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Abstract

Recently, there has been a growing interest in learning and ex-
plaining causal effects within Neural Network (NN) models.
By virtue of NN architectures, previous approaches consider
only direct and total causal effects assuming independence
among input variables. We view an NN as a structural causal
model (SCM) and extend our focus to include indirect causal
effects by introducing feedforward connections among input
neurons. We propose an ante-hoc method that captures and
maintains direct, indirect, and total causal effects during NN
model training. We also propose an algorithm for quantify-
ing learned causal effects in an NN model and efficient ap-
proximation strategies for quantifying causal effects in high-
dimensional data. Extensive experiments conducted on syn-
thetic and real-world datasets demonstrate that the causal ef-
fects learned by our ante-hoc method better approximate the
ground truth effects compared to existing methods.

1 Introduction
Neural network (NN) models enriched with causal knowl-
edge have demonstrated their ability to achieve robust-
ness (Schölkopf et al. 2021), invariance (Parascandolo et al.
2018; Goyal et al. 2021), and provide interpretable explana-
tions for human understanding (Chattopadhyay et al. 2019;
O' Shaughnessy et al. 2020; Kancheti et al. 2022). In train-
ing such NN models imbued with causal knowledge, two
primary tasks emerge: (1) acquiring a comprehension of
causal relationships between input and output neurons (Janz-
ing 2019; Kyono, Zhang, and van der Schaar 2020; Kancheti
et al. 2022), and (2) validating and explaining the acquired
causal relationships (Chattopadhyay et al. 2019; Janzing,
Minorics, and Bloebaum 2020; O' Shaughnessy et al. 2020).
Previous studies have tended to address these two tasks sep-
arately, despite their close interconnectedness. This separa-
tion of dependent tasks also makes it challenging to study
and model more nuanced aspects such as the indirect causal
effects of input neurons on the output of an NN. To ad-
dress this limitation, in this work, we propose an Ante-Hoc
Causal Explanations (AHCE) approach that simultaneously
performs both these tasks.
Task 1 - Learning Causal Effects in NNs: A common
practice in learning causal effects in NN models involves
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Figure 1: (a) A marginalized NN whose inputs S,E,R are
not causally related. (b) A marginalized NN whose inputs
are connected through feedforward connections (e.g., S →
E) to capture underlying causal relationships (e.g., S causes
E) to learn the indirect causal effects of inputs on output
(e.g. effect of S on I via E).

considering the NN as a Structural Causal Model (SCM),
representing the parametric causal relationships between the
features (Kocaoglu et al. 2018; Chattopadhyay et al. 2019;
Janzing, Minorics, and Bloebaum 2020). Given our focus on
input-output causal relationships in an NN, following (Ko-
caoglu et al. 2018; Chattopadhyay et al. 2019; Kancheti et al.
2022), we marginalize the hidden layers and view the output
as a function of inputs as shown in Fig 1 (a) (the motivating
example in the next paragraph describes the variables). It
becomes evident that the SCM embodied by a conventional
feedforward NN model lacks causal relationships among in-
put features (neurons in the first layer, we use input fea-
tures and input neurons interchangeably in this work). Con-
sequently, the causal effects that are learned and quantified
are restricted solely to direct causal effects (viz. causal ef-
fects that do not propagate through other input features – see
Appendix §A for preliminaries). Hence, there is currently no
feasible approach for explaining indirect causal effects (viz.
causal effects that propagate through other input features).
We extend the basic architecture of an NN by adding feed-
forward connections among input neurons (Fig 1(b)) based
on domain knowledge of how features interact in the real-
world, thus enabling the learning and explaining of indirect
causal effects.

To motivate the need for the study of indirect causal ef-
fects in NN models, consider the task of predicting an in-
dividual’s income (I) using the features: education (E), so-
cioeconomic status (S), and job role (R). In the real world, S
causes E and R; E causes R; S,E, and R cause I (Fig 1(b)).
However, in an NN model, the relationships among input
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Dir. Indir. Total Causal Ante-hoc
Method Eff. Eff. Eff. Eff. Exp.
IG ✓ ✗ ✗ ✗ ✗
CA ✓ ✗ ✗ ✓ ✗
CSHAP ✓ ✓ ✓ ✗ ✗
CREDO ✓ ✗ ✓ ✓ ✓

AHCE ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of various explanation methods. IG =
Integrated Gradients; CA = Causal Attributions.

features S,E,R are not modeled (Fig 1(a)). As a result, for
feature S, an NN model can only learn and explain direct
causal effects while neglecting the indirect causal effects on
I propagating via E and R. From a fairness standpoint, S
should have no direct causal effect on I but can exhibit a
non-zero indirect causal effect on I through E and R.

