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Abstract

We investigate the use of a stratified sampling approach
for LIME Image, a popular model-agnostic explainable AI
method for computer vision tasks, in order to reduce the ar-
tifacts generated by typical Monte Carlo sampling. Such ar-
tifacts are due to the undersampling of the dependent vari-
able in the synthetic neighborhood around the image being
explained, which may result in inadequate explanations due
to the impossibility of fitting a linear regressor on the sam-
pled data. We then highlight a connection with the Shapley
theory, where similar arguments about undersampling and
sample relevance were suggested in the past. We derive all
the formulas and adjustment factors required for an unbiased
stratified sampling estimator. Experiments show the efficacy
of the proposed approach.

Introduction
The efficacy of explainable AI techniques for computer vi-
sion tasks has seen several important advancements in the
recent years. Several methods to interpret model predictions
have emerged, as surveyed for instance by (Liang et al.
2021) or (Guidotti et al. 2018). In this paper we inspect
the sampling strategy of one of these methods known as
LIME Image (Ribeiro, Singh, and Guestrin 2016), which is a
model-agnostic method (i.e. it is not tied to a particular type
of black box model being explained) that produces feature
attributions as explanations. As the name suggests, LIME
Image is a method specialized for image classification tasks,
and the “feature attribution” are importance scores assigned
to regions of an input image measuring how much each re-
gion contributes to the model classification.

Feature attributions are the regression coefficients that
solve a weighted least squares problem on a sampled pop-
ulation denoted as synthetic neighborhood. Since the sam-
pling process is inherently stochastic, the synthetic neigh-
borhood may be inadequate for LIME Image to fit the re-
gressor, resulting in slow convergence (Visani et al. 2022)
or instability (Sevillano-Garcı́a et al. 2022). Sometimes, the
explanation produced by LIME Image fails to identify any
relevant region, resulting in regression coefficients with very
small and almost uniform values (i.e. with low variation, as
we shall see). We review the LIME Image process, focusing
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on the limitation of using a Monte Carlo sampling for the
synthetic neighborhood generation.

Paper Contributions. In this paper we:

• investigate the distribution of the dependent variable in
the sampled synthetic neighborhood of LIME Image,
identifying in the undersampling a cause that results in
inadequate explanations;

• delve into the causes of the synthetic neighborhood inad-
equacy, recognizing a link with the Shapley theory;

• reformulate the synthetic neighborhood generation using
an unbiased stratified sampling strategy;

• provide empirical proofs of the advantage of using strat-
ified sampling for LIME Image on a popular dataset.

Previous Work
A relevant theoretical study of LIME Image is (Garreau
and Mardaoui 2021), which we partially summarize in the
Preliminaries section for the sake of self-containment, that
also focuses on connections with integrated gradients. Dis-
cretization of the synthetic neighborhood for tabular data has
been studied in (Garreau and Luxburg 2020), and for text
data by (Mardaoui and Garreau 2021). However, the setting
for image data is significantly different, since the sample
space is Boolean and not continuous. Sampling strategies
received more attention in the context of the Shapley the-
ory (Lundberg and Lee 2017), as in (Mitchell et al. 2022).
We recast some of the intuitions of these previous works in
the context of LIME, particularly from the multilinear ex-
tensions (Owen 1972).

Several alternative sampling strategies for LIME have
been studied. A clique-based sampling was considered
in (Shi, Du, and Fan 2020). Moreover, sampling variance has
been considered in several articles like (Zhang et al. 2019)
or in (Shankaranarayana and Runje 2019), where standard
deviations of Ridge coefficients are compared. A comple-
mentary study about region flipping analysis in LIME expla-
nations is (Ng, Abuwala, and Lim 2022), which could also
be used to improve the approach proposed in this paper. To
the best of our knowledge, we are not aware of a consistent
framework that adds unbiased stratified sampling to LIME.
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Figure 1: LIME Image workflow.

