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Abstract
In partial label learning (PLL), each instance is associated with
a set of candidate labels among which only one is ground-truth.
The majority of the existing works focuses on constructing
robust classifiers to estimate the labeling confidence of can-
didate labels in order to identify the correct one. However,
these methods usually struggle to rectify mislabeled samples.
To help existing PLL methods identify and rectify mislabeled
samples, in this paper, we introduce a novel partner classifier
and propose a novel “mutual supervision” paradigm. Specif-
ically, we instantiate the partner classifier predicated on the
implicit fact that non-candidate labels of a sample should not
be assigned to it, which is inherently accurate and has not
been fully investigated in PLL. Furthermore, a novel collab-
orative term is formulated to link the base classifier and the
partner one. During each stage of mutual supervision, both
classifiers will blur each other’s predictions through a blur-
ring mechanism to prevent overconfidence in a specific label.
Extensive experiments demonstrate that the performance and
disambiguation ability of several well-established stand-alone
and deep-learning based PLL approaches can be significantly
improved by coupling with this learning paradigm.

Introduction
As a representative framework of weakly supervised learning,
partial label learning (PLL), where each instance is associ-
ated with a set of candidate labels among which only one
is ground-truth, has garnered increasing attention in recent
years (Cour, Sapp, and Taskar 2011; Han et al. 2018; Jin
and Ghahramani 2002a; Papandreou et al. 2015; Ren et al.
2018; Zhou 2018; Zhu and Goldberg 2009; Chai, Tsang, and
Chen 2020; Ren et al. 2018; Li, Guo, and Zhou 2021; Li and
Liang 2019). PLL has also been applied to many real-world
applications due to the growing demand for identifying the
valid label from a set of candidate labels. For instance, in the
automatic face naming task (Zeng et al. 2013; Guillaumin,
Verbeek, and Schmid 2010), each face crapped from images
or videos is associated with a list of names extracted from the
corresponding title or caption (Gong, Yuan, and Bao 2022).
Another example is the facial age estimation task: for each
human face, the ages annotated by crowd-sourcing labelers
are considered as candidate labels (Panis et al. 2016).
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Formally speaking, suppose X = Rq denotes the q-
dimensional feature space and let Y = {0, 1}l be the la-
bel space with l classes. Given a partial label data set
D = {xi, Si|1 ≤ i ≤ n} where xi ∈ X , Si ⊆ Y is the
corresponding candidate label set and n is the number of
instances, the task of PLL is to induce a multi-class classifier
f : X → Y based on D. The most challenging part of PLL is
that the ground-truth label yi of a training sample xi conceals
in its candidate labels, i.e, yi ∈ Si, which cannot be directly
accessible during the training process.

To address this challenge, existing works focus on disam-
biguation, which involves differentiating the labeling confi-
dences of each candidate label to identify the ground truth.
This process typically relies on an alternative and iterative
method for updating the classifier’s parameters. For instance,
PL-AGGD (Wang, Zhang, and Li 2022) constructs a similar-
ity graph to achieve disambiguation, and SURE (Feng and
An 2019) aims to maximize an infinity norm to differentiate
the ground-truth label. However, a significant yet rarely stud-
ied question arises in the context of such algorithms: can a
classifier correct a false positive candidate label (i.e., invalid
candidate label) with a large or upward-trending labeling con-
fidence at a later stage? To explore this question, we conduct
experiments on a real-world data set Lost (Cour et al. 2009)
and record the labeling confidences of several candidate la-
bels generated by PL-AGGD (Wang, Zhang, and Li 2022) in
each iteration, which is shown in Fig. 1. Our findings reveal
some intriguing phenomena:

• Each candidate label’s labeling confidence is likely to
continually increase or decrease until convergence.

• For a false positive candidate label with a large labeling
confidence, although its confidence may decrease in sub-
sequent iterations, the confidence remains substantial and
can easily lead to the incorrect identification of the ground
truth label.

The observed phenomena suggest that once the labeling
confidence of a false positive candidate label increases, it
becomes difficult to decrease in the subsequent iterations.
Furthermore, even if the confidence of a false positive candi-
date label decreases appropriately, it may still be recognized
as the ground truth one, as its initial labeling confidence re-
mains large and continues to be greater than the confidence
of the ground truth label upon convergence. As a result, cor-
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Figure 1: Two representative errors a typical PLL classifier, e.g., PL-AGGD (Wang, Zhang, and Li 2022) may make. CGT and
C∗

GT stand for the labeling confidence of the ground-truth label generated by PL-AGGD and PL-AGGD coupled with PLCP, and
CFP and C∗

FP stand for that of a false positive label predicted by PL-AGGD and PL-AGGD coupled with PLCP. (a). For a false
positive candidate label with a large labeling confidence, although its confidence may decrease properly, it could still be larger
than the ground-truth one’s. (b). The labeling confidence of a false positive candidate label keeps increasing and becomes the
largest, which misleads the final prediction. When coupled with PLCP (vertical dashed line), the new labeling confidence of each
candidate label generated by the partner classifier is adopted as the supervision to help PL-AGGD correct these errors, which
results in a mutation in the figures.

recting mislabeled samples for a PLL classifier itself proves
to be quite challenging.

