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Abstract

The pandemic in 2020 and 2021 had enormous economic and
societal consequences, and studies show that contact trac-
ing algorithms can be key in the early containment of the
virus. While large strides have been made towards more ef-
fective contact tracing algorithms, we argue that privacy con-
cerns currently hold deployment back. The essence of a con-
tact tracing algorithm constitutes the communication of a risk
score. Yet, it is precisely the communication and release of
this score to a user that an adversary can leverage to gauge
the private health status of an individual. We pinpoint a real-
istic attack scenario and propose a contact tracing algorithm
with differential privacy guarantees against this attack. The
algorithm is tested on the two most widely used agent-based
COVID19 simulators and demonstrates superior performance
in a wide range of settings. Especially for realistic test sce-
narios and while releasing each risk score with ε = 1 differ-
ential privacy, we achieve a two to ten-fold reduction in the
infection rate of the virus. To the best of our knowledge, this
presents the first contact tracing algorithm with differential
privacy guarantees when revealing risk scores for COVID19.

1 Introduction
The COVID19 pandemic had enormous economic and soci-
etal consequences (Boden et al. 2021; Vindegaard and Ben-
ros 2020; Kim et al. 2022; Berger, Herkenhoff, and Mongey
2020). Some sources estimate the global economic impact
at more than a trillion US dollars (Kaye et al. 2021). Pre-
vious studies show that contact tracing apps can aid under-
standing and mitigate the early rise of the pandemic (Alsdurf
et al. 2020; Baker et al. 2021; Herbrich, Rastogi, and Voll-
graf 2020; Perra 2021). Most studies, however, focused on
the effectiveness of the pandemic mitigation, while we ar-
gue that privacy concerns hold the deployment back (Raskar
et al. 2020; Alsdurf et al. 2020). Population surveys during
and after the pandemic show that mistrust and ‘worries about
privacy’ are among the top three reasons not to use a contact
tracing app (Jones, Thompson et al. 2021; Gao et al. 2022;
Walrave, Waeterloos, and Ponnet 2022).

Several studies argue for the studying of privacy in
contact tracing algorithms (Park, Choi, and Ko 2020; Grantz
et al. 2020; Dyda et al. 2021). We also quote an influential
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journal stating that most individuals would consider the pri-
vacy risks “to be unacceptably high” (The Lancet; Bengio
et al. 2020). Yet, to the best of our knowledge, no research
has been published on differential privacy when releasing a
risk score to a user for the purpose of contact tracing.

Despite security measures, a contact tracing algorithm
needs to assign a risk score and release the score either di-
rectly to the user or indirectly by the signal to get tested. It is
precisely the communication and release of this score that an
adversary can leverage to gauge the private health status of
an individual. For the rest of the paper, we refer, by the name
COVIDSCORE, to a risk score that a contact tracing algorithm
assigns to a user and communicates to other users. Most pa-
pers about privacy and security aspects during the COVID19
pandemic center on security measures (Ahmed et al. 2020)
for establishing contacts, where approaches such as hashing
were studied for establishing contacts (Ali and Dyo 2021;
Reichert, Brack, and Scheuermann 2021). In this work, we
assume that these security precautions are adhered to and, in
the presence of the security measures, identify another pri-
vacy attack on the COVIDSCORE:

An adversary wants to determine the COVIDSCORE
of a victim. The adversary installs the app and only
makes contact with the victim. The next day, the ad-
versary observes a change in their COVIDSCORE. This
change is due to the victim, and the adversary recon-
structs the COVIDSCORE of the victim.

The naı̈ve approach of simply adding noise to any re-
vealed COVIDSCORE does lead to increased uncertainty at
the adversary about the score of a victim. However, adding
noise naturally decreases the utility of a contact tracing al-
gorithm. To address this conundrum, we propose a novel al-
gorithm that, while adding noise, maintains good results in
mitigating a peak of the pandemic. Moreover, we prove dif-
ferential privacy (Dwork and Roth 2014) for the release of
the COVIDSCORE and demonstrate strong performance even
when ε ≤ 1 per message.

In this paper, we make the following contributions:

1. We concretize a privacy attack in contact tracing with
important implications, and we propose a novel decen-
tralized algorithm with a differential privacy guaran-
tee against this attack. To the best of our knowledge,
we are the first to study the differential privacy of a
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COVIDSCORE on top of the standard security measures.
2. The trade-off between privacy and utility is studied on

two widely used simulators. The method is compared
against existing methods for differential privacy, and the
results show that our algorithm is Pareto optimal. For the
case ε = 1, we show that up to the million scale, our
algorithm achieves a two to ten times smaller infection
rate, compared to traditional contact tracing.