Preliminaries
We briefly review how LIME works for image inputs, in or-
der to explain our changes and their effects. Fig. 1 depicts
the LIME Image workflow steps, and will be used through-
out this section to provide examples. Consider the domain of
RGB images of size h×w, denoted as I ∈ [0−255]h×w×3.
Let f : I → R be a black-box regression model function
that provides a prediction score given an input image1, and
let ξ ∈ I be the sample image being explained. The main
purpose of LIME is to generate a linear model g that locally
approximate the explained black-box model f in the neigh-
borhood of an input sample ξ.

LIME explanations are not build directly on the image I,
but on a smaller domain denoted as the interpretable rep-
resentation. This domain is obtained by divided the input
image into k superpixels (also called segments, regions or
patches) using an algorithm like quick shift (Vedaldi and
Soatto 2008). A superpixel is a contiguous region of pixels
of ξ that share some kind of similarity, and such that the k
superpixels form a partition of the pixels of ξ. Fig. 1A shows
an example of an image taken from (Addison Howard 2018).
1B shows its segmentation obtained from the quick shift al-
gorithm2, resulting in k = 84 superpixels. The model being
used for the classification is ResNet50 (He et al. 2016), pre-
trained for the ImageNet task. The image in Fig. 1A is cor-
rectly classified as indigo bunting with probability 99.49%.

The approach of LIME Image is based on the concept
of superpixel masking. Let x ∈ {0, 1}k be a binary vector
(mask) representing the presence (value 1) or the absence
(value 0) of each of the k superpixels. Giving a mask x,
a perturbed input image ξx is obtained by preserving the
pixels of each superpixel i having x[i] = 1, and replacing
every other pixel whose superpixel i has x[i] = 0. Replace-
ment can be done in several ways. By default pixels of a
masked superpixel i are replaced by the mean color of that
superpixel (mean-filled). Alternatively, they can be replaced

1We consider only the case of a binary class prediction, as the
multi-class prediction is usually treated as several one-vs-rest bi-
nary class prediction problems.

2Using: kernel size = 4,max dist = 7, ratio = 0.2.

with a fixed color value, like black (zero-filled). We use no-
tation x′ = x[i ← v] to denote a new mask x′ obtained
from a mask x by replacing the value for superpixel i with
v. Moreover, let |x| be the number of preserved superpixels,
i.e. those having x[i] = 1.

In LIME Image, the individual values of a mask vector x
are sampled using an unbiased Monte Carlo strategy, i.e.

x[i] ∼ B(0.5), 1 ≤ i ≤ k (1)

where B(p) is a Bernoulli-distributed random variable hav-
ing probability p=0.5. A set of masks X with n samples
is made by randomly sampling n instances of (1) for the
same input image ξ having k superpixels. A synthetic neigh-
borhood N(ξ) = {ξx | x ∈ X} with n samples is made
by perturbing the input image ξ using n randomly sampled
masks. A depiction of the set of n masks is shown in Fig. 1C:
randomly sampled masks xi are used to generate perturbed
input images ξxi , using two replacement strategies.

All the perturbed samples N(ξ) can be classified by the
black-box model f , resulting in the dependent variables

Y =
{
f(ξx)

∣∣ ξx ∈ N(ξ)
}

(2)

A distance function is adopted, in order to weight the per-
turbed samples differently. The intuition followed by LIME
is that samples closer to ξ should weight more.
Given a mask x, the weight wx is

wx = exp

(−D(x)2

σ2

)
(3)

where D is the cosine similarity score between x and 1⃗ (the
vector of ones, i.e. the mask where everything is preserved),
while σ = 0.25 (by default) is the kernel width. See (Garreau
and Luxburg 2020) for an analysis on the role of Eq. (3) and
of σ. In this paper we will use the default value, as the focus
is in the sampling methodology. Let W = {wx | x ∈ X}.