To address the aforementioned challenge, we propose a
novel PLL mutual supervision framework called PLCP, re-
ferring to Partial Label Learning with a Classifier as Partner.
Given a classifier provided by any existing PLL approach as
the base classifier, as shown in Fig. 2, PLCP introduces an
additional partner classifier to help the base classifier identify
and rectify mislabeled samples. This partner classifier aims to
provide more accurate and complementary information to the
base classifier, thereby enabling better disambiguation and fa-
cilitating mutual supervision between the two classifiers. It is
worth noting that the design of an effective partner classifier
is crucial to the success of this framework, as the feedback
from the partner classifier greatly influences the base classi-
fier’s ability to identify and correct mislabeled samples. Since
the information in non-candidate labels, which indicates that
a set of labels DO NOT belong to a sample, is more precise
than that in candidate labels and is often overlooked by the
majority of existing works, the partner classifier can be de-
signed to specify the labels that should not be assigned to a
sample, thereby complementing the base classifier. Addition-
ally, a novel collaborative term is also designed to link the
base classifier and the partner classifier.

In each stage of mutual supervision, the labeling confi-
dence is first updated based on the base classifier’s modeling
output. Subsequently, a blurring mechanism is employed to
further process the labeling confidence to introduce uncer-
tainty, which could potentially reduce the large confidence
of some false positive candidate labels or increase the small
confidence of the ground truth one. This updated labeling
confidence then serves as the supervision information to in-
teract with the partner classifier, whose final output will also
be converted to supervise the base classifier. The predictions

of the two classifiers, while distinct, are inextricably linked,
enhancing the disambiguation ability of this paradigm in two
opposing ways. With this mutual supervision paradigm, mis-
labeled instances have a higher likelihood of being corrected.

The main contributions of this paper can be summarized
as follows:

• We highlight two representative errors that a PLL classifier
may make, which has not been previously investigated
and offers a new insight into PLL.

• We introduce a partner classifier based on non-candidate
labels to better identify and correct mislabeled samples of
a base classifier through a mutual supervision framework,
which is applicable to all types of PLL approaches.

• We propose a novel collaborative term in the partner classi-
fier, which links the base classifier and itself. Additionally,
a blurring mechanism is introduced to add uncertainty
to the outputs, which effectively tackles the mentioned
drawbacks.

• We conduct experiments on several data sets to validate
the effectiveness of this framework, and the results demon-
strate that PLCP improves the disambiguation ability of
the base classifier, leading to outstanding performance
across all data sets.

Related Work
Partial label learning (PLL), also known as superset-label
learning (Liu and Dietterich 2012, 2014) or ambiguous label
learning (Hüllermeier and Beringer 2005; Zeng et al. 2013),
is a representative weakly supervised learning framework
which learns from inaccurate supervision information. In
partial label learning, each instance is associated with a set of
candidate labels with only one being ground-truth and others
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Figure 2: The framework of PLCP. A partner classifier is constructed based on the non-candidate label information to enable
mutual supervision between the base classifier and itself. In each stage of mutual supervision, the base classifier updates the
labeling confidence P based on its modeling output M and blurs it through a blurring mechanism. Afterwards, the output is
represented as the supervision information to interact with the partner classifier. The pipeline of the partner classifier is almost
the same as the base classifier’s.

being false positive. As the ground-truth label of a sample
conceals in the corresponding candidate label set, which can
not be directly acquired during the training process, partial
label learning task is a quite challenging problem.