3. To evaluate our algorithms’ robustness across a range of
realistic conditions, we also evaluate our algorithm in
two challenging circumstances: under imperfect tests for
COVID19 and a reduced test protocol.

The code for our method and all experiments is available
at github.com/RobRomijnders/dpfn aaai.

2 Related Work
This section discusses the related work for our method. We
discuss the current agent-based statistical contact tracing ap-
proaches and the recent research in privacy for COVID con-
tainment strategies.

Statistical contact tracing: Various approaches have been
published about statistical contact tracing, especially during
the COVID19 pandemic. Burdinski, Brockmann, and Maier
(2022) test the efficacy of traditional contact tracing and run
simulations, including self-isolation strategies. Li and Saad
(2021) use a message-passing approach and analyze an iso-
lation policy based on risk-score estimation. Herbrich, Ras-
togi, and Vollgraf (2020) investigate statistical contact trac-
ing using Gibbs sampling and show results on a simulator
based on stochastic block models. Braunstein et al. (2023)
propose an inference model similar to belief propagation but
do not test on COVID19 simulators. Most similar to ours,
Baker et al. (2021) propose statistical contact tracing using
belief propagation on a collapsed graph. Romijnders et al.
(2023) propose another algorithm for statistical contact trac-
ing, improving over the previous approach and comparing
statistical contact tracing under constrained communication.

Privacy in COVID19 containment strategies: During the
pandemic, many papers raised concerns about privacy and
security in contact tracing. The first step is the design of
decentralized algorithms where no central entity has the
COVIDSCORE of multiple individuals (Baker et al. 2021;
Herbrich, Rastogi, and Vollgraf 2020; Romijnders et al.
2023). Yet many security issues remain. Troncoso et al.
(2020) provides an overview of the methods for proxim-
ity tracing and its various threat models. A paper in Nature
Communications highlights the pitfalls of collecting such
data from smartphones (Grantz et al. 2020) and calls for
more research in privacy. Obtaining the contact graph and
the various threat models for sharing GPS location are dis-
cussed in papers such as (Raskar et al. 2020; Ahmed et al.
2020; Ali and Dyo 2021; Reichert, Brack, and Scheuermann
2021). Examples of approaches that study obtaining contacts
under secure and private circumstances are (Bay et al. 2020;
Chan et al. 2020; Cho, Ippolito, and Yu 2020).

Differential privacy in decentralized inference: For the
general purpose of statistical inference, a few but existent
papers have studied differential privacy (DP). For example,

DP for MCMC has been studied (Yıldırım and Ermiş 2019;
Heikkilä et al. 2019). We implement and compare to a
method (Wang, Fienberg, and Smola 2015; Foulds et al.
2016) that specifically tailors to Gibbs sampling (Herbrich,
Rastogi, and Vollgraf 2020). Zhang et al. (2017) analyzes
the computation of marginals in a message-passing ap-
proach for inference. However, that paper uses the Laplace
mechanism for dealing with real-valued random variables of
fixed dimensionality. In contrast, our random variables are
discrete-valued and have varying degrees. Like us, Zou and
Fekri (2015) use the local structure of the belief propagation
message to obtain a privacy guarantee. However, they
consider a different form of privacy and do not study
differential privacy.

Two noteworthy approaches in contemporary literature
study DP in the context of COVID19, but both methods do
not relate to contact tracing. Vadrevu, Adusumalli, and Man-
galapalli (2020) focuses on collecting and clustering medical
records and does not mention contact tracing; Vepakomma,
Pushpita, and Raskar (2021) focuses on collecting user tra-
jectories with DP guarantees. However, these works are vul-
nerable to the same attack we study in this paper.

For other approaches to privacy concerning the release of
a COVIDSCORE, previous research has mentioned low-bit
quantization of the decentralized messages (Alsdurf et al.
2020; Apple and Google 2020; Romijnders et al. 2023).
Still, these approaches have no formal guarantee pertaining
to privacy. To the best of our knowledge, we are the first
paper to propose an algorithm for statistical contact tracing
with differential privacy guarantees.

3 Method

This method section proceeds as follows: first, we explain
the model for statistical contact tracing. We discuss three
existing approaches for obtaining differential privacy, which
will be compared in the experimental section. Then, we pro-
pose a composite scheme for differential privacy using a re-
cent message-passing method.

3.1 Model

We first present background on the statistical model. Both
methods in the later method section use this formulation for
the statistical model. This section largely follows notation
from previous works (Herbrich, Rastogi, and Vollgraf 2020;
Romijnders et al. 2023; Koller and Friedman 2009).