Having the matrices of the set of masks X ∈ {0, 1}n×k,
the weights W ∈ Rn×1 and the dependent variables Y ∈
Rn×1 for all the observed samples in the synthetic neighbor-
hood N(ξ), then Y can be written as the response variable
of the linear regression model. LIME adopts a simple linear
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Figure 2: How LIME is supposed to work (A), and how it
actually works (B) using Monte Carlo sampling for a large
enough k.

homoscedastic model (DuMouchel and Duncan 1983) for its
regression coefficients, which is

Y = X · β + ϵ (4)

where the vector β is the weighted least squares estimator of
the regression coefficients of Y on X weighted by W .

To simplify our analysis, we will consider no regulariza-
tion factors (default for LIME Image is ridge regression with
L2 regularization), similarly to (Garreau and Luxburg 2020).
This simplification does not affect significantly the main ob-
servations of this paper, which is focused on the sampling
strategy. The coefficients β results from

β = (XTWX)−1XTWY (5)

which solves Eq. (4). A linear function g(x) with coeffi-
cients β is a linear regressor that locally approximates the
initial black-box model f .

Interpretation of LIME. The k coefficients of β can be
interpreted as feature importances (or feature attributions)
of each of the k superpixels of the input image ξ. In that
sense, the k superpixels form the set of interpretable features
of the input image, over which the explanation is built.

There are two levels of interpretation of β. By default
LIME Image suggests to select only the superpixels with the
highest value (Fig. 1D), resulting in an sub-region in the im-
age (the get image and mask method). The number of se-
lected superpixels is decided by the user: LIME does not
provide an heuristic for this task. Alternatively, the coeffi-
cients can be visualized as an heatmap, identifying the con-
tribution of each superpixel to the classification (Fig. 1E).
The color intensity represents the value, with white repre-
senting the zero. Coefficients with higher absolute values
means that the corresponding superpixel is more important
in the classification outcome f(ξ). The scale of the coeffi-
cients can vary (in Fig. 1E the same scale is used for both
heatmaps) and it is known to not be particularly relevant
(Garreau and Luxburg 2020, pag. 6) (only the ratios among
the coefficients is).

Finally, it is relevant to inspect the distribution of the Y
values in the neighborhood (i.e. the values of f(ξx)) with re-
spect to the count |x| of masked superpixels (Fig. 1F). This
plot shows if the Y values are sampled across the entire dis-
tribution (top to bottom), or if there are clear unbalances. In
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Figure 3: Binomial (A) and Shapley weight (B) distributions
for k = 10, 20 and 50.

Fig. 1F, the distribution for the zero-filled case has a good
balance, since there are values obtained from the black box
model f covering the whole spectrum of values, while in the
plot for the mean-filled case the balance is problematic, hav-
ing most Y values concentrated in the top. As we shall see
in the next section, imbalances in this distribution results in
poor explanations being generated by LIME Image.

Limitations of LIME Image Sampling
While there has been a number of successful applications of
LIME (Bodria et al. 2023), the explanation process largely
depends on several factors. One such factors is the sampling
process, which is stochastic and inherently uncertain. The
use of a Monte Carlo strategy in Eq. (1) to sample the inter-
pretable feature space when it is made by more than a few
dozen of superpixels has important consequences.

Under-Representation of the Neighborhood. The intu-
ition behind LIME is depicted in Fig. 2A, which is inspired
by the one found in (Ribeiro, Singh, and Guestrin 2016,
Fig. 3). The explained sample ξ (represented as a cross) is
surrounded by its synthetic neighborhood N(ξ) (represented
as dots), whose classifications are obtained by the black box
model f and weighted by their proximity to ξ (size of dots).
A linear regressor (the green dashed line) is fit on these
points weighted by their distance to ξ, and in principle it
should be locally faithful to f(ξ). LIME Image however
works like that only when the number of superpixels is very
small. Since masks are obtained from Eq. (1) having a fixed
Bernoulli coefficient of 0.5, the probability of selecting a
mask x having a given number of preserved superpixels |x|
follows the binomial distribution B(k, |x|) with probability
mass function

(
k
|x|
)
p|x|(1− p)k−|x|.

