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Abstract

Recent research on the joint classification of multimodal re-
mote sensing data has achieved great success. However, due
to the limitations imposed by imaging conditions, the case
of missing modalities often occurs in practice. Most previ-
ous researchers regard the classification in case of different
missing modalities as independent tasks. They train a spe-
cific classification model for each fixed missing modality
by extracting multimodal joint representation, which cannot
handle the classification of arbitrary (including multiple and
random) missing modalities. In this work, we propose a lo-
cal diffusion shared-specific autoencoder (LDS2AE), which
solves the classification of arbitrary missing modalities with
a single model. The LDS2AE captures the data distribution
of different modalities to learn multimodal shared feature
for classification by designing a novel local diffusion au-
toencoder which consists of a modality-shared encoder and
several modality-specific decoders. The modality-shared en-
coder is designed to extract multimodal shared feature by
employing the same parameters to map multimodal data
into a shared subspace. The modality-specific decoders put
the multimodal shared feature to reconstruct the image of
each modality, which facilitates the shared feature to learn
unique information of different modalities. In addition, we
incorporate masked training to the diffusion autoencoder to
achieve local diffusion, which significantly reduces the train-
ing cost of model. The approach is tested on widely-used mul-
timodal remote sensing datasets, demonstrating the effective-
ness of the proposed LDS2AE in addressing the classifica-
tion of arbitrary missing modalities. The code is available at
https://github.com/Jiahuiqu/LDS2AE.

Introduction
Remote sensing images of the same geographic area cap-
tured from different sensors can provide complementary
ground feature (Rasti, Ghamisi, and Gloaguen 2017a; Su
et al. 2021; Ghamisi et al. 2018). The joint classification of
multimodal remote sensing data is an effective technique to
integrate the complementary information of different modal-
ities to improve the classification accuracy, and has been
widely used in urban planning (Zhang et al. 2020a; Dong
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Figure 1: The methods for dealing with missing modalities.
(a) Reconstruction of images with missing modalities (Xue,
Zhang, and Cai 2016); (b) Reconstruction of feature with
missing modalities (Ma et al. 2021); (c) Multimodal joint
representation learning (Wei et al. 2023).

et al. 2023), natural resources management (Chen et al.
2019), environmental monitoring (Li et al. 2020; Qu et al.
2023) and water quality monitoring (Mei et al. 2021). How-
ever, in practice, the case of missing modalities often occurs,
due to sensor malfunctions, weather conditions, or other fac-
tors (Zhang et al. 2018). The most existing methods treat the
joint classification with different modalities as independent
tasks, which makes it hard to put into pratical use (Wang
et al. 2020; Park et al. 2019; Zhang et al. 2020b). So far,
multimodal remote sensing image classification with arbi-
trary missing modalities remains unfully explored.

The mainstream approaches to address the challenge of
multimodal image classification with missing modalities can
be summarized in two ways: 1) generative methods (Hol-
loway et al. 2019; Ma et al. 2021), and 2) multimodal joint
representation learning (Zhang et al. 2018).

The generative-based methods can be divided into two
categories: the reconstruction of images with missing
modalities and the reconstruction of feature with missing
modalities. For example, Xue et al. (Xue, Zhang, and Cai
2016) generates the deep channel of RGB-D images by us-
ing a low-rank matrix improved by low gradient regular-
ization. Li et al. (Li et al. 2022) introduces the Dynamic
Hierarchical Attention distillation module (DHAD) to gen-
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erate Synthetic aperture radar (SAR) image features from
RGB images, aiming to train available modality to recon-
struct representations of missing modality by directly match-
ing their intermediate feature mappings.

The key of multimodal joint representation learning is
to integrate and learn information from different modalities
to better understand and represent cross-modal feature. Al-
though each modality possesses unique characteristics, they
often share common information within the semantic space.
For example, Hazarika et al. (Hazarika, Zimmermann, and
Poria 2020) introduces a shared subspace to discover poten-
tial commonalities among different modalities, aiming to di-
minish the effect of modal gaps. Dutt et al. (Dutt, Zare, and
Gader 2022) develops a common shared manifolds model
that learns shared feature representations from hyperspectral
(HS) and Light Detection and Ranging (LiDAR) image.