If a model learns a non-zero direct causal effect of S on
I , the corresponding model explanations may not align with
the real-world and can indicate unacceptable learned causal
effects. Thus, learning indirect effects can also find appli-
cation in identifying and comprehending model biases. We
provide the ability to differentiate between direct and indi-
rect causal effects in an NN model by introducing feedfor-
ward connections among input features (see Appendix §H
for another motivating example).
Task 2 - Explaining Causal Effects in NNs: Explainabil-
ity methods for NN models have encompassed a wide range
of techniques ranging from various gradient-based methods
to Shapley values. Recently, there has been increased atten-
tion towards causal explanations due to their enhanced re-
liability (Wachter, Mittelstadt, and Russell 2018; Hendricks
et al. 2018), as well as their potential for aiding in debug-
ging (Geva et al. 2022) and improving NN model perfor-
mance (Kyono, Zhang, and van der Schaar 2020; Kancheti
et al. 2022). We refer to explanations such as gradients and
Shapley values as effects and causal explanations as causal
effects to separate the non-causal explanations from causal
explanations. Most explanation methods provide direct ef-
fects, such as gradients and marginal Shapley values (Lund-
berg and Lee 2017). Causal Shapley values (CSHAP) (Hes-
kes et al. 2020) account for indirect effects mediated through
other features. However, they are not equal to the causal
effects obtained through backdoor adjustment (Pearl 2009)
(see Appendix §B for details). Except for causal regulariza-
tion using domain priors (CREDO) (Kancheti et al. 2022),
all existing efforts in causal explanations are post-hoc ap-
proaches, quantifying the causal effects of input features
on the output for a pre-trained NN model. These post-
hoc explanation methods, though causal, only capture di-
rect effects, and assign zero indirect causal effects to all
features. This may not accurately represent the true under-
lying indirect causal effects among input features in the
real world (Janzing, Minorics, and Bloebaum 2020). Al-
though (Kancheti et al. 2022) adopts an ante-hoc approach,
it does not model indirect causal effects. See Tab 1 for a
comparison of related explanation methods. To the best of

our knowledge, this is the first work that that provides an
ante-hoc approach to explain indirect causal effects. Our key
contributions are summarized below.

• We propose a novel ante-hoc training algorithm to capture
indirect causal effects in NN models. Our approach aligns
with the demand for intrinsically interpretable techniques
rather than post-hoc explanations (Rudin et al. 2021).

• We propose an algorithm to quantify the learned indirect
causal effects in NNs using the lateral connections among
input neurons.

• We also present effective implementation strategies to
scale causal explanation methods to high-dimensional
data w.r.t. time and space complexity.

• We present a wide range of empirical results on both syn-
thetic and real-world datasets to showcase the usefulness
of the proposed method.

2 Related Work
Learning Structural Causal Models: Learning the struc-
tural causal model (SCM) is a core component of tasks
in causal inference, including causal effect estimation (Xia
et al. 2021), and counterfactual generation (Pawlowski,
Coelho de Castro, and Glocker 2020). In a work possibly
closest to ours, (Xia et al. 2021) propose the learning of
neural causal models (NCM) utilizing the underlying causal
graph as an inductive bias, with a specific emphasis on iden-
tifying and learning ground truth causal effects. However,
our objective is different from NCM; our focus lies in the
causal effects pertaining to an NN model, primarily designed
to enhance predictive accuracy. Our methodology remains
applicable even when only partial knowledge of the under-
lying causal graph is accessible.
Explainability: In addition to promoting transparency in
decision-making processes, the elucidation of NN models
serves several purposes, including the identification of con-
cealed biases present in data (Alvarez-Melis and Jaakkola
2017), the revelation of fairness (Došilović, Brčić, and
Hlupić 2018), the debugging (Geva et al. 2022) and en-
hancement of models through explanation-based regular-
izers (Ross, Hughes, and Doshi-Velez 2017; Rieger et al.
2020; Kancheti et al. 2022). Numerous existing methods
for explaining NN models quantify the impact of input fea-
tures on model outputs using saliency maps (Zeiler and Fer-
gus 2014; Simonyan, Vedaldi, and Zisserman 2013; Sel-
varaju et al. 2017), local model approximations (Ribeiro,
Singh, and Guestrin 2016), approximations of output gra-
dients with respect to inputs (Sundararajan, Taly, and Yan
2017; Smilkov et al. 2017), Shapley values (Lundberg and
Lee 2017; Heskes et al. 2020), among others. In this work,
we focus on the causal effects of input features on output in
an NN model, which can be very useful in safety-critical do-
mains such as healthcare, aerospace, law, and defense. See
Appendix §I for a real-world example.
Causal Explanations: By considering an NN as an SCM,
assuming that input features are d-separated from each
other, (Chattopadhyay et al. 2019) proposed a post-hoc
causal explanation method to find the average causal effects
(ACE) in a trained NN. However, the assumption of inde-
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pendence among inputs limits their ability to consider in-
direct causal effects. Subsequent studies by (Khademi and
Honavar 2020; Yadu, Suhas, and Sinha 2021; Wang et al.
2022; cxp 2019; Goyal et al. 2019a) have followed ACE as
defined therein to quantify the learned causal effects. Other
causal explanation methods utilize counterfactuals to ana-
lyze model behavior under semantically meaningful changes
applied to inputs (Verma et al. 2020; Goyal et al. 2019b;
Wachter, Mittelstadt, and Russell 2018; Dandl et al. 2020;
Van Looveren and Klaise 2021; Mothilal et al. 2021; Ma-
hajan, Tan, and Sharma 2019). However, these methods are
commonly employed for qualitative analysis of the model
rather than computing causal effects.
Direct and Indirect Explanations: Among existing efforts
that explicitly investigate interactions among input variables
while computing explanations for NN models, prominent
methods are those based on Shapley values (Lundberg and
Lee 2017). For instance, in the context of handling missing
features in Shapley explanations, it is discouraged to sample
from the conditional distribution (rather than the marginal
distribution) because the inputs are independent with respect
to the causal graph of the NN (Janzing, Minorics, and Bloe-
baum 2020). While (Heskes et al. 2020) considers both di-
rect and indirect effects motivated by the direct and indirect
pathways in the underlying causal graph, even if input neu-
rons of the NN model being explained do not have causal
connections, its focus is on providing Shapley values that
may not necessarily be causal effects obtained from the ad-
justment formula (see Appendix §B). We consider input fea-
ture interactions while learning and explaining causal effects
in NNs. Our approach explicitly estimates and preserves in-
direct causal effects in an NN model. While (Kancheti et al.
2022) discusses direct and total causal effects for NN model
explanations, it does not focus on indirect causal effects. The
work most closely related to ours is presented in (Vig et al.
2020), which examined both direct and indirect causal ef-
fects in Transformer-based language models for capturing
gender bias. However, that study conducted a post-hoc anal-
ysis of such models for a different objective, whereas our
proposed method represents an ante-hoc approach to learn-
ing and explaining both direct and indirect causal effects.
Other related work is discussed in Appendix §G.