Fig. 3A shows the probability mass function for a few k
values, being k the number of superpixels. This PMF is of
course not uniform, and the probability of randomly sam-
ple points at the extremes drops rapidly. There is no in-
dication of how many superpixels LIME Image can man-
age, but both the default parameters and practical experi-
ence (Vermeire et al. 2022) shows that an image needs to be
split into tens or even a few hundreds of superpixels, in order
to have enough patches to correctly identify object borders.
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(A) Input image ξ
Class: hyena  
Probability: 99.46%
num_samples  n = 1000
Using mean-filled N(ξ)

  k      max_dist
50         8.691
100       4.956
150       4.092
200       3.632

(B) Feature importances     for four segmentations.

image125_monte_carlo_sampling image125_stratified_sampling

(B) Feature importances     for four segmentations of hyena.

(C) Dependent variable distributions. (C) Dependent variable distributions.
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Figure 4: Dependent variable undersampling (low RC(Y ))
results in confused explanations (low CV (β)).

In that case, samples will distribute around ξ forming a sort
of hypersphere, as illustrated in Fig. 2B, where almost no
sample is really close to ξ, since the probability of the bino-
mial distribution concentrates around samples having∼50%
of the superpixels masked. In that way, the local behaviour
(i.e. samples with |x| close to k) is under-represented in the
neighborhood.

Dependent Variables Distribution. As seen in Fig. 3A,
by increasing the superpixels k the probability of getting
samples from the tails of the distribution is practically re-
duced to 0. This effect depends on both the model and the
input image: if selecting randomly about 50% of the super-
pixels still allows the model to produce a “reasonable” dis-
tribution of the dependent variable Y , a linear regressor can
be fit and an explanation can be produced. If however the
Y distribution is flattened, no reasonable explanation can be
produced, as the linear regressor will be fit on almost uni-
form values.

Fig. 4 shows an example of this behaviour. The input im-
age (A) is correctly classified by the model as hyena with
high probability. Feature importance vectors β and the dis-
tribution of the dependent variables Y (versus the number of
masked superpixels |x|) are shown in (B) and (C), respec-
tively, for four different segmentations (k = 50, 100, 150
and 200 superpixels, respectively). All values (heatmaps,
CV (β), RC(Y )) are averages of 10 computations, to reduce
randomicity in the reported results. With k = 50 segments
(left), the Y distribution has enough variability to obtain a
vector β that highlights which segments are more important.
Increasing the number of superpixels reduces such variabil-

ity in the Y distribution, resulting in explanations that are
more and more “confused”. On these distributions it is of
course harder to fit a linear regressor that is truthful to the
explanation. Intuitively, it is like Fig. 2B where the hyper-
sphere is almost entirely far away from ξ. In that case, the
explanation produced by LIME Image will be progressively
more meaningless.

In these problematic cases the values of the β vector also
drops to very small numbers (scale is reported below each
heatmap in (B)), and variability across the feature impor-
tances decreases. To quantitatively measure such form of
“confusion”, we employ the standard coefficient of varia-
tion, defined as

CV (β) =
σβ

µβ
(6)

where σβ and µβ are the standard deviation and the mean of
β, respectively. Ideally, a good CV (β) should not be close
to zero (which would mean that all superpixels have almost
the same value, and no clear sub-region in the image is iden-
tified). The CV (β) values for the example in Fig. 4 are re-
ported in the (B) row.

We also want to quantify the (approximate) range cover-
age of the Y values in the synthetic neighborhood. Theoret-
ically this range is [0, f(ξ)], but of course it can have under-
or over-shoots due to the nature of the classification model.
To do so, we measure the proportion of that range that is
contained in the 1%− 99% interquantile range (IQR) of the
Y distribution, using

RC(Y ) =
IQR1−99(Y )

f(ξ)
(7)

Low values of RC(Y ) indicate that the sampled Y distri-
bution is squashed into a small range of values, not cover-
ing the full [0, f(ξ)] spectrum (like in Fig. 4C/right). Ideally
RC(Y ) should be far from zero to have a good coverage of
the probability range [0, f(ξ)] by Y .