While these methods have shown promising results for
multimodal image classification with missing modalities,
they still face some challenges and limitations: 1) They
typically train one feature completion model for each cer-
tain missing modality and overlook the more prevalent sce-
nario of missing multiple modalities. 2) These approaches
predominantly concentrate on acquiring joint representation
within a shared subspace, potentially leading to the omission
of certain modality-specific features. These disadvantages
limit the use of multimodal remote sensing image classifi-
cation to real-world scenarios.

To put multimodal remote sensing image classification
into more practical use, we propose a local diffusion shared-
specific autoencoder (LDS2AE) network to address mul-
timodal remote sensing image classification with arbitrary
missing modalities. For the first challenge, we present a
modality-shared encoder to extract multimodal joint repre-
sentation, which allows concurrent encoding of data from
different modalities using the same set of parameters. After
the pre-training phase, the modality-shared encoder can di-
rectly handle missing singular and multiple modalities. For
the second challenge, the shared feature reconstructs the en-
tire image of all modality through all modality-specific de-
coders, which allows the shared feature to learn specific fea-
ture of other modalities. We incorporate the whole encod-
ing and decoding process into a denoising diffusion model
with strong implicit learning capabilities to execute the self-
reconstruction and cross-modal reconstruction tasks, which
helps to deal with the difficulty of cross-modal reconstruc-
tion caused by the huge modal gap. Moreover, we introduce
masked training into diffusion model to speed up training
and reduce memory consumption, which is mainly based on
the intuition that the image is highly redundant in space. The
LDS2AE denoises and reconstructs unmasked pixels based
on the reconstruction of masked pixels. Therefore, we pro-
pose a new training objective to predict the denoising recon-
struction score of unmasked patches while simultaneously
reconstructing the masked patches.

To summarize, we make the following contributions:
1) We propose a novel framework LDS2AE to deal with

multimodal remote sensing image classification with ar-
bitrary missing modalities, which designs a modality-
shared encoder to learn joint representation and several

modality-specific decoders to learn unique characteris-
tics of different modalities.

2) We exploit the denoising diffusion model to achieve
cross-modal reconstruction of remote sensing image with
the large gap of data distribution, which helps the model
to learn independent and complementary features in
multi-modal data.

3) We quickly train the diffusion model by randomly mask-
ing a high proportion (e.g., 70%) of input patches, and
add the masked reconstruction task to the denoising loss
of the diffusion model.

Related Work
Denoising Diffusion Model Denoising diffusion model
(DDPM) (Nichol and Dhariwal 2021) is a class of generative
models that captures the potential probability distribution of
data by gradually adding a standard gaussian noise to the
sample and learning a model to reverse the process (Dhari-
wal and Nichol 2021). The DDPM holds significant advan-
tages in terms of its high-level semantic feature capture abil-
ity, potential spatial continuity, exploration of feature space,
denoising capability, and recovery potential (Sohl-Dickstein
et al. 2015; Zhou et al. 2023; Yang et al. 2023). In this paper,
we introduce diffusion model to capture the underlying pat-
terns and relationships between different modalities to assist
in reconstruction and cross-modal reconstruction tasks. Fur-
thermore, we incorporate the idea of masked training into
diffusion model to achieve local diffusion, which can speed
up training and reduce memory overhead.

Masked Training Masked training begin as a task in the
field of natural language processing to fill in or predict
masked parts of text, thereby inferring missing words or
phrases (Devlin et al. 2019; Liu et al. 2019). This kind
of task is usually done with a pre-trained language model,
such as BERT (Devlin et al. 2019) or GPTs (Radford and
Narasimhan 2018). With the introduction of ViT (Dosovit-
skiy et al. 2020), a large number of self-supervised works
are proposed to learn useful representations by predicting
the content of masked or obscured areas in images, such
as MAE (He et al. 2021), Simmim (Bao, Dong, and Wei
2021) and Beit (Xie et al. 2021), which all work well in a
variety of downstream tasks. In particular, MAE employs an
asymmetric architecture to accelerate pre-training, consist-
ing of an encoder that operates only on the visible part, and
a lightweight decoder that reconstructs the masked patches
with the latent representation of the visible part and masked
tokens. We also use a lightweight architecture similar to
MAE to achieve local diffusion.

