014) introduced a TRPCA method
based on the tensor nuclear norm (TNN) and ℓ1,1,2 norm on
a third-order tensor, where the }S}ℓ1,1,2 :“ ř

i,j }Spi, j, :q}2.
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Figure 6: Convergence curves on light field images. (a)
The relative change of the low-rank tensor T on antinous
and bedroom images when outlier corruptions distributed in
r1, 2, 3s modes; (b)-(d) The relative change of tSku4k“1 on
Antinous image when outlier corruptions distributed in r1s,
r1, 2s and r1, 2, 3s modes, respectively.

In fact, ℓ1,1,2 norm is equivalent to the ℓ2,1 norm on mode-3
unfolding of a third-order tensor. To capture the slice-wise
outliers, (Zhou and Feng 2017) proposed an outlier TRPCA
approach by adopting TNN and ℓ2,1 norm on a third-order
tensor, where }S}ℓ2,1 :“ ř

j Sp:, j, :q. These methods tar-
get outliers of higher-order tensors but encounter significant
challenges: (i) Prior mode knowledge is necessary for out-
lier distribution, and (ii) the ℓ2,1 norm focuses on one mode,
failing to capture multi-mode outliers effectively.

7 Conclusions and Discussions
This work proposes Outlier Robust Tensor Ring Decompo-
sition (ORTRD) - a novel method to reliably decompose
tensors corrupted by outliers. The key innovation is a new
multi-mode tensor group sparsity norm that effectively mod-
els outlier corruption along multiple tensor modes. Leverag-
ing this norm, we formulate a robust tensor low-rank frame-
work decomposing the corrupted tensor into clean low-rank
and sparse outlier components. We have proven ORTRD can
recover underlying low-rank and sparse tensors with estima-
tion error bounded under mild conditions. Comprehensive
experiments on both synthetic and real-world data have vali-
dated our theoretical analysis and demonstrated that ORTRD
can successfully recover clean low-rank structures from ten-
sors corrupted by multi-mode outliers.
Limitations First, the proposed solver for TRNN minimiza-
tion based on SVDs may face challenges in scaling to large-
size data, and designing more scalable algorithms will be
an important focus for future work. Second, as the proposed
convex model may not provide tight enough relaxations to
approximate non-convex rank and sparsity functions, inves-
tigating non-convex regularizers for tighter relaxations will
be another valuable direction for future research.
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