Sample Relevance. In the recent years, the Shapley the-
ory (Lundberg and Lee 2017) has received a lot of atten-
tion in the context of model-agnostic explainability, due to
its flexibility and its axiomatic formulation (Rozemberczki
et al. 2022). While LIME does not have a corresponding ax-
iomatic definition, we can still learn some insights from how
Shapley values are defined over a weight sample space.

The Shapley value for a superpixel i, that can be inter-
preted as an importance score, is defined by

ϕi =
∑

x∈XJiK

Γ(k − 1, |x|)
(
f(ξx[i←1])− f(ξx)

)
(8)

with XJiK being the set of all masks x having x[i] = 0, and
with the Shapley importance function (Monderer and Samet
2002, p. 6)

Γ(k, |x|) = 1

(k + 1)
(

k
|x|
) (9)

Fig. 3B shows the Shapley importance function for a few k
values. Higher values of Γ(k, |x|) for a mask x means that
samples having that mask will weight more in the final value
of ϕi. Comparing Fig. 3A and B clearly shows that LIME
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Image samples the majority of the masks among those hav-
ing the least importance (in the Shapley sense). In fact when
p = 0.5 it holds that

B(k, |x|) · Γ(k, |x|) =
(

k
|x|
)
p|x|(1− p)k−|x|

(k + 1)
(

k
|x|
) =

0.5k

k + 1

i.e. the Shapley importance is the reciprocal (times a con-
stant) of the binomial distribution B(0.5) used by LIME.
This is an informative detail of the Shapley theory, which
motivates the proposed sampling theory.

Interestingly, Shapley value computation is not typically
performed as a Monte Carlo sampling, but adopts other
strategies to generate the samples (Okhrati and Lipani 2021;
Mitchell et al. 2022). For instance, in (Owen 1972) Eq. (8)
is rewritten as

ϕi =

∫ 1

0

( ∑

x∈XJiK
q

1

|XJiK
q |
(
f(ξx[i←1])− f(ξx)

)
)
dq (10)

with X
JiK
q being a random subset of masks x, having x[i] =

0 and, for all j ̸= i, x[j] ∼ B(q) with B(q) a Bernoulli-
distributed random variable having probability q. Such strat-
egy allows to get samples across the entire spectrum of |x|
values. In the rest of the paper we shall discuss a strategy for
LIME Image where x values are not sampled from B(0.5)
as in Eq. (1) but from a modified version of Eq. (10).

Proposed Methodology
We describe a methodology based on stratified sampling of
the X values, where each stratum has a uniform probability
of being selected and represented in the samples of X . This
oversamples the “rare” samples at the tail of the Y distribu-
tion, improving the samples over which the linear regressor
is fit. However, this sampling could result in a form of bias.
To avoid that, an adjustment factor is introduced to counter-
balance the oversampled data points.

Let X denote the complete population of mask samples,
having 2k elements, and let Y be the dependent variable of
X . Consider a stratified partitioning. Let X (i) be the set of
all possible masks having |x| = i, i.e. for which exactly
i superpixel are preserved.. Clearly, X (0) · · · X (k) forms a
partitioning of all possible masks, and

{0, 1}k =
k⋃

i=0

X (i)

since any possible mask x appears in one (and only one) set
X (|x|). Moreover X (0)={0⃗} and X (k)={1⃗} (masks for the
explained input sample with everything/nothing perturbed,
resp.). Each stratum X (i) does not have a uniform number
of samples, but its size is known a-priori since they follow
the binomial distribution, i.e.

|X (i)| =
(
k

i

)
, 0 ≤ i ≤ k (11)

In an unbiased Monte Carlo sampling model, as Eq. (1),
the probability of selecting a sample x in a from stratum

X (i), with i = |x|, is therefore proportional to that stratum
probability in the overall population X , i.e.