Every user on every day is modeled as a random vari-
able that takes on one of four states, S,E, I,R. These states
abbreviate for Susceptible, Exposed, Infected, and Recov-
ered (Kermack and McKendrick 1927; Anderson and May
1992). This random variable is written as zu,t for user
u, at time step t. The data set of observations is DO =
{oui,ti}Oi=1, which are O observations, each with an out-
come {0, 1} for user ui at time step ti.

Test outcomes may have false positive or false negative
results, with False Positive rate β (FPR) and False Negative
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rate α (FNR). The model uses the observation distribution:

P (ou,t|zu,t) =


α if zu,t = I ∧ o = 0

1− α if zu,t = I ∧ o = 1

1− β if zu,t ∈ {S,E,R} ∧ o = 0

β if zu,t ∈ {S,E,R} ∧ o = 1

.

(1)
The random variables zu,t are connected in two direc-

tions: over time, the variables evolve in a Markov chain
S → E → I → R; between users, a contact can influence
the transition probability between states. Both interactions
are summarized in the Markovian state transition:

P (zu,t+1|zu,t, zN(u,t)) =



ψ(u, t, zN(u,t)) S → S

1− ψ(u, t, zN(u,t)) S → E

1− g E → E

g E → I

1− h I → I

h I → R

1 R→ R

0 otherwise
(2)

Here ψ(·) constitutes a noisy-OR model (Koller and
Friedman 2009) that depends on states of other users:

ψ(u, t, zN(u,t)) = (1− p0)(1− p1)
|{(v,u,t)∈Dc:zv,t=I}|.

(3)

Here g, h, p0, and p1 are scalar model parameters,
and they are set equal to the values from previous litera-
ture (Romijnders et al. 2023; Herbrich, Rastogi, and Vollgraf
2020). We highlight all parameter settings in Appendix C.6.
zN(u,t) is the set of random variables of all contacts of user u
at time step t. The data set of contacts, Dc, consists of a set
of tuples {(u, v, t)}, where user u had a (directed) contact
with user v at time step t. Equation 3 can be interpreted as
a noisy-OR model, where every infected contact decreases
the probability of remaining in S state.

3.2 DP Contact Tracing Methods
We introduce three methods to obtain a differentially private
COVIDSCORE, as defined in the attack model. We follow the
conventional definition of (ε, δ) differential privacy (Dwork
and Roth 2014; Mironov 2017) that says for every ε > 0,
δ ∈ [0, 1], a mechanism f(·), for any outcome Φ in the range
of f(·), and any two adjacent data sets D, D′ that differ in
at most one element, satisfy the following constraint:

p(f(D) ∈ Φ) ≤ eεp(f(D′) ∈ Φ) + δ (4)

We define two data sets as adjacent when the
COVIDSCORE of one contact differs between the data sets.
The sensitivity, then, is the largest value change of a func-
tion between adjacent data sets:

∆ ≥ max
{(D,D′):d(D,D′)=1}

∥f(D)− f(D′)∥ . (5)

Distance d() is defined as the Hamming distance
d(D,D′) =

∑
i 1[Di ̸= D′

i], where 1[·] is the indicator
function andDi is one of the contacts’ COVIDSCORE. When
the sensitivity of function f() is bounded, a common mech-
anism is to add Gaussian noise. The Gaussian mechanism
of (Dwork and Roth 2014) prescribes the noise variance for
a particular sensitivity value, ε and δ.

We discuss three baseline approaches for experimental
comparison: one based on traditional contact tracing, one
based on previously studied Gibbs sampling, and one based
on noising individual messages regardless of application.

Traditional contact tracing. In traditional contact trac-
ing, users would test themselves when one of their recent
contacts has tested positive. Many countries used this pol-
icy in the COVID19 pandemic (Baker et al. 2021). We im-
plement this as a function that calculates the number of
positive-testing contacts. If a positive test corresponds to 1
and a negative test corresponds to 0, this function has a sen-
sitivity of 1, according to the definition in Equation 5. We
use the Gaussian mechanism accordingly and release its out-
put as the COVIDSCORE. The method is thus differentially
private according to the (ε, δ) given by the Gaussian Mech-
anism (c.f. Appendix A of Dwork and Roth (2014)).