Methods
Overview
The proposed LDS2AE aims to learn complementary rep-
resentations from different modalities via the local diffu-
sion shared-specific autoencoder, which can deal with mul-
timodal remote sensing image classification with arbitrary
missing modalities. The framework is shown in Figure 2.
The method consists of two key stages: pre-training and
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Figure 2: Overall architecture of the proposed LDS2AE. The method consists of two stages: 1) In the multimodal pre-training
stage, the encoding and decoding operations are incorporated into the local diffusion model to guide the network to learn
the shared and specific knowledge among all input images; 2) Fine-tuning stage, arbitrary missing modality inference and
multimodal inference tasks only need to fine-tune the modality-sharing encoder without modifying the model architecture.

fine-tuning. The pre-training stage includes two processes
of the forward local diffusion and the reverse denoising re-
construction, which are parameterized Markov chains. The
forward local diffusion is performed only on part of the in-
put data to reduce the training cost of diffusion model. We
design a modality-shared encoder in the reverse denoising
reconstruction to learn the multimodal shared feature and
several modality-specific decoders to facilitate the shared
feature to learn specific properties of different modalities.
The fine-tuning stage is a supervised learning stage where
only the fully connected layer are fine-tuned for multimodal
remote sensing image classification with arbitrary missing
modalities, which helps the feature of available modality ex-
tracted by the encoder to learn the multimodal features of
pre-training phase.

Forward Local Diffusion Process
In the forward local diffusion, the real data x0 ∼ pdata is
divided into non-overlapping patches. We randomly masked
some patches as xm

0 according to a fixed masking ratio and
treat the rest as visible patches xv

0 . Only visible patches xv
0

is performed diffusion and added gaussian noise n at time
t with variance βt ∈ (0, 1) to produce xv

1 through xv
T as

follows the Markov process below:

q(xv
1, . . . , x

v
T |xv

0) =
T∏

t=1

L q(xv
t |xv

t−1
) (1)

L q(xv
t |xv

t−1) = N(xv
t ;
√
1− βtx

v
t−1, βtI), (2)

where βt for different t is pre-defined and undergoes a grad-
ual linear decay, satisfied β1 < β2 < . . . < βT .

For the masked operation, LDS2AE employs an asymmet-
ric masking strategy for each modality, which facilitates the
model to more efficiently capture the shared information of
different modalities. The local diffusion minimizes visual re-
dundancy and brings in highly sparse inputs, which reduces
the computational cost of diffusion model.

Reverse Denoising Reconstruction Process
In the reverse process, the proposed model predicts input
data x0 based on the current sampling time t. This modifi-
cation is based on Bayesian theory, a posteriori distribution
q (xt−1 |xt, x0 ) can be calculated in terms of µ̃t (xt, x0) and
β̃t.

The LDS2AE predicts input data x0 from the noisy sam-
ple xv

T
by estimating the denoising reconstruction score of

unmasked patches xv
0 and simultaneously reconstructing the

masked patches xm
0 by designing a shared, learnable vector

for each masked token. Under large T and small βt, the xT

is approximated as a gaussian distribution and predicted by
a learned neural network as follows:

pθ(x
v
0:T ) = p(xv

T
)

T∏
t=1

pθ(x
v
t−1|xv

t ) (3)

pθ(x
v
t−1|xv

t ) = N (xv
t−1;µθ(x

v
t , t), σθ(x

v
t , t)), (4)

where µθ(x
v
t , t) is the expectation of xv

t , σθ(xt, t) is the vari-
ance of xv

t .
At the end, we update the model by minimizing the de-

noising reconstruction loss:

Ex0∼pdata
En∼N(0,t2I)||x0 −model(x0 + n, t)||2. (5)

Specifically, the reverse denoising reconstruction process
is executed through a modality-shared encoder and several
modality-specific decoders, whose particular implementa-
tion is introduced in details as follows.