Prob
{
x ∈ X (i) | x ∈ X

}
=

|X (i)|
∑k

j=0 |X (j)|
=

(
k
i

)

2k

Let X̂ be an oversampled population, where the probabil-
ity of taking samples from any of the k+1 strata is uniform,
and does not depend on the stratum size, i.e.

Prob
{
x ∈ X (i) | x ∈ X̂} = 1

k + 1

Let Ŷ be the corresponding dependent variables for X̂ . We
can derive an adjustment factor for the X̂ samples to correct
the bias introduced by the oversampling, which results for
an arbitrary sample x in stratum X (i) as

adj (i) =
Prob

{
x ∈ X (i) | x ∈ X

}

Prob
{
x ∈ X (i) | x ∈ X̂

} =
(k + 1)

(
k
i

)

2k
(12)

Weighted regression with the oversampled set X̂ can be ob-
tained by inserting the adjustment factor as a multiplicative
term in the existing weight equation of LIME. Let ŵx̂ be the
weight of sample x̂ ∈ X̂ obtained from Eq. (3) multiplied by
adj (|x̂|), and let Ŵ = {ŵx̂ | x̂ ∈ X̂} be the set of weights
for the set X̂ . Then let

β̂ = (X̂TŴ X̂)−1X̂TŴ Ŷ (13)

be the weighted least square estimator of the regression co-
efficients of Ŷ on X̂ that takes into account the strata density
of the oversampled set X̂ .

The Mixture Model. The linear homoscedastic regression
model of Eq. (4) adopted by LIME may not be particularly
accurate when strata at the tails are severely undersampled,
and these strata are significantly different from the mean. In
that case, β is not globally unique across the sampled popu-
lation, but varies by stratum

Ŷ (i) = X̂(i) · β̂(i) + ϵ̂(i) (14)

Intuitively, the β̂(i) vectors represents the feature importance
for stratum i, which is at uniform “distance” from the input
sample ξ. The closer i is to k, the closer ξx is to ξ.

Impact of Stratified Sampling in LIME Image. The im-
pact of using a weighted regression from a stratified sam-
pling schema may not be negligible. We simplify the analy-
sis considering two cases.

Case (A): The mean and variance of β̂(i) are independent
of the strata (i.e. the population structure is homoscedastic).
Then it is easy to see that E[β] ≈ E[β̂(i)], for any i. In that
case, a weighted regression model of Eq. (13) is not needed,
and the model computed by LIME using Monte Carlo sam-
pling will not have issues due to the undersampling of the
tails. In that case, the stratified sampling will converge to
the same values, regardless of the strata ratios in the syn-
thetic neighborhood.
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Algorithm 1: Neighborhood sampling strategies
function MonteCarloSampling(n, k)

1 X ← n× k matrix ;
2 for i between 1 and n do
3 for j between 1 and k do
4 X[i, j]← B(0.5)

function StratifiedSampling(n, k)
1 X ← n× k matrix ;
2 for i between 1 and n do
3 q ← Uniform(0, 1) ;
4 for j between 1 and k do
5 X[i, j]← B(q) ;
6 adj [i]← (k + 1) · 1

2k
·
(

k
|X[i]|

)

Case (B): The mean and variance of β̂(i) varies by stratum.
In that case, the bias introduced by the Monte Carlo sam-
pling scheme will not allow to consider the systematic dif-
ferences in the stratum, and a weighted regression or a mixed
model built on a stratified sampling strategy are highly ad-
visable (DuMouchel and Duncan 1983).
In a certain sense Case (B) is even worse, because the under-
sampling of the neighborhood of ξ breaks the logic of build-
ing models that are locally faithful to the black box model f
in the neighborhood of the explained sample, since the local
neighborhood (close to ξ) that is really representing the local
behaviour is missing/undersampled.