Gibbs sampling. Previous work proposed Gibbs sam-
pling to estimate the COVIDSCORE in decentralized con-
tact tracing (Herbrich, Rastogi, and Vollgraf 2020). For
achieving DP, we use an existing method with ε-DP for
a sample from a probability distribution with clipped like-
lihoods (Wang, Fienberg, and Smola 2015; Foulds et al.
2016). Inference for the model specified in Equation 2
makes estimates with Monte Carlo samples from a Gibbs
chain. Therefore, if Gibbs samples were obtained under dif-
ferential privacy, then the Monte Carlo estimate is DP by
post-processing. The method provides an ε-DP, which is
stronger than the (ε, δ)-DP of the other methods.

The Gibbs sampler has two hyperparameters: the value of
B to clip the likelihoods and the number of Gibbs samples
to draw. We found a value of B = 10 to work best. De-
termining the number of Gibbs samples constitutes a topic
by itself (Robert and Casella 2004). Our case is even more
complex as each additional sample improves the statistical
estimate, but simultaneously increases the privacy bound.
We find that taking 10 samples with 10 skip steps, after 100
burn-in steps, works best (Robert and Casella 2004); taking
more samples would worsen the privacy bound, and taking
fewer samples worsens the estimate for the COVIDSCORE.

Per-message differential privacy. As a third baseline,
we compare against a form of differential privacy at the
single message that is communicated between contacts, re-
gardless of the contact tracing algorithm. As the message
is a numerical value in the range [0, 1), one can noise
this message and consider the message-passing algorithm
to be DP by the post-processing property (Dwork and Roth
2014). To message-passing algorithms are belief propaga-
tion (Herbrich, Rastogi, and Vollgraf 2020) and Factorised
Neighbors (FN, Romijnders et al. (2023)). We use the latter
method as a previous work shows that FN works better for
these SEIR models (Romijnders et al. 2023).
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Figure 1: Example of a contact graph. This user has C1 con-
tacts at five time steps in the past and C2 contacts at three
time steps in the past. The released COVIDSCORE is the es-
timate of being in state I on time step t. Appendix C.5 gen-
eralizes the method for a general contact graph.

Dealing with the constraint that messages are in [0, 1),
we add noise in the logit domain. A message in the [0, 1]
domain corresponds to a message in R, transformed by the
logit transform x = log y

1−y ; and being calculated from the
sigmoid function y = 1

1+e−x . If the messages are clipped to
[γ, 1− γ], then the sensitivity of the mechanism in the logit-
domain is 2 |logit(γ)|. We use the Gaussian mechanism with
this sensitivity and report results for the corresponding ε and
δ values (c.f. appendix A of Dwork and Roth (2014)).

3.3 Differentially Private Factorized Neighbors

In contrast to the previous methods, we now use the struc-
ture of Factorized Neighbors (FN, (Rosen-Zvi, Jordan,
and Yuille 2005; Romijnders et al. 2023)) to propose a
novel algorithm. FN is a decentralized approximate infer-
ence method that calculates daily a COVIDSCORE, which
represents the belief that the user is in the infected state the
next day. The update equations for the model in Equation 2
were introduced in (Romijnders et al. 2023). This section an-
alyzes the update equations and proposes a differential pri-
vacy method based on composite inputs named differentially
private factorized neighbors (DPFN).

We analyze an example for one user and limited contacts
here and generalize the method in Appendix C.5. Consider
revealing the COVIDSCORE, ϕu,t for user u at day t. Let’s
say this user had C1 contacts five days before and C2 con-
tacts three days before. Figure 1 presents an example of the
corresponding contact graph. We rewrite ωu,t = 1− p1ϕu,t
for reasons that will become clear shortly. Each contact, c,
sends a message ωc,t ∈ [0, 1] to user u, and this user calcu-
lates their COVIDSCORE. This version of the update equation
will be referred to as F1(·):

ϕu,t = F1(ω1,t−5, ω2,t−5, · · · , ωC1,t−5,

ω1,t−3, ω2,t−3, · · · , ωC2,t−3). (6)

F1 makes a prediction as a function of C1+C2 individual
messages. However, when analyzing the update equations,
the function F1 only depends on messages that appear in a
product term. Then one could rewrite the FN method to:

ϕu,t = F2(

C1∏
i=1

ωi,t−5,

C2∏
i=1

ωi,t−3) (7)

FN in the form of F2 only depends on a product of
messages. For this reason, we write ωu,t = 1 − p1ϕu,t.
Thus, once such product is modified to have DP, the function
F2 will be private by the post-processing property (Dwork
and Roth 2014). This was an example for two days, and in
Appendix C.5, we prove that this decomposition holds for
any number of days.

To derive a bound like Equation 4, we use a log-normal
noise distribution for each message ωc,t, as the family of
log-normal distributions is closed under multiplication. The
log-normal distribution has a closed-form expression for its
Rényi divergence, and we will prove DP via Rényi differen-
tial privacy (RDP, (Mironov 2017)).