To tackle the mentioned challenge, existing works mainly
focus on disambiguation (Feng and An 2019; Nguyen and
Caruana 2008; Zhang and Yu 2015; Wang, Zhang, and Li
2022; Fan et al. 2021; Xu, Lv, and Geng 2019; Zhang, Wu,
and Bao 2022; Qian et al. 2023), which can be broadly di-
vided into two categories: averaging-based approaches and
identification-based approaches. For the averaging-based ap-
proaches (Hüllermeier and Beringer 2005; Cour, Sapp, and
Taskar 2011; Zhang and Yu 2015), each candidate label of a
training sample is treated equally as the ground-truth one and
the final prediction is yielded by averaging the modeling out-
puts. For instance, PL-KNN (Hüllermeier and Beringer 2005)
averages the candidate labels of neighboring samples to make
the prediction. This kind of approach is intuitive, however,
it can be easily influenced by false positive candidate la-
bels which results in inferior performance. For identification-
based approaches, (Feng and An 2018, 2019; Nguyen and
Caruana 2008; Jin and Ghahramani 2002b; Yu and Zhang
2017), the ground-truth label is treated as a latent variable and
can be identified through an iterative optimization procedure
such as EM. Moreover, labeling confidence based strategy
is proposed in many state-of-the-art identification based ap-
proaches for better disambiguation. (Zhang and Yu 2015)
and (Wang, Zhang, and Li 2022) construct a similarity graph
based on the feature space to generate labeling confidence of
candidate labels.

Recently, deep-learning based models have been intro-
duced to address PLL tasks (Lv et al. 2020; Xu et al. 2021;

He et al. 2022; Wu, Wang, and Zhang 2022; Lyu, Wu, and
Feng 2022; Xia et al. 2023). PICO (Wang et al. 2022) is
a contrastive learning-based approach devised to tackle la-
bel ambiguity in partial label learning. This method seeks
to discern the ground-truth label from the candidate set by
utilizing contrastively learned embedding prototypes. Lv et
al. proposed PRODEN in (Lv et al. 2020), a model where
the simultaneous updating of the model and identification
of true labels are seamlessly integrated. Furthermore, He et
al. introduced a partial label learning method based on se-
mantic label representations in (He et al. 2022). This method
employs a novel weighted calibration rank loss to facilitate
label disambiguation. By leveraging label confidence, the ap-
proach weights the similarity towards all candidate labels and
subsequently yields a higher similarity of candidate labels in
comparison to each non-candidate label.

However, as mentioned in Section 1, the above kinds of
approach usually fail to identify and correct the mislabeled
samples. To address this challenge, we propose a novel frame-
work called PLCP in the next section.

The Proposed Approach
Denote X = [x1,x2, ...,xn]

T ∈ Rn×q the sample matrix
with n instances, and Y = [y1,y2, ...,yn]

T ∈ {0, 1}n×l

the partial label matrix with l labels, where yij = 1 (resp.
yij = 0) if the j-th label of xi resides in (resp. does not
reside in) its candidate label set. Given the partial label data
set D = {xi, Si|1 ≤ i ≤ n}, the task of PLL is to learn a
multi-class classifier f : X → Y based on D.

To address the challenge described in Section 1, a partner
classifier P is designed to complement a base classifier B and
also can be supervised by B. B represents any existing PLL
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classifier with fine generality and flexibility. In each stage of
mutual supervision, the base classifier updates the labeling
confidence based on its modeling outputs, and then a blurring
mechanism is applied to further process it. Subsequently the
output of the labeling confidence is taken as the supervision
information for the partner classifier. The learning pipeline of
the partner classifier closely mirrors that of the base classifier.
The following subsections will provide further details on this
process.

Base Classifier
Suppose P = [p1,p2, ...,pn]

T ∈ Rn×l is the labeling con-
fidence matrix, where pi ∈ Rl represents the labeling confi-
dence vector of xi, and pij denotes the probability of the j-th
label being the ground-truth label of xi. For the base classi-
fier utilizing the labeling confidence strategy, P is initialized
according to the base classifier. Otherwise, it is initialized as
follows:

pij =

{ 1∑
j yij

if yij = 1

0 otherwise .
(1)

The labeling confidence vector pi typically satisfies the fol-
lowing constraints:

∑
j pij = 1, 0 ≤ pij ≤ yij (Wang,

Zhang, and Li 2022; Feng and An 2018). The first constrains
pi to be normalized, and the second indicates that only the
confidence of a candidate label has a chance to be positive. It
should be noted that the ideal state of pi is one-hot.

Once the base classifier has been trained, its modeling
output will be generated. Denote the modeling output matrix
M = [m1,m2, ...,mn]

T ∈ Rn×l, where mij represents the
probability of the j-th label being xi’s ground-truth label as
predicted by the base classifier. It should be noted that mi

may either be a real-valued or one-hot vector depending on
the specific base classifier. For instance, for SURE (Feng and
An 2019) mi is real-valued, while for PL-KNN (Hüllermeier
and Beringer 2005) it is one-hot. Afterwards, P is updated to
P1 through the following equation:

P1 = T0 (TY (αP+ (1− α)M)) , (2)

where α is a hyper-parameter controlling the smoothness of
the labeling confidence. T0, TY are two thresholding opera-
tors in element-wise, i.e., T0(a) := max{0, a} with a being
a scalar and TY(a) := min{yij , a}.