Algorithm 1 outlines two sampling methods: the original
Monte Carlo sampling used by LIME Image, and the intro-
duced stratified sampling technique. The MonteCarloSam-
pling function computes the data matrix X (from Eq. 1)
with replacement. Function StratifiedSampling is one pos-
sible way of generating a stratified population, similarly to
Eq. (10). For every sample i, a single coefficient q is ran-
domly drawn from a uniform distribution ranging between 0
and 1. The individual values of the i-th mask vector are then
sampled from a Bernoulli random variable B(q) with prob-
ability q. This will obtain a sample X[i] in stratum X̂(|X[i]|),
where strata have now equal probability of being selected.
The adjustment factor adj [i] for sample i is also computed.

Other strategies could also be employed (Rao 1977). An
interesting approach suggested in (Konijn 1962) for com-
puting the coefficients would be to fit one linear regressor
for every strata and then form a mixed model with the co-
efficients’ averages. This approach however requires more
changes in the LIME code, thus we have favored the ap-
proach of Algorithm 1 which is more straightforward.

Experimental Evaluation
We perform experiments to compare the proposed method-
ology with the original Monte Carlo setup of LIME, in order
to test whether the generated distributions of Ŷ have a better
sampling, resulting in feature attribution vectors β̂ that are
less confused.

(A) Input image ξ
Class: hyena  
Probability: 99.46%
num_samples  n = 1000
Using mean-filled N(ξ)

  k      max_dist
50         8.691
100       4.956
150       4.092
200       3.632

(B) Feature importances     for four segmentations.

image125_monte_carlo_sampling image125_stratified_sampling

(B) Feature importances     for four segmentations of hyena.

(C) Dependent variable distributions. (C) Dependent variable distributions.

-0.1 0.0 0.1 -0.02 0.0 0.02 -0.02 0.0 0.02 -0.01 0.0 0.01 -0.25 0.0 0.25 -0.1 0.0 0.1 -0.1 0.0 0.1 -0.1 0.0 0.1

Figure 5: Four explanations β̂ of the same image of Fig. 4
using stratified sampling (each is an average of 10 runs).

We start by revisiting the hyena example of Fig. 4 but re-
computed using the StratifiedSampling algorithm. The re-
sults are reported in Fig. 5. The first thing to observe is that
the dependent variable distribution has now samples for sev-
eral different classification scores, which allows the linear
regressor to be fit against a synthetic neighborhood with
better variation than in the standard Monte Carlo setup of
Fig. 4B. The heatmap of the explanations also reflect this
improvement: feature attribution values now have a much
better coefficients of variation, resulting is some superpix-
els receiving high importance, and other receiving almost
zero importance. Moreover, the explanation remains reason-
ably consistent, identifying the same “spot” in the image
even when the set of superpixels changes. Moreover, Fig. 5C
shows that the distribution of the dependent variable (the
y-axis) across the strata (the |x| value on the x-axis) is far
from being homoscedastic. This further reinforces the need
for stratified sampling in the process.

To better quantify the effect, we took the first
150 images of the ImageNet Object Localization
dataset (Addison Howard 2018). For each image we
performed a dichotomic search on the max dist hyper-
parameter to find a configuration of quick shift that results
in a number of superpixels k equal to 50, 100, 150 and 200.
For each range, we run 10 times LIME Image with both
the Monte Carlo and the stratified sampling using n=1000
samples, and record both the average range coverage RC

of the Y (Ŷ resp.) distributions and the CV of the feature
attribution vectors β (β̂ resp.). The first two rows of plots in
Fig. 6 show the results obtained from Monte Carlo (above)
and stratified sampling (below). Each plot has 150 dots, one
for each image in the dataset for a fixed k. Each dot has the
CV on the y-axis, and the range coverage RC on the x-axis.
It is very clear that the stratified sampling approach ensures
that the range of Ŷ distribution range is well covered w.r.t.
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Figure 6: CV vs RC and R2 comparisons, for 150 images.

the Y distribution. At the same time, the Monte Carlo
approach produces, for some images, explanations with
very poor variation in the coefficients, and this is clearly
linked with the low range coverage. Explanations with an
average CV below one are highlighted. The third row in
Fig. 6 reports the comparison of the average R2 coefficients
for the Stratified (on the y axis) and for the Monte Carlo
(on the x axis), showing that, on average, the Ŷ distribution
better explains the X distribution than Y .