A bound on the Rényi divergence can be converted to the
ε and δ for DP (Mironov 2017). As such, we aim to bound
the Rényi divergence between the two log-normal distribu-
tions that correspond to two adjacent data sets, and convert
to (ε, δ)-DP later. For any two log-normal distributions, pu
and pv , with mean parameters µu and µv , and with equal
variance parameter σ2

∗ = Cσ2, the Rényi divergence is the
following. We assume a product of C messages, each with
a variance parameter σ2. A detailed derivation is in Ap-
pendix C.3, where we also highlight the difference between
this method and the Gaussian mechanism.

Da(pu|pv) =
a

2Cσ2
(µu − µv)

2 (8)

The divergence in Equation 8 decreases with the number
of contacts C. So, the more contacts on a day, the smaller
the divergence. It remains to upper bound the worst case of
(µu − µv)

2 for any two adjacent data sets. In Appendix C.3
we show that for any two adjacent data sets, (µu − µv)

2 ≤
(log(1−γup1)− log(1−γlp1))2. This bound is achieved by
clipping every COVIDSCORE of the FN computation in the
interval [γl, γu]. Parameter p1 is a model parameter repre-
senting the probability that, given a contact, the virus trans-
mits from user to user. Denoting the worst-case divergence
in Equation 26 by ρ, we have a bounded Rényi divergence if
the following holds:

σ2 ≥ a

2Cρ
(log(1− γup1)− log(1− γlp1))

2. (9)

Equation 9 shows that more noise should be added when-
ever wider clipping values are used or when a user has fewer
contacts. Experimentally, we find that tuning the clipping
values could slightly improve the results, but another hyper-
parameter increases the complexity of the method. There-
fore, we run all experiments with γl = 0 and γu = 1.

Algorithm 1 summarizes the steps in calculating the
COVIDSCORE with DPFN. The sample is from a log-normal
distribution with the parameter µ = ω∗,t − σ2

2 . The vari-
ance parameter σ2 follows from Equation 9 with a, ρ, and
the specified number of contacts C = |N(u, t)|.
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Figure 2: Showing the effect of differential privacy on the
approximate inference from FN. An example user has two
contacts. Both contacts have a low COVIDSCOREin the left
column, while in the right column, one contact has a high
COVIDSCORE. The red-shaded region indicates the 20-80
quantiles for sampling the COVIDSCORE from the DPFN
mechanism of Algorithm 1. The regions overlap, which re-
flects privacy, but the median red line is higher in the right
column, which indicates a possible infection and could in-
form a testing policy.

Visual example. We illustrate the effect of differential
privacy on the estimates for the COVIDSCORE by FN. In
this example, a user has two contacts at day −5. In the left
column of Figure 2, both contacts have a low COVIDSCORE;
in the right column, one contact has a high COVIDSCORE.
The red line indicates the median estimate of being infected,
i.e. the COVIDSCORE, and the shaded region indicates
the 20-80 quantiles. Interpreting the definition of DP in
Equation 4, changing the score of a single contact should
not change the likelihood of an output too much. Whether
the user has no contact with a high score (left column), or a
single contact with a high score (right column), the shaded
red regions in the figure overlap, which gives the contact
plausible deniability against a potential adversary (Dwork
and Roth 2014). The red median line, though, runs slightly
higher in the right column, which is the utility needed for a
contact tracing algorithm. Naturally, the added noise gives
rise to a trade-off, where more noise increases privacy but
decreases the utility for a subsequent testing policy and
mitigation of a pandemic (Dinur and Nissim 2003). We
address this trade-off in Section 4.

Optimize parameters in RDP. The bound in Equation 9
uses RDP, and depends on (a, ρ). Yet, we want to report
(ε, δ)-DP. Previous literature optimizes for the optimal value
a via a line search (Abadi et al. 2016). Fortunately, for our
particular problem, we find a closed-form solution for op-
timal a and ρ, outlined in Appendix C.4. We arrive at the
expression for the order a of RDP:

a = 1 +
d+

√
d(d+ ε)

ε
(10)

ρ = ε− d(a− 1)−1 (11)

with d = log 1
δ .