Blurring Mechanism
In the next step, a blurring mechanism is designed to further
process the labeling confidence matrix P1 to Q1 :

Q1 = ϕ(ekP1)⊙Y, (3)

where ϕ(·) is an element-wise operator, for a matrix A =
[aij ]n×l ∈ Rn×l, ϕ(A) = [exp(aij)]n×l. k is a temperature
parameter that controls the extent of blurring of labeling con-
fidence. The labeling confidences are expected to be blurred
at each stage of mutual supervision to prevent being over-
confident in some false positive labels, hence we set k < 0,
which means two labeling confidences that differ significantly
can also become close. ⊙ represents the Hadamard product
of two matrices. For matrices A and B with same size n× l,
A⊙B = [aijbij ]n×l. The Hadamard product allows only the

candidate label has a positive confidence. We then normalize
each row of Q1 to satisfy the two constraints of labeling
confidence, and output the result O1 ∈ Rn×l.

Partner Classifier
Since the partner classifier has significant impacts on the
success of PLCP, designing an appropriate partner classifier
is quite important. In order to better assist the base classi-
fier, a classifier that specifies the labels that should not be
assigned to a sample is instantiated as the partner classifier,
since non-candidate label information is exactly accurate
and opposite to the candidate label information, making it a
valuable complement to the base classifier.

Denote the non-candidate label matrix Ŷ = [ŷij ]n×l

where ŷij = 0 (resp. ŷij = 1) if the j-th label is (resp. is not)
in the candidate label set of xi, and P̂ = [p̂1, p̂2, ..., p̂n]

T ∈
Rn×l the non-candidate labeling confidence matrix, where
p̂ij represents the probability of the j-th label NOT being
the ground-truth label of xi. Similar to the labeling confi-
dence, P̂ is also constrained with two constraints:

∑
j p̂ij =

l − 1, ŷij ≤ p̂ij ≤ 1. The first term constrains the sum of the
probability of each label being invalid is strictly l − 1, and
the second indicates that only candidate label has a chance
to update its non-candidate labeling confidence while the
others keep 1 (invalid labels). Note that the ideal state of p̂i is
“zero-hot”, i.e., only one element in p̂i is 0 with others 1. P̂
is initialized as Ŷ. Suppose Ŵ = [ŵ1, ŵ2, ..., ŵq]

T ∈ Rq×l

is the weight matrix, the partner classifier is formulated as
follows:

min
Ŵ,b̂,C

∥∥∥XŴ + 1nb̂
T −C

∥∥∥2
F
+ λ

∥∥∥Ŵ∥∥∥2
F

s.t. Ŷ ≤ C ≤ 1n×l,C1l = (l − 1)1n,

(4)

where b̂ = [b̂1, b̂2, ..., b̂l]
T ∈ Rl is the bias term, 1n ∈ Rn

is an all one vectors, 1n×l is an all one matrix with size
n × l and λ is a hyper-parameter trading off these terms.
∥Ŵ∥F is the Frobenius norm of the weight matrix. C ∈
Rn×l represents non-candidate labeling confidence, which
is a temporary variable only used for optimization in the
partner classifier. By solving this optimization problem, the
partner classifier learns to specify which labels should not be
assigned to each sample, improving the overall performance
of the mutual supervision process.

The Collaborative Term
Since a label is either ground-truth or not and based on the
constraints on pi and p̂i, the smallest value of pT

i p̂i is ob-
tained when p̂i is zero-hot (pi is one-hot). Therefore, a col-
laborative relationship between the outputs of the partner
classifier and the prior given by the base classifier can be
formulated, with the partner classifier becoming

min
Ŵ,b̂,C

∥∥∥XŴ + 1nb̂
T −C

∥∥∥2
F
+ γtr

(
O1C

T
)
+ λ

∥∥∥Ŵ∥∥∥2
F

s.t. Ŷ ≤ C ≤ 1n×l,C1l = (l − 1)1n, (5)
where γ is a hyper-parameter. Different from candidate labels,
the non-candidate labels are directly accessible and accurate,
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therefore the information learnt by the partner classifier is
precise, which can effectively complement the base classifier.