Modality-Shared Encoder The encoder backbone is
based on ViT with some modifications. Specifically, the
sine-cosine positional embeddings, diffusion timesteps and
class tokens are added to the visible patches after diffusion
and projected by the encoder Eϕ (·) into the shared latent
space for subsequent reconstruction tasks.

x̂v = Eϕ ({tcls + tts + tp;x
v}) , (6)
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Algorithm 1: Pseudocode of Pretraining for LDS2AE
Input: the multi-model encoder Eϕ, HSI-decoder DHSI ,
HS data x, LiDAR data xL, LiDAR-decoder DLiDAR,
masking ratio r, gaussian noise n, the diffusion timestep t,
q sample means forward process

1: for x, xL, y in loader:
2: xt, xt

L = q sample(x, xL, t, n)
3: xv, xm, ids,m = random mask(xt, r)
4: xv

L, x
m
L , idxL,mL = random mask(xt

L, r)
5: x̂v, x̂v

L = Eϕ (x
v, xv

L)
6: x̂ = DHSI (x̂

m, x̂v, idx)
7: x̂L = DLiDAR (x̂m

L , x̂v
L, idxL)

8: Lrec = rec l(x̂, x,m) + rec l(x̂L, xL,mL)
9: Lv−rec = mse l(x̂, x,m) +mse l(x̂L, xL,mL)

10: x̂c = DHSI (x̂
m
L , x̂v

L, idxL)
11: x̂c−L = DLiDAR (x̂m, x̂v, idx)
12: Lc−rec = rec l(x̂c, x,m) + rec l(x̂c−L, xL,mL) +

mse l(x̂c, x,m) +mse l(x̂c−L, xL,mL)
13: Lloss = λrecLrec + λc−recLc−rec + λv−recLv−rec

14: loss.backward()
15: update()

where x̂v represents the encoded visible feature, tcls, tts,
tp stand for class tokens, diffusion timestep and positional
embeddings, respectively.

We employ a modality-shared encoder to map all input
data into a shared subspace to effectively capture comple-
mentary features among diverse modalities, which facili-
tates the encoder to address the classification of arbitrary
missing modalities in fine-tuning stage. The encoder codes
multimodal visible tokens locally diffused by using a uni-
form set of parameters, resulting in a substantial reduction in
the computational cost of acquiring shared representations.
Moreover, each modality passes through its own linear pro-
jection layer after passing through the same encoder.

Modality-Specific Decoders Each modality requires its
dedicated decoder due to different reconstruction tasks. The
decoders are made up of a series of Transformer blocks that
are narrower and shallower than the modality-shared en-
coder. The inputs of the decoder are the visible tokens x̂v en-
coded by the encoder and a set of masked tokens x̂m. Each
of masked tokens is a learnable vector initialized to zeros.
Before passing all tokens to the decoder Dϕ (·), we add the
same sine-cosine positional embeddings to each of them to
indicate their positions within the image.

x̂ = Dϕ ({tp + x̂m; tp + x̂v}) , (7)

where x̂ is the reconstructed data converted back to the orig-
inal input space.

We introduce diffusion model to help the decoders to per-
form self-reconstruction tasks while achieve cross-modal re-
construction by exchanging the decoders’ inputs, which fa-
cilitates shared features to capture the distinct representa-
tions of each modality.

The proposed LDS2AE allows model to benefit from
modality-shared of knowledge and modality-specific infor-
mation. The modality-shared encoder ensures that the model

learns the multimodal shared representation. At the same
time, the modality-specific decoders assist the shared fea-
ture to accurately capture the unique feature of each modal-
ity through self-reconstruction and cross-modal reconstruc-
tion processes. By combining modality-shared encoder and
modality-specific decoders, LDS2AE can efficiently process
multimodal data, leveraging shared knowledge while pre-
serving the notable traits of each modality.