Algorithm 1: Differentially private factorized Neighbors
Input: Dataset of contacts’ COVIDSCORE D = {ϕc,t} for
all contacts c, t of user u in the set of neighbors N(u, t)
Parameter: Privacy parameters (ε, δ), model parameters
are omitted for clarity
Output: COVIDSCORE for this user

1: Convert (ε, δ)-DP parameters to (a, ρ)-RDP parameters
using Equation 10

2: Convert each ϕc,t to ωc,t using Equation 56
3: for t = −T,−T + 1, · · · ,−1 do
4: ω∗,t =

∏
c∈N(u,t) ωc,t

5: Calculate σ2(a, ρ, |N(u, t)|) using Equation 9
6: Calculate µ(ω∗,t, σ

2) using Equation 22
7: ω̃∗,t ∼ log-normal(µ, σ2)
8: end for
9: return F2(ω̃∗,t=−T , ω̃∗,t=−T+1, · · · , ω̃∗,t=−1)

Assumptions on the algorithm: The inference runs for a
specific time window, t−T, t−T+1, · · · , t−1, t, and an es-
timate for the probability p(zu,t = I) is released to the user
(i.e. using Gibbs sampling or FN). Only this COVIDSCORE
is released to the user under DP, and inference is run un-
modified, in an encrypted space, such as a trusted execution
environment(Sabt, Achemlal, and Bouabdallah 2015). The
differential privacy holds with respect to the message of a
contacted user at the time step of the contact. If the user has
no other contacts than an adversary, an adversary could gain
more information through repeated contacts. In the worst
case for K repeated contacts, the differential privacy pa-
rameters ε and δ increase K fold (Dwork and Roth 2014).
We aim to investigate advanced composition bounds for this
case in future work (McMahan et al. 2018). We assume to
have access to a known contact graph, using methods as
mentioned in the Related Work in Section 2. Finally, the at-
tack outlined in the introduction assumes that the adversary
uses a contact tracing app and does not want to get infected.
Otherwise, a COVID19 test would reveal the health status.

4 Experiments and Results
We test the differentially private contact tracing algorithms
on two widely used simulators. We will explore the trade-off
between privacy and utility in two experiments.

4.1 Simulators
The effect of a testing policy using the proposed method
is tested on two simulators. These simulators are both cal-
ibrated to real-world data and account for different contact
patterns based on age, profession, and type of household.

The OpenABM simulator (Hinch et al. 2021) uses a
network-based process to generate contacts, and is cali-
brated against the UK for different age, household, and
occupational networks patterns (school, work, and social
network). The simulator has about 150 modifiable param-
eters, and we use the recommended settings – the same as
used in Baker et al. (2021); Romijnders et al. (2023).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14833



ε=0.1 ε=1 ε=10 ε=100

10−3

10−2

10−1

Pe
ak

 In
fe

ct
io

n 
R

at
e

OpenABM Simulator

Traditional Contact Tracing Gibbs Sampling Per-message FN DPFN

ε=0.1 ε=1 ε=10 ε=100

10−3

10−2

Covasim Simulator

Figure 3: The privacy-utility trade-off for differentially private contact tracing. The y-axis indicates the Peak Infection rate,
where lower is better. At ε = 1, a common setting for differential privacy, DPFN achieves a lower peak infection rate than
all other methods. OpenABM and Covasim are the two most widely used simulators for COVID19. Error bars indicate 20-80
quantiles for ten random restarts.

The Covasim simulator (Kerr et al. 2021b) models differ-
ent contact patterns in layers like households, schools, work-
places, and social communities. Results from this simulator
were already used by policymakers (Panovska-Griffiths et al.
2020; Kerr et al. 2021a). The contacts are calibrated against
a typical city in the USA, and the disease dynamics are strat-
ified for ten age categories.

4.2 Experimental Details
The experiments aim to compare the influence on the peak
infection rate for the methods outlined before. Peak infec-
tion rate is a common metric to assess the capability of a
protocol to mitigate the pandemic (Baker et al. 2021; Romi-
jnders et al. 2023). The peak of the pandemic corresponds
to most economic and societal consequences, as during that
period the hospitals could overfill and governments might
decide on a lockdown (Kaye et al. 2021).

Test protocol. The test protocol is the same in all ex-
periments. Each day, the decentralized algorithm predicts
a COVIDSCORE per user, and users with the highest score,
not currently in quarantine, receive a request to test for
COVID19. Simulations on OpenABM test 10% of the popu-
lation daily, and simulations on Covasim test only 2% of the
population daily. Positively tested users go in isolation for
ten days. We assume a 100% follow-up from users that are
requested to test, Appendix A explores a scenario where the
follow-up is less than 100%.

The simulation becomes increasingly challenging when
tests for COVID19 have false positives and false negatives.
The default FPR and the FNR are 1% and 0.1% respectively.
To test the robustness to noisy tests, we increase these noise
rates in an experiment similar to (Romijnders et al. 2023).
The FPR increases up to a level of 25% and the FNR up to a
level of 3% – these are the worst-case design specifications

as prescribed by the European centre for disease control dur-
ing the COVID19 pandemic (ECDC 2021).