3 Causal Effects in Neural Networks
Let G = (V,E) be a causal graph where V =
{X1,X2, . . . ,Xn, Y } is the set of random variables and E
is the set of edges denoting the causal influences among the
variables in V. Let X = {X1, . . . ,Xn} =V∖{Y }, ch(Xi) =
{Xj ∣Xi → Xj} ⊆ V ∖ {Xi, Y } be the set of children of Xi

except Y , and pa(Xi) = {Xj ∣Xi ← Xj} ⊆ V ∖ {Xi, Y } be
the set of parents of Xi except Y . This definition of ch(Xi)
and pa(Xi) allows us to model indirect effects between in-
put variables. Let N be an NN model that is trained to pre-
dict Y given X as input by minimizing the empirical loss
RERM in Eq 1 for a given set D = {(xj

1, . . . , x
j
n, y

j)}Nj=1.

RERM =
1

N

N

∑
j=1

L(yj ,N (xj
1, . . . , x

j
n)) (1)

where L is an appropriate loss function such as root mean
squared error for regression and cross-entropy loss for clas-
sification. Let Ŷ = N (X1, . . . ,Xn) be the overall output
of the final layer of N . N can be conceptualized as a di-
rected acyclic graph (DAG) comprising directed edges con-
necting successive layers of neurons. Consequently, the out-
put Ŷ can be understood as the outcome arising from a series
of interactions from the first to the final layer. When study-
ing the causal effects of inputs on the output of N , solely
the neurons in the first and final layers are considered. Con-
sequently, similar to (Chattopadhyay et al. 2019), we can
marginalize the influence of hidden layers within N and fo-
cus solely on the causal structure involving inputs and out-
puts (see Fig 1 (a)). Note that while we follow (Chattopad-
hyay et al. 2019) in our view of NN as an SCM, they do
not consider or model indirect effects, which is the focus of
our work. To this end, we begin by defining various causal
effects of input features on the output of a trained NN model.

Definition 3.1. (Average Causal Effect in an NN) The Av-
erage Causal Effect (ACE) of an input feature Xi at an in-
tervention xi with respect to a baseline intervention x∗i on
the output Ŷ of an NN N is defined as

ACEŶ
Xi
= E[Ŷ ∣do(Xi = xi)] −E[Ŷ ∣do(Xi = x∗i )]

where do(Xi = xi) denotes an external intervention to the
variable Xi with the value xi (see Defn. A.3 in Appendix
A). We use do(Xi) to refer to do(Xi = xi) when there is
no ambiguity. ACE is also called the average total causal
effect, which is the sum of direct and indirect causal effects.

Definition 3.2. (Average Direct Causal Effect in an NN)
The Average Direct Causal Effect (ADCE) measures the
causal effect of a feature Xi on the output Ŷ of an NN when
Z = ch(Xi) are intervened with values under the baseline
intervention do(Xi = x∗i ), denoted by ZX∗i .