Training Objective
Stage1: Pre-training The pre-training process defines a
hybrid optimization objective consisting of denoising self-
reconstruction loss of visible tokens, self-reconstruction loss
of masked tokens and cross-modal reconstruction loss:
L = λm−recLm−rec+λc−recLc−rec+λv−recLv−rec, (8)

where the hyperparameter λm−rec, λc−rec, λv−rec control
the balance of multiple losses. We assign different hyperpa-
rameters to drive the model together, due to the difficulty of
different reconstruction tasks. We further demonstrate more
detailed method like pytorch in Algorithm 1.

The denoising self-reconstruction loss of visible tokens
Lv−rec is actually the denoising loss of the local diffusion
model. The traditional diffusion models calculate the score
of the general map, but it is difficult to reconstruct the whole
image with only visible tokens after noise sampling. There-
fore, the model utilizes the mean square error (MSE) loss
to only compute the visible portions, aiming to prevent the
model from overfitting to unmasked tokens. We consider this
loss as the main loss of model, and the formula is as follows:
Lv−rec = Em ∥ (Dϕ (x̂

m, x̂v)− x0)⊙ (1−m)∥2, (9)
where ⊙ denotes the element-wise multiplication along the
token length dimension of the “patchify”.

The self-reconstruction loss of masked tokens Lm−rec is
a reconstruction loss similar to MAE. We calculate the re-
construction loss Lm−rec on the masked tokens and assign
a lower training weight:

Lm−rec = Em ∥ (Dϕ (x̂
m, x̂v)− x0)⊙m∥2. (10)

The cross-modal reconstruction loss Lc−rec is composed
of the denoising cross-reconstruction loss of visible tokens
and the cross-reconstruction loss of masked tokens, which
is the same as the self-reconstruction loss. We execute the
cross-modal reconstruction obtained by exchanging the de-
coders’ inputs to learn modality-specific knowledge.

Lc−rec = Lcross
v−rec + Lcross

m−rec, (11)
where Lc−rec only takes the cross-modal reconstruction of
one modality to another as an example, it is actually a bidi-
rectional process that allows multimodal joint representation
to learn unique representations of other modality.

Stage2: Fine-tuning The fine-tuning process is optimized
with classification loss, which uses the cross entropy loss to
calculate the difference between the prediction ŷ of the class
tokens after passing through the classification head and the
true label of the corresponding sample.

Lcls = −
N∑

n=1

yn log (ŷn), (12)

where N is the number of classes.
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Figure 3: Classification maps of the Trento dataset. (a)
Ground-truth map. (b) LDS2AE (HS and LiDAR). (c)
LDS2AE (HS). (d) LDS2AE (LiDAR). (e) DMAE (HS). (f)
TBCNN. (g) Sal2RN. (h) HRWN. (i) MFT. (j) HRWN.

Experiments
Datasets Description

1) Houston: The Houston dataset is introduced in the
IEEE GRSS data fusion contest held in 2013 and contains
HS, multispectral (MS) and LiDAR images. It specifically
focuses on a university campus and includes fifteen cate-
gories, encompassing both natural and man-made objects.

2) Trento: The Trento dataset (Rasti, Ghamisi, and
Gloaguen 2017b) is collected in the rural area of southern
Trento, Italy. It consists of HS and LiDAR data for six veg-
etated land cover categories.

3) Berlin: The Berlin dataset (Hong et al. 2021b) de-
scribes the geomorphological composition of the urban area
of Berlin and its surrounding rural areas. It includes HS and
SAR data, encompassing eight categories in total.

Experiments Setup
1) Evaluation Criteria: Three classification evaluation in-

dexes are considered, which are overall accuracy (OA), av-
erage accuracy (AA) and kappa coefficient (Kappa).