The problem in Eq. (5) can be solved via an alternative and
iterative manner, which results in an optimal weight matrix
Ŵ and bias term b̂. For detailed solution process, please
refer to the Supplementary. The modeling output M̂ for the
training data is

M̂ = XŴ + 1nb̂
T. (6)

Afterwards, the non-candidate labeling confidence P̂ is up-
dated to P̂1 following

P̂1 = T1
(
TŶ

(
αP̂+ (1− α)M̂

))
, (7)

where T1, TŶ are two thresholding operators in element-
wise, i.e., T1(m) := min{1,m} with m being a scalar and
TŶ(m) := max{ŷij ,m}. The non-candidate labeling confi-
dence can be further processed as Q̂1 via the blurring mecha-
nism:

Q̂1 = ϕ(ek(1− P̂1))⊙Y. (8)
For convenience, we transform the non-candidate labeling
confidence into labeling confidence in advance, and finally
Q̂1 is normalized as Ô1, which is the supervision of the
base classifier in the next iteration. For an unseen sample x,
suppose the non-candidate labeling confidence vector pre-
dicted by the partner classifier in the last iteration is p̂pt. The
prediction y∗ of PLCP is

y∗ = argmaxi (1− p̂pti ), (9)

Extensions of PLCP
We can also extend PLCP to a kernel version which extends
the feature map to a higher dimensional space or a deep-
learning based version which enables deep-learning based
methods involved in PLCP. For more details, please refer to
the Supplementary.

Experiments
Compared Approaches
To evaluate the effectiveness of PLCP, we couple it with
several well-established partial label learning approaches.
Suppose B represents any partial label learning classifier (i.e.,
the base classifier) and B-PLCP is the B coupled with PLCP,
the performances of B and B-PLCP are compared to verify
the effectiveness of PLCP. In this paper, B is instantiated by
six stand-alone (non-deep) approaches, PL-CL(Jia, Si, and
Zhang 2023), PL-AGGD (Wang, Zhang, and Li 2022), SURE
(Feng and An 2019), LALO (Feng and An 2018), PL-SVM
(Nguyen and Caruana 2008) and PL-KNN (Hüllermeier and
Beringer 2005), and two deep-learning based methods PICO
(Wang et al. 2022) and PRODEN (Lv et al. 2020). The hyper-
parameters of B are all set according to the original papers.

Comparison with Stand-alone Methods
Experimental Settings For PLCP, we set λ = 0.05,
α = 0.5, γ = 2 and k = −1, and the maximum itera-
tion of mutual supervision is set to 5. For PL-CL, PL-AGGD,

SURE, LALO and PL-SVM, the kernel function is Gaus-
sian function, which is the same as we adopt. Ten runs of
50%/50% random train/test splits are performed, and the av-
erage accuracy with standard deviation is represented for all
B and B-PLCP. For PL-SVM and PL-KNN which do not
adopt labeling confidence strategy, Ô is further processed as
G(Ô−P) where G is an element-wise operator and G(x) = 1
if x ≥ 0 otherwise 0 with x being a scalar.

We conduct experiments on six real-world partial label
data sets collected from several domains and tasks, includ-
ing FG-NET (Panis et al. 2016) for facial age estimation,
Lost (Cour et al. 2009), Soccer Player (Zeng et al. 2013) and
Yahoo!News (Guillaumin, Verbeek, and Schmid 2010) for au-
tomatic face naming, MSRCv2 (Liu and Dietterich 2012) for
object classification and Mirflickr (Huiskes and Lew 2008)
for web image classification. The details of the data sets are
summarized in the Supplementary.

For facial age estimation task, the ages annotated by crowd-
sourced labelers are considered as each human face’s can-
didate labels. For automatic face naming task, each face
scratched from a video or an image is presented as a sam-
ple while the names extracted from the corresponding titles
or captions are its candidate labels. For object classification
task, image segmentations are taken as instances with objects
appearing in the same image as candidate labels.

Performance on Real-World Data Set It is noteworthy
that the number of average label of FG-NET is quite large,
which could cause quite low classification accuracy for all
approaches. The common strategy is to evaluate the mean
absolute error (MAE) between the predicted age and the
ground-truth one. Specifically, we add another two sets of
comparisons on FG-NET w.r.t. MAE3/MAE5, which means
that test samples can be considered to be correctly classified
if the difference between the predicted age and true age is no
more than 3/5 years. The results of these two comparisons
are shown in the Supplementary due to the page limit. Table
1 summaries the classification accuracy with standard devia-
tion of each approach on real-world data sets, where we can
observe that
• B-PLCP significantly outperforms the base classifier B

in all cases according to the pairwise t-test with a signifi-
cance level of 0.05, which validates the effectiveness of
PLCP.

• State-of-the-art (SOTA) approaches, such as PL-CL, PL-
AGGD, LALO and SURE, can also be significantly im-
proved by PLCP on all data sets. For instance, on FG-NET
the performance of SURE can be improved by 45%, and
on FG-NET(MAE3) the performance of LALO can be im-
proved by 5%. Additionally, PL-AGGD can be improved
by 5.10% and PL-CL can be improved by 3.61%. The
partner classifier’s non-candidate label information effec-
tively and significantly aids disambiguation, leading to
outstanding performance of the PLCP framework.