Simulation scale. Unless otherwise noted, we simulate a
population of 100.000 users for 100 days for OpenABM and
91 days in the case of Covasim. At the start of the simulation,
25 people are infected, and interventions start after the third
day of the simulation. Whenever a figure depicts an error
bar or a table mentions an interval as a subscript, the num-
ber indicates the median, and the caps indicate the 20-80
quantiles of ten random restarts. The randomness between
different seeds stems from the population dynamics, disease
dynamics, and releasing noisy tests for the virus. The unit
h indicates one-per-thousand users.

Differential privacy levels. The δ forms an important pa-
rameter in differential privacy as this constitutes the proba-
bility of exceeding the ε bound. We set this value to 1

1000 in
all experiments. Existing literature prescribes that the δ pa-
rameter should be smaller than one divided by the data set
size (Blanco-Justicia et al. 2022; Hsu et al. 2014; van Dijk
and Nguyen 2023). Algorithm 1 uses a privacy bound for
the contacts per day, and as our simulators have a max of
200 contacts per day, and an average of only fifteen contacts
per day, 1

1000 is well below the recommended standard.

4.3 Results for Differential Privacy
Increased privacy at higher performance. Figure 3 dis-
plays our main result, which is a trade-off for the privacy
level. The x-axis varies the ε value for the differential pri-
vacy per message, as defined in Equation 4. On the y-axis,
we plot the peak infection rate (PIR). A lower PIR is better,
as this corresponds to fewer people simultaneously having
the infection. Vice versa, a high PIR implies the occurrence
of the pandemic with all its potential consequences.
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Test setup No DPFN DPFN+
privacy

(fpr 0.0%; 0.5 1.1 0.6
fnr 0.0%) [0.5,0.6] [0.7,1.4] [0.5,0.7]

(fpr 1%; 0.5 1.1 0.6
fnr 0.1%) [0.4,0.6] [0.9,1.7] [0.5,0.6]

(fpr 10%; 0.6 17.6 0.9
fnr 1%) [0.5,0.8] [11.4,20.4] [0.7,1.0]

(fpr 25%; 0.6 46.6 0.7
fnr 3%) [0.5,0.8] [40.4,48.0] [0.6,0.8]

No testing 200 [190,212]

Table 1: DP makes the model less robust against noisy tests
(column DPFN), but more available tests can counteract this
effect (column DPFN+). This result presents an important
message to policymakers. The PIR can be low under private
scenarios, but this requires more tests. All results are in 1
daily infection per thousand users (h).

Figure 3 shows that for the values of ε = 1 per message,
DPFN results in a PIR below 1%, whereas other methods,
such as Traditional contact tracing, only achieve a low PIR at
ten times as large value for ε. From here onwards, we focus
on the ε = 1 case as many studies advise this setting for
differential privacy (Hsu et al. 2014; Blanco-Justicia et al.
2022; Dyda et al. 2021; Wood et al. 2018).

On both simulators, one observes that our DPFN method
achieves better PIR than the per-message FN method at
ε = 1. DPFN introduces noise later in the computation,
which we hypothesize maintains a better utility. In terms
of PIR, Gibbs sampling does worse than all other methods.
This may have two reasons: a) under differential privacy,
the Gibbs chain does not converge to the correct distribu-
tion (Wang, Fienberg, and Smola 2015), or b) the high num-
ber of samples necessitates too high differential privacy bud-
get, (ε, δ), to have good utility at low budget. The results for
the Covasim simulator in the right column of Figure 3 gener-
ally display more minor differences in PIR between high and
low values of ε. This stems from different modeling assump-
tions between the Covasim and the OpenABM simulator.

Stability of our DPFN algorithm. We also explore the re-
lation between more noisy tests for COVID19 and the noise
due to differential privacy. In Table 1, we increase the FPR
and FNR, which has been highlighted as a challenging sce-
nario for traditional contact tracing apps (Reichert, Brack,
and Scheuermann 2021).