2) Implementation Details: The proposed method is im-
plemented on the PyTorch platform. The entire framework
is trained using the Adam optimizer with a pre-training
epoch of 400, a fine-tuning epoch of 150, a batch size of
1024, and learning rate of 1e-3. Additionally, we employ the
CosineAnnealingLR strategy during the pre-training phase
and the Multi StepLR policy during fine-tuning phase to up-
date the learning rate.

3) Comparison Methods: To evaluate the effectiveness of
LDS2AE in dealing with multimodal remote sensing im-
age classification with arbitrary missing modalities, we com-
pare LDS2AE with methods falling under three distinct cat-
egories: a) Multimodal training and inference: Sal2RN (Li

Figure 4: Classification maps of the Houston dataset. (a)
Ground-truth map. (b) LDS2AE (HS and LiDAR). (c)
LDS2AE (HS). (d) LDS2AE (LiDAR). (e) DMAE (HS). (f)
TBCNN. (g) Sal2RN. (h) HRWN. (i) MFT. (j) HRWN.

et al. 2023), HRWN (Zhao et al. 2020), MFT (Roy et al.
2023), GLT-Net (Ding et al. 2022). b) Multimodal training
and missing modality in inference: MDL-RS (Hong et al.
2021a). c) Single-modal training and inference: TBCNN
(Xu, Du, and Zhang 2018), the variant of LDS2AE that
trains and tests with single-modal data (DMAE). Figure. 3-5
display classification results of Trento, Houston, and Berlin.

Joint Classification Analysis of HS and LiDAR
To evaluate the performance of the proposed network, com-
parative experiments are conducted using 40 samples for
each class on the highly heterogeneous HS and LiDAR
datasets Trento and Houston. The upper part and the middle
part of Table 1 respectively depict the performance compar-
ison of OA, AA and Kappa of Trento and Houston datasets
under three different types of methods. Firstly, it is evident
that the approaches employing multimodal training and test-
ing yield superior results compared to the most advanced
method used single-modal training and testing, which indi-
cates the synergistic effect of multimodal data fusion in land
cover classification. Under the absence of LiDAR or HS im-
age, the OA of TBCNN decreases by 4.60% and 19.21%
on the Trento datasets, and exhibits a more substantial de-
cline of 8.47% and 39.23% on the Houston dataset with
more complex object types. In contrast, LDS2AE consid-
erably improves this problem and maintains a performance
improvement over the single-modal variant DMAE. Specif-
ically, the OA of missing LiDAR image increases by 0.86%
on the Trento dataset and by 1.09% on the Houston dataset.
On the other hand, the OA for missing HS image shows
a remarkable improvement, with an increase of 10.62%
and 11.85%, respectively. When the LiDAR image is miss-
ing, LDS2AE achieves comparable performance with the
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Datasets Method
Single-modal training and test Missing multimodal in test Multimodal training and multimodal test

TBCNN DMAE MDL-RS our TBCNN Sal2RN HRWN MFT GLT-Net our

Trento

Training HS LiDAR HS LiDAR HS, LiDAR HS, LiDAR HS, LiDAR HS, LiDAR HS, LiDAR
Testing HS LiDAR HS LiDAR HS LiDAR HS LiDAR HS, LiDAR HS, LiDAR HS, LiDAR
OA(%) 94.60 79.99 97.47 81.21 89.23 67.93 98.33 91.83 99.20 99.03 99.00 99.21 99.07 99.53
AA(%) 93.81 60.10 96.21 76.11 89.71 72.18 97.07 89.04 98.70 98.47 98.01 98.69 98.23 99.00
Kappa 92.85 72.09 96.63 75.06 85.78 60.19 97.78 89.19 98.94 98.71 98.66 98.95 98.76 99.39