• The performances of PL-SVM and PL-KNN are improved
significantly and impressively when coupled with PLCP.
For example, on FG-NET the performance of PL-KNN-
PLCP is more than two times better than that of PL-
KNN, and PL-SVM-PLCP’s performance is more than
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Approaches Data set
FG-NET Lost MSRCv2 Mirflickr Soccer Player Yahoo!News

PL-CL 0.072 ± 0.009 0.710 ± 0.022 0.469 ± 0.016 0.647 ± 0.012 0.534 ± 0.004 0.618 ± 0.003
PL-CL-PLCP 0.080 ± 0.009 • 0.763 ± 0.020 • 0.493 ± 0.013 • 0.665 ± 0.011 • 0.543 ± 0.002 • 0.625 ± 0.002 •
PL-AGGD 0.063 ± 0.010 0.690 ± 0.020 0.451 ± 0.023 0.610 ± 0.012 0.521 ± 0.004 0.605 ± 0.002
PL-AGGD-PLCP 0.076 ± 0.010 • 0.717 ± 0.020 • 0.473 ± 0.017 • 0.668 ± 0.014 • 0.534 ± 0.005 • 0.609 ± 0.002 •
SURE 0.052 ± 0.007 0.709 ± 0.022 0.445 ± 0.022 0.630 ± 0.022 0.519 ± 0.004 0.598 ± 0.002
SURE-PLCP 0.076 ± 0.011 • 0.719 ± 0.019 • 0.460 ± 0.020 • 0.657 ± 0.020 • 0.527 ± 0.004 • 0.606 ± 0.002 •
LALO 0.065 ± 0.010 0.682 ± 0.019 0.449 ± 0.016 0.629 ± 0.016 0.523 ± 0.003 0.601 ± 0.003
LALO-PLCP 0.076 ± 0.010 • 0.701 ± 0.019 • 0.453 ± 0.015 • 0.647 ± 0.018 • 0.529 ± 0.004 • 0.605 ± 0.002 •
PL-SVM 0.043 ± 0.008 0.406 ± 0.033 0.389 ± 0.029 0.516 ± 0.022 0.412 ± 0.006 0.509 ± 0.006
PL-SVM-PLCP 0.081 ± 0.011 • 0.688 ± 0.029 • 0.468 ± 0.025 • 0.607 ± 0.023 • 0.526 ± 0.005 • 0.609 ± 0.002 •
PL-KNN 0.036 ± 0.006 0.300 ± 0.018 0.393 ± 0.014 0.454 ± 0.016 0.492 ± 0.003 0.368 ± 0.004
PL-KNN-PLCP 0.076 ± 0.009 • 0.662 ± 0.025 • 0.469 ± 0.016 • 0.607 ± 0.023 • 0.523 ± 0.004 • 0.593 ± 0.004 •
Improvement: PL-CL: 3.61% PL-AGGD: 5.10 % SURE: 12.24 % LALO: 4.01 % PL-SVM: 39.26 % PL-KNN: 53.98 %

Table 1: Classification accuracy of each compared approach on the real-world data sets. For any compared approach B, •/◦
indicates whether B-PLCP is statistically superior/inferior to B according to pairwise t-test at significance level of 0.05.

Approaches CIFAR-10 CIFAR-100
q = 0.1 q = 0.3 q = 0.5 q = 0.01 q = 0.05 q = 0.1

PICO 94.39 ± 0.18 % 94.18 ± 0.12 % 93.58 ± 0.06 % 73.09 ± 0.34 % 72.74 ± 0.30 % 69.91 ± 0.24 %
PICO-PLCP 94.80 ± 0.07 % • 94.53 ± 0.10 % • 93.67 ± 0.16 % • 73.90 ± 0.20 % • 73.51 ± 0.21 % • 70.00 ± 0.35 %
Fully Supervised B: 94.91 ± 0.07 % B-PLCP: 95.02 ± 0.03 % B: 73.56 ± 0.10 % B-PLCP: 73.69 ± 0.14 %
PRODEN 89.12 ± 0.12 % 87.56 ± 0.15 % 84.92 ± 0.31 % 63.36 ± 0.33 % 60.88 ± 0.35 % 50.98 ± 0.74 %
PRODEN-PLCP 89.63 ± 0.15 % • 88.19 ± 0.19 % • 85.31 ± 0.31 % • 64.20 ± 0.25 % • 61.78 ± 0.29 • 50.76 ± 0.90 %
Fully Supervised B: 90.03 ± 0.13 % B-PLCP: 90.30 ± 0.08 % B: 65.03 ± 0.35 % B-PLCP: 65.52 ± 0.32 %

Table 2: Classification accuracy of each compared approach on CIFAR-10 and CIFAR-100. For any compared approach B, •/◦
indicates whether B-PLCP is statistically superior/inferior to B according to pairwise t-test at significance level of 0.05.