We report some of these images with low CV values in
Fig. 7 (first five rows). Columns A and B show the Monte
Carlo sampling, C and D the Stratified sampling. We con-
sider the cases with k=50 (columns A and C) and k=200
(columns B and D). For each explanation we show the
heatmap and the Y (Ŷ resp.) distribution, together with the
CV and RC values. Column B clearly shows the problem:
the Monte Carlo sampled distributions are very poor, with all
Y almost close to 0. This results in feature attribution vectors
β that are almost uniform, which do not identify any relevant
sub-region of the explained images. This detrimental effect
is greatly reduced by the stratified sampling approach, which
remains capable of identifying a sub-region of the image that
is deemed to be responsible for the classification. When the
sampled distribution is sufficient, both the Monte Carlo and
the Stratified sampling approaches converge to similar ex-
planations (last 2 rows of Fig. 7).

Conclusions
We have provided a reformulation of the sampling strategy
of LIME Images showing its critical role in cases where the
simple linear homoscedastic model for regression is not true,
i.e. when the Y value are undersampled by a Monte Carlo
strategy. This happens when the black-box model f (almost
always) returns low classification scores when about∼ 50%
of the explained image ξ is masked, resulting in flat Y distri-
butions with very low range coverage, for which the coeffi-
cient β of a linear regression model will be close-to constant

Monte Carlo sampling
(A) (B)

Stratified sampling
(C) (D)

0.387 | 0.0833 0.178 | 0.0217 3.54 | 1.012.12 | 1.0

0.135 | 0.0182 0.164 | 0.00908 1.72 | 1.0 3.04 | 0.993

0.967 | 0.357 0.571 | 0.145 3.04 | 1.14 4.71 | 1.14

1.57 | 1.19 0.464 | 0.137 3.05 | 1.71 4.79 | 1.58

1.10 | 0.365 0.221 | 0.0238 3.45 | 1.3 5.11 | 1.19

4.05 | 0.999 5.73 | 0.996 3.74 | 1.0 4.05 | 1.0

7.07 | 1.86 5.76 | 1.51 6.54 | 1.79 5.76 | 1.46

Image
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Figure 7: Examples of LIME Image explanations in the
lower-left tail of Fig. 6, with heatmaps, CV and RC values.

(i.e. with low variation). We considered image data, using
the popular ImageNet dataset for the experiments. Of course
the strategy could be of interest for other kind of data, even
if some adjustments are probably needed (since the inter-
pretable feature space for images is over the booleans, un-
like for other data types). Moreover, a more extensive test
could be useful to assess its applicability.

We focused on reformulating the regression strategy of
LIME. Observations from the Shapley theory suggests that
another formulation that gives uniform weight to all strata
is also possible, but it was not considered in this paper, and
further investigations are needed. The goal of the proposed
methodology is to avoid the undersampling of Y . In addi-
tion, the work of (Haberman 1975) proves various results
and bounds between β and β̂, which could be explored fur-
ther. The formulas were formulated assuming no regulariza-
tion factor: however, since the main changes are in the sam-
pling strategy, it should be possible to extend these results
to ridge regression. The (briefly introduced) mixed model
could also be used instead of randomly selecting the strata
from a uniform distribution in the proposed algorithm. As a
future work, we plan to reformulate LIME equations to bet-
ter follow the neighborhood locality, which is not captured
by sampling from the binomial distribution, as described in
the ”Limitations” section and illustrated in Fig. 2.

Availability The LIME Image with stratified sampling is
available at: https://github.com/rashidrao-pk/lime stratified
All code needed to replicate the experiments (including the
requirements.txt with the library versions used) can be found
at: https://github.com/rashidrao-pk/lime-stratified-examples
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