Houston

Training HS LiDAR HS LiDAR HS, LiDAR HS, LiDAR HS, LiDAR HS, LiDAR HS, LiDAR
Testing HS LiDAR HS LiDAR HS LiDAR HS LiDAR HS, LiDAR HS, LiDAR HS, LiDAR
OA(%) 79.14 48.38 94.69 67.94 86.4 69.93 95.78 79.79 87.61 94.78 95.28 94.69 95.12 96.19
AA(%) 77.11 48.37 95.35 73.01 87.32 73.53 95.98 81.55 84.00 95.48 95.82 95.49 95.87 96.83
Kappa 81.9 47.02 94.27 65.44 85.31 67.63 95.44 78.19 91.56 94.36 95.28 94.26 94.73 95.89

Berlin

Training HS SAR HS SAR HS, SAR HS, SAR HS, SAR HS, SAR HS, SAR
Testing HS SAR HS SAR HS SAR HS SAR HS, SAR HS, SAR HS, SAR
OA(%) 63.10 40.93 66.59 38.78 64.88 38.11 73.92 53.21 70.65 73.65 65.78 73.64 66.26 76.83
AA(%) 66.16 26.25 67.88 46.46 64.36 43.20 74.10 47.10 67.73 68.63 63.81 61.20 68.25 75.86
Kappa 50.75 16.54 54.31 25.50 51.99 25.40 62.84 37.63 58.48 51.57 52.21 59.83 53.99 66.48

Table 1: Classification accuracy of different methods on Trento, Houston and Berlin Datasets. The best one is shown in bold,
and the best one under the case of missing modalities is underlined. Training represents the available modalities for training,
and Testing represents the available modalities for testing.

Figure 5: Classification maps of the Berlin dataset. (a)
Ground-truth map. (b) LDS2AE (HS and SAR). (c)
LDS2AE (HS). (d) LDS2AE (SAR). (e) DMAE (HS). (f)
TBCNN. (g) Sal2RN. (h) HRWN. (i) MFT. (j) HRWN.

methods that utilize multimodal training and testing, which
demonstrates LDS2AE can effectively learn and leverage
both modality-shared information and modality-specific in-
formation to address the classification of missing modalities.

Joint Classification Analysis of HS and SAR
We also carry out comparative experiments on the joint clas-
sification of HS and SAR image using the standard training
set of Berlin dataset. As presented in Table 1, the proposed

Training Modalities Testing Modalities OA(%) AA(%) Kappa

HS, LiDAR, MS

HS, LiDAR, MS 96.99 97.47 96.75
HS, LiDAR 96.45 97.04 96.17

HS, MS 96.74 97.20 96.48
MS, LiDAR 96.14 96.29 95.84

HS 96.20 96.43 95.79
LiDAR 80.81 83.22 79.29

MS 95.34 96.13 94.97

Table 2: Joint classification accuracy of combinations in-
volving HS, LiDAR, and MS images on the Houston dataset.

LDS2AE demonstrates superior performance compared to
other multimodal models, achieving an OA that is 3.18%
higher than the second-best performing model, Sal2RN. Fur-
thermore, even in case of missing SAR image, it outper-
forms Sal2RN by an additional 0.27%. This demonstrates
the potential of our method in the classification of missing
modalities, as it surpasses the performance of multimodal
models tested with all modalities while in case of missing
modalities. Furthermore, in the absence of the HS modality,
LDS2AE exhibits a remarkable 14.43% improvement in OA
compared to DMAE that trains and tests with SAR.

Joint Classification Analysis of HS, LiDAR and
SAR
This section conducts experiments on the joint classifica-
tion of HS, LiDAR, and MS images to evaluate the perfor-
mance of LDS2AE in case of missing multiple modalities.
As shown in Table 2, The proposed method only reduces the
OA by 0.85%, 0.54% and 0.25% in the absence of HS, MS
or LiDAR images, respectively. The OA for single-modal
testing also far exceeds the baseline of the Houston dataset
in Table 1, which demonstrates that LDS2AE still has good
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Datasets Cross-modal Reconstruction Diffusion Model our

Trento

Training Modalities HS, LiDAR HS, LiDAR HS, LiDAR
Testing Modalities HS, LiDAR HS LiDAR HS, LiDAR HS LiDAR HS, LiDAR HS LiDAR