Approaches Data set
FG-NET Lost MSRCv2 Mirflickr Soccer Player Yahoo!News

PL-CL 0.159 ± 0.016 0.832 ± 0.019 0.585 ± 0.012 0.697 ± 0.019 0.715 ± 0.001 0.827 ± 0.003 =
PL-CL-PLCP 0.180 ± 0.011 • 0.852 ± 0.011 • 0.638 ± 0.008 • 0.704 ± 0.021 • 0.719 ± 0.002 • 0.829 ± 0.000 •
PL-AGGD 0.141 ± 0.012 0.793 ± 0.020 0.557 ± 0.015 0.695 ± 0.015 0.669 ± 0.003 0.808 ± 0.005
PL-AGGD-PLCP 0.165 ± 0.014 • 0.827 ± 0.019 • 0.640 ± 0.015 • 0.715 ± 0.015 • 0.713 ± 0.003 • 0.831 ± 0.004 •
SURE 0.158 ± 0.012 0.796 ± 0.026 0.603 ± 0.016 0.650 ± 0.024 0.700 ± 0.003 0.798 ± 0.005
SURE-PLCP 0.170 ± 0.013 • 0.834 ± 0.024 • 0.621 ± 0.013 • 0.699 ± 0.025 • 0.703 ± 0.003 • 0.827 ± 0.005 •
LALO 0.153 ± 0.017 0.818 ± 0.019 0.548 ± 0.009 0.681 ± 0.013 0.688 ± 0.004 0.822 ± 0.004
LALO-PLCP 0.168 ± 0.018 • 0.831 ± 0.019 • 0.620 ± 0.009 • 0.694 ± 0.019 • 0.706 ± 0.004 • 0.827 ± 0.004 •
PL-SVM 0.176 ± 0.015 0.609 ± 0.055 0.570 ± 0.040 0.581 ± 0.022 0.660 ± 0.008 0.691 ± 0.005
PL-SVM-PLCP 0.192 ± 0.012 • 0.786 ± 0.032 • 0.639 ± 0.031 • 0.628 ± 0.027 • 0.709 ± 0.006 • 0.821 ± 0.004 •
PL-KNN 0.041 ± 0.007 0.337 ± 0.030 0.415 ± 0.014 0.466 ± 0.013 0.493 ± 0.004 0.403 ± 0.010
PL-KNN-PLCP 0.166 ± 0.012 • 0.784 ± 0.031 • 0.635 ± 0.015 • 0.626 ± 0.019 • 0.698 ± 0.004 • 0.790 ± 0.008 •

Table 3: Transductive accuracy of each compared approach on the real-world data sets. For any compared approach B, •/◦
indicates whether B-PLCP is statistically superior/inferior to B according to pairwise t-test at significance level of 0.05.

Kernel Partner Blur Data set
FG-NET Lost MSRCv2 Mirflickr Soccer Player Yahoo!News

PL-AGGD 0.063 ± 0.010 0.690 ± 0.020 0.451 ± 0.023 0.610 ± 0.012 0.521 ± 0.004 0.605 ± 0.002
× P × 0.073 ± 0.011 • 0.698 ± 0.023 • 0.380 ± 0.013 • 0.542 ± 0.013 • 0.492 ± 0.003 • 0.463 ± 0.002 •
✓ P × 0.073 ± 0.006 • 0.721 ± 0.024 ◦ 0.471 ± 0.016 • 0.664 ± 0.012 • 0.521 ± 0.004 • 0.608 ± 0.003 •
✓ O ✓ 0.071 ± 0.001 • 0.721 ± 0.004 ◦ 0.470 ± 0,020 • 0.663 ± 0.011 • 0.522 ± 0.003 • 0.605 ± 0.002 •
✓ P ✓ 0.076 ± 0.010 0.717 ± 0.020 0.473 ± 0.017 0.668 ± 0.014 0.534 ± 0.005 0.609 ± 0.002

Table 4: Ablation study of PLCP coupled with PL-AGGD. •/◦ indicates whether PL-AGGD-PLCP is statistically superior/inferior
to its degenerated version according to pairwise t-test at significance level of 0.05.