ADCEŶ
Xi
= E[Ŷ ∣do(Xi,ZX∗i )] −E[Ŷ ∣do(X

∗
i ,ZX∗i )]

Definition 3.3. (Average Indirect Causal Effect in an NN)
The Average Indirect Causal Effect (AICE) measures the
causal effect of a feature Xi on the output Ŷ of an NN when
Z = ch(Xi) are intervened with values under do(Xi = xi),
denoted by ZXi , while keeping the Xi value fixed at the
baseline intervention do(Xi = x∗i ).

AICEŶ
Xi
= E[Ŷ ∣do(X∗i ,ZXi)] −E[Ŷ ∣do(X∗i ,ZX∗i )]

4 Learning and Explaining Direct and
Indirect Causal Effects in Neural Networks

We now present our methodology for learning and explain-
ing indirect causal effects within NNs. Following (Shalit, Jo-
hansson, and Sontag 2017; Schwab et al. 2020; Zhang, Liu,
and Li 2021), we make the following assumption concerning
the underlying causal graph G.

Assumption 4.1. There are no latent (unobserved) con-
founders in the underlying causal graph G.
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To quantify direct and indirect causal effects of an input
Xi on the output Ŷ of an NN, it is required to perform an
intervention on ch(Xi) with specific values based on Xi’s
value (as formally stated in Defns 3.2 and 3.3). The above
assumption allows us to get the values to perform an inter-
vention on ch(Xi).
Hypothesis 4.1. In an NN N , the indirect effect of a vari-
able Xi on Y via ch(Xi), AICEŶ

Xi
, is identifiable in N iff

there are feedforward edges from Xi to ch(Xi) in the archi-
tecture of N .

The supporting proof for the above hypothesis is straight-
forward and provided in Appendix §C. Note that the edges
between Xi and ch(Xi) capture the true causal relationships
in the real-world. In such an architecture of N with lateral
edges between Xi and ch(Xi), the weights parametrizing
these edges are also learned by N along with other weights
in the model while optimizing for N ’s objective.

Although Hypothesis 4.1 may appear self-evident, it has
been overlooked in existing methods for explaining NN
models. For example, (Janzing, Minorics, and Bloebaum
2020) argue that Shapley explanations in a simple feedfor-
ward NN should treat all input features to be independent
because the causal graph of a simple feedforward NN has
no causal connections among input neurons. A similar ar-
gument is given by (Datta, Sen, and Zick 2016) focusing
on only direct effects while quantifying input influence on
the output of an NN. Not accounting for indirect effects
when modeling statistical relationships in the observed data
distribution (e.g., using conditional expectation instead of
marginal expectation for missing features while calculating
Shapley values) may generate incorrect explanations (Janz-
ing, Minorics, and Bloebaum 2020).

4.1 Learning Indirect Causal Effects
Following the above discussion, given a standard NN N ,
we propose an augmented NN architecture N Ind for cap-
turing indirect causal effects of input features on the output.
N Ind contains lateral directed connections among the input
neurons based on the available knowledge of the true causal
graph (see Fig 2). Our methodology remains applicable even
when only a partial causal graph is available, capturing in-
direct effects exclusively on the available connections. We
call the set of NN edges introduced among input neurons as
layer 0 connections to separate them from NN connections
in hidden layers. These connections among input features
have learnable parameters akin to other parameters within
the NN.

To train the augmentedN Ind model, we propose an ante-
hoc training algorithm consisting of two phases, each of
which is invoked sequentially in each epoch. In the first
phase, we freeze the parameters of the layer 0 and train the
remaining part of the NN. In the second phase, we train the
entire model i.e., parameters of layer 0 to the final layer.
In the second phase, the input to the N Ind model is con-
structed as follows. Consider a specific input data point
(xj

1, . . . , x
j
n) ∼ D. The value of each input variable Xi for

which pa(Xi) = ∅ is taken from (xj
1, . . . , x

j
n), and the re-

X1 X2 X3 X1 X2 X3

Ŷ

X1 X2 X3

Y Ŷ

G N N Ind

Figure 2: Comparison of the proposed architecture N Ind

with a traditional NN architecture N . G is the ground truth
causal graph. N and N Ind differ in input layer such that
the inputs in N Ind are connected (shown in blue color) ac-
cording to the causal edges in G. In contrast, the inputs in
N are independent.N andN Ind may contain edges that are
not present in G due to the feedforward connections from in-
put layer to predictions in NN architecture (e.g., X1 → Ŷ is
present in N , N Ind but not in G).

maining input feature values are derived topologically by
feeding the other input variables into layer 0. That is, for
each Xi with pa(Xi) ≠ ∅, if f0

i is the function of its par-
ents pa(Xi) in layer 0, we derive Xi = f0

i (pa(Xi)). Please
note that f0

i is modeled by the NN connections in layer 0.
These two training phases are carried out sequentially in ev-
ery epoch until we reach the desired minimum loss value
(or appropriate stopping condition). To aid better learning of
parameters of layer 0, we add a regularization term to the
empirical loss RERM in Eqn 1 that incurs a penalty if the
derived feature values deviate from actual feature values in
the training data. Eqn 2 shows the overall loss value used in
phase 2 with regularization term and corresponding regular-
ization hyperparameter λ. N Ind is trained using stochastic
gradient descent (SGD), as with any other NN model. Algo-
rithm 1 summarizes this training procedure.