OA(%) 98.60 97.05 89.84 98.65 97.01 90.61 99.53 98.33 91.83
AA(%) 97.88 95.43 87.45 97.98 95.51 88.56 99.00 97.07 89.04
Kappa 98.13 96.10 86.60 98.21 96.01 87.60 99.39 97.78 89.19

Berlin

Training Modalities HS, SAR HS, SAR HS, SAR
Testing Modalities HS, SAR HS SAR HS, SAR HS SAR HS, SAR HS SAR

OA(%) 72.95 72.42 49.32 73.96 72.51 50.17 76.83 73.92 53.21
AA(%) 73.32 72.89 45.68 74.00 73.93 47.09 75.86 74.10 47.10
Kappa 61.35 61.03 33.56 62.84 61.19 34.78 66.49 62.84 37.63

Table 3: The initial two columns show classification results on Trento and Berlin datasets respectively with the removal of the
cross-modal reconstruction branch or the diffusion model. The last column represents classification results of the full model.

Figure 6: Classification accuracy of Houston dataset with
different masking ratios (The testing OA of HS-LiDAR and
HS correspond to the left vertical axis, and testing OA of
LiDAR correspond to the right vertical axis).

robustness in case of missing multiple modalities.

Ablation Experiments
In this section, we conduct ablation experiments to verify the
impact of different configurations on model performance.

Effect of Masking Ratio To investigate the effect of
masking ratio, we compare the performance of LDS2AE
with different masking ratios. A higher masking ratio means
fewer visible patches are subject to diffusion and encod-
ing, reducing computational overhead while potentially los-
ing some useful contextual information. As shown in Figure
6, the value of 70% performs best for the Houston dataset
across three ways of inference, and a large range (40% -
80%) works well. Based on these findings, the masking ratio
of 70% is chosen for the experiments.

Effect of Cross-Modal Reconstruction In this paper, the
cross-modal reconstruction is constructed to help the shared
feature learn unique features of other modalities. To con-
firm the efficacy of cross-modal reconstruction, we examine
an altered version, only using encoder to learn the multi-
modal shared feature. Based on the results presented in Ta-

ble 3, the OA of Trento dataset has improved by 0.93%,
1.28%, and 1.99% across the three experimental settings,
respectively. Similarly, for the Berlin dataset, the OA in-
creases by 3.88%, 1.50%, and 3.74%, in turn. These results
show the superiority of introducing cross-modal reconstruc-
tion to learn modal-specific knowledge compared to model
that only learns shared knowledge.

Effect of Diffusion Model Here the diffusion model is
constructed to facilitate the model to learn modality-shared
feature and modality-specific knowledge. To verify the ef-
fectiveness of diffusion model, we test the variant version
of LDS2AE by only using masked processing instead of lo-
cal diffusion. As indicated by the OA, AA and Kappa of the
proposed method and its variant in Table 3, the proposed
method achieves the highest classification accuracy across
all three forms of testing for the Trento and Berlin datasets.
The results demonstrate that diffusion modal can enhance
the robustness of the multimodal shared feature learned by
the model, which can improve the performance of proposed
method across various inference tasks.

Conclusion
In this article, we propose a local diffusion shared-specific
autoencoder called LDS2AE to address multimodal remote
sensing image classification with arbitrary missing modal-
ities. LDS2AE designs a modality-shared encoder to learn
multimodal shared feature by mapping multimodal data into
a shared subspace, and several modality-specific decoders
to facilitate the shared feature to learn unique information of
different modalities by putting the multimodal shared fea-
ture to reconstruct the image of each modality. Moreover,
LDS2AE only performs diffusion on unmasked patches,
which reduces the training overhead of the diffusion model.
LDS2AE facilitates the feature of available modalities in the
fine-tuning stage to preserve the decision boundaries learned
from multimodal features, effectively addressing feature het-
erogeneity resulting from input variations and structural dis-
tinctions between the missing modalities and multimodal
model. In conclusion, we perform a detailed evaluation on
three widely-used multimodal remote sensing datasets to
demonstrate the effectiveness of our approach.
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