Differential privacy makes FN less robust to noisy tests,
but this can be counteracted by running more tests. Com-
pared to the no privacy column, the column DPFN of Ta-
ble 1 shows that under differential privacy, at ε = 1, the
PIR is an order of magnitude higher. At the highest FPR and
FNR, the PIR increases from 0.6 h to 46.6 h. However,
adding more available tests can counteract this noise. For
column DPFN+, we increase the daily testing budget from
10% to 15%, and the peak infection rates are again similarly

#Agents Traditional (h) DPFN (h)

50,000 123.2 [108.3,136.4] 2.5 [1.8,3.7]

100,000 121.6 [110.0,134.3] 1.5 [1.0,1.9]

500,000 134.9 [134.2,135.6] 0.5 [0.4,0.5]

1,000,000 134.4 [133.8,135.0] 0.2 [0.2,0.2]

Table 2: Evaluating our algorithm at larger population scales
of the simulator. To date, the result with 1 million users is
the largest simulation reported for statistical contact tracing.
Even at this scale, we show that DPFN results in signifi-
cantly lower PIR compared to traditional contact tracing.

low as the no privacy column. This shows that using more
available tests can compensate for the noise resulting from
differential privacy. Table 1 provides an important message
to policymakers who need to make a trade-off between in-
fection rates and privacy.

Scaling to 1M agents. Table 2 shows the simulation run-
ning with ε = 1 at different population scales. All simula-
tions in this paper are run with 100.000 users, but this table
shows that the benefits of DPFN continue even at the mil-
lion scale. From as small as fifty thousand users to as large
as one million users, the DPFN method results in a signifi-
cantly lower peak infection rate compared to traditional con-
tact tracing. We emphasize that this is the largest simulation
to date for statistical contact tracing.

5 Discussion and Conclusion
We propose a differentially private algorithm for releasing
a COVIDSCORE that depends on decentralized communi-
cation between contacts. This algorithm protects against a
newly identified privacy attack where an adversary aims to
reconstruct the COVIDSCORE. Our algorithm results in a two
to ten-fold decrease in the peak infection rate compared to
other approaches like Gibbs sampling and traditional con-
tact tracing. This improvement holds at ε = 1 per mes-
sage, while other methods only achieve similar results with
ε ≥ 10. We evaluate the algorithm on two widely used sim-
ulators, and we are the first to evaluate these algorithms at a
scale of a million agents, where DPFN again achieves lower
PIR than traditional contact tracing.

We see two important directions for future research. First
is the study of repeated contacts. Advanced composition
bounds are needed to describe privacy when a user has
no other contacts but repeated contacts with an adversary.
Secondly, our algorithm assumes full adoption of a contact
tracing app, but more research is needed into partial adop-
tion. We discuss these and other implications of automated
decision-making in Appendix B.

Contact tracing will be one of our first lines of defense to
understand and mitigate a virus whenever a new pandemic
arises. As argued in the introduction, studies show that pri-
vacy concerns are among the top three concerns for adopting
a contact tracing app. We believe differential privacy is an
essential assurance towards the safe use of contact tracing.
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Bugnion, E.; Lueks, W.; Stadler, T.; Pyrgelis, A.; Antonioli, D.;
et al. 2020. Decentralized privacy-preserving proximity tracing.
arXiv:2005.12273.
Vadrevu, P. K.; Adusumalli, S. K.; and Mangalapalli, V. K. 2020.
A hybrid approach for personal differential privacy preservation in
homogeneous and heterogeneous health data sharing. High Tech-
nology Letters.
van Dijk, M.; and Nguyen, P. H. 2023. Considerations
on the Theory of Training Models with Differential Privacy.
arXiv:2303.04676.
Vepakomma, P.; Pushpita, S. N.; and Raskar, R. 2021.
DAMS: Meta-estimation of private sketch data structures
for differentially private COVID-19 contact tracing. Tech-
nical report, Accessed: June 14, 2023. [Online]. Available:
https://www.media.mit.edu/publications/dams-meta-estimation-
of-private-sketch-data-structures-for-differentially-private-covid-
19-contact-tracing/.
Vindegaard, N.; and Benros, M. E. 2020. COVID-19 pandemic
and mental health consequences: Systematic review of the current
evidence. Brain, Behavior, and Immunity.
Walrave, M.; Waeterloos, C.; and Ponnet, K. 2022. Reasons for
nonuse, discontinuation of use, and acceptance of additional func-
tionalities of a COVID-19 contact tracing app: cross-sectional sur-
vey study. JMIR Public Health and Surveillance.
Wang, Y.-X.; Fienberg, S.; and Smola, A. 2015. Privacy for free:
Posterior sampling and stochastic gradient monte carlo. In Inter-
national Conference on Machine Learning, ICML.
Wood, A.; Altman, M.; Bembenek, A.; Bun, M.; Gaboardi, M.;
Honaker, J.; Nissim, K.; O’Brien, D. R.; Steinke, T.; and Vadhan, S.
2018. Differential privacy: A primer for a non-technical audience.
Vanderbilt Journal of Entertainment and Technology Law.
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