R =RERM + λ
N

∑
j=1

∑
{∀i∣pa(Xi)≠∅}

(xj
i − f

0
i (pa(x

j
i )))

2 (2)

4.2 Explaining Indirect Causal Effects
On training the ante-hoc model N Ind, we now present a
methodology to compute the acquired indirect causal effects
in the learned model. We begin by formally defining causal
effect identifiability in this context.
Definition 4.1. Causal Effect Identifiability in an NN.
The causal effect of an input feature Xi on the output
Ŷ of an NN is identifiable if p(Ŷ ∣do(Xi)) can be com-
puted uniquely from any positive probability distribution
p(X1, . . . ,Xn, Ŷ ).

Under the no latent confounding assumption (As-
sumption 4.1), following Theorem 3.2.5 and Corol-
lary 3.2.6 of (Pearl 2009), it is easy to show that
ADCEŶ

Xi
and AICEŶ

Xi
are identifiable in N Ind (we

provide formal proofs in Appendix §C). Now, to eval-
uate ADCEŶ

Xi
and AICEŶ

Xi
in N Ind, we need to in

turn evaluate the following quantities: E[Ŷ ∣do(X∗i ,ZX∗i )],
E[Ŷ ∣do(Xi,ZX∗i )] and E[Ŷ ∣do(X∗i ,ZXi)] (see Defns 3.2,
3.3 and recall that Z = ch(Xi)). These terms, which are of
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Algorithm 1: Pseudocode for training N Ind model

1: Input: True causal graph G, D = {(xj
1, . . . , x

j
n, y

j
)}

N
j=1, pa-

rameters θ0, . . . , θm of layers l0, . . . , lm ofN Ind, λ, functions
f0
i in l0 learned by introducing edges among input features.

2: Output: TrainedN Ind model
3: for each epoch do
4: for phase in [1,2] do
5: if phase = 1 then

6: RERM = 1

N

N

∑
j=1
L(yj

,N Ind(xj
1, . . . , x

j
n))

7: Compute gradients ofRERM w.r.t. θ1, . . . , θm
8: Update the parameters θ1, . . . , θm using SGD
9: else

10: for each (xj
1, . . . , x

j
n, y

j
) in D do

11: xj
i = f

0
i (pa(x

j
i )) ∀i s.t. pa(Xi) ≠ ∅

12: end for
13: R =RERM + λ

N

∑
j=1

∑
{∀Xi ∣pa(Xi)≠∅}

(xj
i − f0

i (pa(xj
i )))2

14: Compute gradients ofR w.r.t. θ0, . . . , θm
15: Update parameters of θ0, . . . , θm using SGD
16: end if
17: end for
18: end for
19: return trainedN Ind

the form E[Ŷ ∣do(S)] where S is a set of features, often re-
quire us to marginalize over other input features X ∖ S as:

E[Ŷ ∣do(S)] = EX∖S [E[Ŷ ∣S,X ∖ S]] (3)

Evaluating the above expression, typically using an adjust-
ment set (see Defn A.4 in Appendix §A), can incur signif-
icant computational overhead, which grows exponentially
with the number of features in X ∖ S, especially when they
are continuous and real-valued. To avoid such prohibitive
computational requirements, following earlier work (Mon-
tavon et al. 2017; Chattopadhyay et al. 2019), we consider
the second-order Taylor’s approximation to the NN out-
put Ŷ = f(X) around the mean vector µ, where µj =
E[Xj ∣do(S)] as follows:

f(X) ≈ f(µ)+

∇
T f(µ)(X − µ) +

1

2
(X − µ)T∇2f(µ)(X − µ)

Taking interventional expectations on both sides gives:

E[f(X)∣do(S)] ≈ f(µ)+
1

2
Tr(∇2f(µ)E[(X − µ)(X − µ)T ∣do(S)])

(4)
The first-order terms vanish because E[X∣do(S)] = µ. To
evaluate Eqn 4, we need to calculate the interventional mean
vector µ = E[X∣do(S)] and the interventional covariance
matrix E[(X − µ)(X − µ)T ∣do(S)].

We present the following steps 1 − 4 to evaluate
interventional means and covariances for interventions:
do(X∗i ,ZX∗i ), do(Xi,ZX∗i ), and do(X∗i ,ZXi).

1. For an intervention on Xi with the value xi, set µ[i] = xi.

2. To get interventional values ZXi for the variables in
Z under the intervention do(Xi = xi), for each vari-
able Xp ∈ Z taken in topological order, compute Xp =
fp
0 (pa(Xp)) and µ[p] = Epa(Xp)[E[Xp∣Xi, pa(Xp) ∖
{Xi}]]. This step accounts for updating the values of
children of Xi based on the intervention on Xi.

3. For each variable Xq /∈ Z, set µ[q] = E[Xq].
4. Compute the interventional covariance matrix from the

interventional data distribution obtained after performing
step 2.

After performing the above steps, we can substi-
tute the interventional mean and covariance matrix in
Eqn 4 to evaluate the expressions E[Ŷ ∣do(X∗i ,ZX∗i )],
E[Ŷ ∣do(Xi,ZX∗i )],E[Ŷ ∣do(X

∗
i ,ZXi)]. An algorithm

summarizing this overall procedure of evaluating ADCEŶ
Xi

,

AICEŶ
Xi

in N Ind is provided in Appendix § D.

4.3 Efficient Implementation Strategies
Computation of causal effects, in general, can be compute
and memory intensive. We hence also provide a few efficient
implementation strategies for such computations, which we
also incorporate in our experiments. Let each input Xi ∈ X
assume one of k possible values (k = 2 in the binary case).
Evaluating causal effects takes roughlyO(nk) time because
of the marginalization step in Eqn 3, where n is the dimen-
sionality of the input vector X. Evaluating the approxima-
tion in Eqn 4 also scales in the order of O(n2) as an input
intervention may affect all children (Defns 3.2, 3.3). These
limitations get accentuated in architectures such as Recur-
rent Neural Networks (RNNs) (see Appendix F for complex-
ity analysis in RNNs). To address these issues, we propose
the following improvements.
Runtime Efficiency using Binning: Computing causal ef-
fects using Eqn 4 requires computing the interventional
mean and interventional covariance (interventional statis-
tics). To speed up this calculation, we divide the computa-
tion into offline and online phases. In the offline step (which
can be done independent of the NN training phase), for ev-
ery data point X in the training set, we generate and store
the interventional statistics for all features Xi ∈X for all in-
terventional values. In the online phase, to find the causal ef-
fect for feature Xi with intervention value of xi in a test data
point Xte, we first find the data point Xtr in the training set
that is most similar to Xte. Let α be the value taken by fea-
ture Xi in Xtr, closest to Xi. We access the interventional
statistics stored for Xtr corresponding to feature Xi with in-
tervention α (computed in the offline phase). This retrieved
nearest interventional statistics is used for causal effect com-
putation. This procedure, detailed further in Appendix § F,
reduces significant runtime leveraging offline computations.
We refer to this approach as binning since a training sample
captures a bin and acts as a proxy for other samples/values in
its neighborhood. To further speed up ACE computation, we
exploit the fact that the Hessian term ∇2f in Eqn 4 can be
approximated using JTJ where J is the Jacobian of the NN
model function (Gauss-Newton Hessian approximation).
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Metric Feature IG CA CSHAP CREDO AHCE

Synthetic

W 0.10±0.00 0.09±0.00 0.24±0.00 0.08±0.01 0.04±0.02
Z 0.11±0.04 0.04±0.01 0.30±0.00 0.06±0.00 0.05±0.00
X 0.12±0.00 0.11±0.00 0.25±0.01 0.11±0.00 0.10±0.02

R
M

SE
(↓

)

Average 0.11±0.02 0.08±0.00 0.26± 0.00 0.08±0.01 0.06±0.01

W 0.25±0.00 0.25±0.00 0.25± 0.05 0.23±0.03 0.14±0.06
Z 0.19±0.05 0.09±0.05 0.33± 0.02 0.16±0.01 0.13±0.02
X 0.24±0.07 0.23±0.04 0.32± 0.04 0.26±0.03 0.24±0.03

Fr
ec

he
t(
↓
)

Average 0.23±0.04 0.19±0.03 0.30± 0.04 0.22±0.02 0.17±0.04

Auto-MPG

Num. of Cylinders 0.12±0.00 0.13±0.00 0.20±0.00 0.11±0.02 0.01±0.00
Displacement 0.11±0.00 0.11±0.00 0.20±0.00 0.09±0.02 0.11±0.01
Horse Power 0.21±0.02 0.04±0.01 0.17±0.00 0.07±0.02 0.09±0.01
Weight 0.27±0.04 0.09±0.00 0.05±0.00 0.09±0.02 0.07±0.00
Acceleration 0.07±0.01 0.07±0.00 0.02±0.00 0.15±0.05 0.07±0.00

R
M

SE
( ↓

)

Average 0.16±0.02 0.09±0.00 0.13±0.00 0.10±0.02 0.07±0.00

Num. of Cylinders 0.27±0.00 0.25±0.00 0.37±0.00 0.22±0.04 0.03±0.03
Displacement 0.25±0.00 0.21±0.01 0.38±0.00 0.19±0.03 0.21±0.02
Horse Power 0.25±0.02 0.07±0.02 0.30±0.00 0.15±0.03 0.18±0.03
Weight 0.45±0.08 0.15±0.02 0.06±0.02 0.17±0.06 0.09±0.01
Acceleration 0.12±0.01 0.09±0.01 0.06±0.01 0.33±0.16 0.10±0.00

Fr
ec

he
t(
↓
)

Avgerage 0.27±0.02 0.16±0.01 0.23±0.00 0.21±0.06 0.12±0.02

Lung Cancer

Visit to Asia 0.46±0.05 0.38±0.11 0.00±0.00 0.00±0.00 0.05±0.06
Tuberculosis 0.62±0.04 1.13±0.04 0.99±0.00 1.00±0.00 0.58±0.29
Smoking 1.07±0.07 1.01±0.00 0.99± 0.00 1.00±0.00 0.56±0.33
Lung Cancer 0.40±0.07 0.62±0.02 0.48±0.04 0.49±0.00 0.77±0.75
Bronchitis 1.55±0.14 1.48±0.06 0.93±0.00 1.08±0.01 1.11±0.51
Either 0.87±0.18 0.78±0.06 0.53±0.03 0.55±0.00 0.65±0.23
X-ray 0.11±0.05 0.09±0.04 0.03±0.00 0.00±0.00 0.08±0.12R

M
SE

(↓
)

Average 0.72±0.09 0.78±0.05 0.56±0.00 0.59±0.00 0.54±0.33

Sachs

PKC 0.08±0.07 0.10±0.09 0.19±0.00 0.08±0.02 0.12±0.06
PKA 2.29±1.40 2.19±0.90 0.46±0.00 3.81±0.02 0.65±0.17
Raf 0.15±0.03 0.11±0.05 0.24±0.00 0.02±0.02 0.12±0.03
Mek 0.20±0.04 0.21±0.13 0.23±0.00 0.42±0.02 0.14±0.01
Erk 4.33±3.25 0.63±2.23 0.53±0.00 2.87±0.05 0.51±0.34
Jnk 0.08±0.04 0.07±0.04 0.25±0.00 0.13±0.05 0.01±0.01
P38 0.26±0.18 0.09±0.06 0.31±0.00 0.04±0.05 0.02±0.01R

M
SE

(↓
)

Average 1.05±0.71 0.71±0.27 0.32±0.00 1.05±0.00 0.22±0.09

PKC 0.14±0.12 0.13±0.12 0.30±0.00 0.11±0.00 0.17±0.09
PKA 2.89±1.62 2.97±1.14 0.29±0.00 5.02±0.02 0.91±0.23
Raf 0.21±0.05 0.16±0.08 0.27±0.00 0.03±0.02 0.17±0.05
Mek 0.33±0.08 0.27±0.18 0.37±0.00 0.56±0.02 0.17±0.01
Erk 5.63±4.04 3.12±0.90 0.36±0.00 4.04±0.05 0.70±0.45
Jnk 0.12±0.06 0.09±0.05 0.36±0.00 0.16±0.05 0.02±0.02
P38 0.41±0.30 0.12±0.09 0.47±0.00 0.06±0.05 0.02±0.02Fr

ec
he

t(
↓
)

Average 1.39±0.90 0.98±0.36 0.34±0.00 1.43±0.00 0.31±0.12

Table 2: Results on Synthetic, Auto-MPG, Lung Cancer, and Sachs Datasets.
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Memory Requirements: Storing offline interventional
statistics for every sample on the dataset (and correspond-
ing intervention values) quickly becomes impractical, es-
pecially for high-dimensional data. To reduce this memory
overhead, we use clustering/hashing techniques (KD Tree,
DBSCAN) to cluster training data samples, and store inter-
ventional statistics for only cluster centers (see Appendix §F
for more details of this strategy). From the results shown in
Appendix §F, we observe 3 to 10-fold improvements in run
time using the proposed binning approach for a slight reduc-
tion in the precision of estimated causal effects.

5 Experiments and Results
We conduct experiments on a synthetic dataset, three well-
known real-world benchmark datasets, and three industry-
based simulated datasets. We compare the causal expla-
nations of AHCE with a post-hoc gradient-based expla-
nation method: Integrated Gradients (IG) (Sundararajan,
Taly, and Yan 2017), a post-hoc causal explanations (CA)
method (Chattopadhyay et al. 2019), the causal Shapley val-
ues (CSHAP) (Heskes et al. 2020), and a causal regulariza-
tion method in (Kancheti et al. 2022). We compare against
IG since its explanations can be viewed as individual causal
effects (Imbens and Rubin 2015). Ground truth causal ef-
fects are computed using the adjustment formula (Eqn 3).
Following (Kancheti et al. 2022), we use the Root Mean
Squared Error (RMSE) and Frechet distance between true
causal effects and the learned explanations. We present our
results on total causal effects for a fair comparison with
all methods (indirect causal effects do not exist for IG,
CA, CREDO). Additional results, including a comparison
of CSHAP with our method on indirect causal effects and
experimental setup, are presented in the Appendix. Code is
available at https://github.com/gautam0707/Learning-and-
Explaining-Indirect-Causal-Effects.
Synthetic Data: We create a synthetic dataset using the
structural equations: W ← Uniform(0,1), Z ← W /2 +
N (0,0.1),X ← −W −Z +N (0,0.1), Y ←X3 + log(Z2)+
N (0,0.1) where W has only indirect causal effect on Y
via the paths: W → X → Y,W → Z → X → Y , and
W → Z → Y . Z has a direct causal effect on Y via the
path Z → Y and an indirect causal effect on Y via the
path Z → X → Y , and X has only a direct causal ef-
fect on Y via the path X → Y . This dataset has linear
equations with additive Gaussian noise among input features
W,Z,X , and the output Y is a non-linear function of its in-
puts with additive Gaussian noise. Hence, for purposes of
modeling causal effects, the lateral connections among in-
puts in N Ind are obtained using simple linear regressors
(for real-world datasets, we replace simple linear regressors
with multi-layer perceptrons to account for non-linear rela-
tionships among inputs). Tab 2 shows the results. The total
causal effects given by our method are closer to ground truth
causal effects than baselines. That is, the training algorithm
for our ante-hoc causal explanation model can better learn
both direct and indirect causal effects.
Auto-MPG: In this experiment, we work on Auto-MPG
dataset (Dua and Graff 2017) where the task is to predict
miles per gallon (MPG) based on various parameters such as

acceleration, horsepower, etc. We do not know the ground
truth causal graph in this case. Hence, we first construct a
causal graph based on pertinent domain knowledge (see Ap-
pendix). Subsequently, we verify the correctness of this con-
structed causal graph through interaction with the popular
large language model GPT-3.5 (Brown et al. 2020), ques-
tioning the correctness of each causal edge within the con-
structed graph. We use this constructed graph as the avail-
able knowledge in our experiments. Tab 2 shows these re-
sults. Since the underlying structural equations are unavail-
able for this dataset, we cannot evaluate indirect causal ef-
fects. However, we can compare the performance with re-
spect to total causal effects, which is the sum of direct and
indirect causal effects. From the results, our method outper-
forms baselines in capturing true total causal effects.
Lung Cancer: In Lung Cancer dataset (Scutari and Denis
2014), whose causal graph is known (see Appendix), we
consider Dyspnea is the output variable with the remaining
features such as smoking, bronchitis, etc. as inputs. From the
results shown in Tab 2, our model is better at learning the
true total causal effects when compared to the baselines. The
lateral connections among input features are implemented
using simple multi-layer perceptrons with non-linear acti-
vation functions. Since the underlying causal graph of the
Lung Cancer dataset is a discrete Bayesian network with
binary-valued features, the Frechet score is not relevant, and
so we report only RMSE values for this dataset. Similar to
Auto-MPG dataset, we present results on total causal effects.
Sachs: Sachs dataset consists of 11 protein types and their
causal relationships. We consider the variable Akt as output
and the remaining variables as inputs. The results in Tab 2
show that our model is better at learning the true total causal
effects than the baselines.
Flight Simulation Datasets: To study the value of our ef-
ficient implementation strategies discussed in Sec. 4.3, we
consider flight simulation datasets that benefit from such
strategies. We consider three different time series-based
datasets: Parking Brake Dataset, Flap Dataset and Multiple
Anomaly Dataset which simulate the application of parking
brakes during the takeoff, the deployment of a wrong flap
during takeoff and the multiple brake anomalies (left-brake,
right-brake, and auto-brake) respectively. These datasets are
captured on an industry-grade flight simulator. In all these
datasets, we train an RNN to predict whether a given se-
quence is anomalous. We compare our method with CA and
an approximation to the second-order term in Eqn 4 pro-
posed in (Chattopadhyay et al. 2019). Tab A4 of Appendix
§ E shows the results, highlighting the improvements in time
needed to compute ACE in our method.

6 Conclusions
We present a new perspective to learn and quantify causal
effects in NNs. Using available prior causal knowledge,
we design an ante-hoc causal explanation method to study
both direct and indirect causal effects in an NN. We also
present effective approximation strategies to compute causal
effects for high-dimensional data. Experiments show signif-
icant promise of the methodology to elicit direct and indirect
causal effects in an NN model.
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