1.5 times better than that of PL-SVM on Lost. Although
PL-SVM and PL-KNN are inferior to the SOTA meth-

ods, they can achieve almost the same performance as
SOTA’s when coupled with PLCP.
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Comparison with Deep-learning Based Methods
Experimental Settings We conduct experiments on two
benchmarks CIFAR-10 and CIFAR-100 (Krizhevsky, Hinton
et al. 2009), and following the settings in (Wang et al. 2022;
Lv et al. 2020), we generate false positive labels by flipping
negative labels ŷ ̸= y for each sample with a probability
q = P (ŷ ∈ Y|ŷ ̸= y), where y is the ground-truth label. In
other words, the probability of a false positive is uniform
across all l − 1 negative labels. We combine the flipped ones
with the ground-truth label to create the set of candidate
labels. Specifically, q is set to 0.1, 0.3 and 0.5 for CIFAR-10
and 0.01, 0.05 and 0.1 for CIFAR-100. Five independent runs
are performed with the the average accuracy and standard
deviation recorded (with different seeds).

Performance on CIFAR-10 and CIFAR-100 Table 2
presents the classification accuracy with standard deviation
of each approach on CIFAR-10 and CIFAR-100, where we
can find that

• B-PLCP consistently outperforms the base classifier B
in 83.3% cases, which confirms that PLCP effectively
improves the performance of deep-learning based models.
Notably, B-PLCP is never significantly outperformed by
any B.

• Although the performance improvement of B-PLCP on
different settings appears to be limited, it is important
to note that its performance is very close to that of fully
supervised B. In some cases, it even surpasses the perfor-
mance of fully supervised one.

Further Analysis
Improvement of the Disambiguation Ability Transduc-
tive accuracy (i.e., classification accuracy on training sam-
ples) reflects the disambiguation ability of a PLL approach
(Wang, Zhang, and Li 2022; Cour, Sapp, and Taskar 2011;
Zhang, Zhou, and Liu 2016). In order to validate whether
PLCP can correct some mislabeled samples and truly im-
prove the disambiguation ability of B, we summarize the
transductive accuracy of B and B-PLCP on real-world data
sets and the results are shown in Table 3. It is obvious that
B-PLCP outperforms B in all cases according to the pairwise
t-test with a significance level of 0.05, which validates that
the disambiguation ability of B can be truly improved by
PLCP. In other words, by integrating PLCP, classifiers can
better identify and correct mislabeled samples, leading to
outstanding performance.

Effectiveness of the Non-candidate Label Information
In order to validate the effectiveness of the non-candidate
label information, we instantiate the partner classifier with
the form as

min
W,b,L

∥∥XW + 1nb
T − L

∥∥2
F
+ λ

∥∥∥Ŵ∥∥∥2
F

+ γtr
(
O1(1n×l − L)T

)
s.t. 0n×l ≤ L ≤ Y,L1l = 1n,

(10)

where W and b are two model parameters and L ∈ Rn×l

is the labeling confidence matrix. Denote this classifier O and

the original partner classifier P , the classification accuracy
of PL-AGGD mutual-supervised with O on each real-world
data set is shown in the third row of Table 4. It is obvious
that the performance of PL-AGGD coupled with O is signifi-
cantly inferior to that with P in 87.5% cases, which validates
the usefulness of the non-candidate label information. The
accurate non-candidate label information provided by the
partner classifier effectively complements the base classifier,
leading to better performance.

Usefulness of the Blurring Mechanism It is also interest-
ing to investigate the usefulness of the blurring mechanism
in PLCP. By simply normalizing P1 to O1 and P̂1 to Ô1

(i.e., skipping Eq. (3) and Eq. (8)), the classification accuracy
of PLCP without this mechanism is recorded in the second
row of Table 4, where we can find that the performance of
PL-AGGD-PLCP w/o Blur is significantly inferior to those
with Blur in 87.5% cases. The blurring mechanism effec-
tively tackles the overconfidence issue in PLL, leading to
outstanding performance.

Furthermore, we examine the impact of various values of
k on the performance of PLCP, as depicted in Fig. 1(d) in
the Supplementary. It can be clearly observed that when k is
too small, the performance of PLCP deteriorates significantly.
Additionally, the performance will be also exacerbated when
k ≥ 0, for in this case the predictions of the classifiers are
enhanced rather than being blurred, amplifying small differ-
ences between two values. In this case, PLCP contributes
little to disambiguation, resulting in inferior performance.

Influence of Kernel Extension We also conduct experi-
ments to show the improvement of kernel extension used in
partner classifier. Comparing the results in the first and sec-
ond rows in Table 4, we can observe that the performance of
PL-AGGD coupled with the classifier using kernel extension
is superior to that without kernel extension on all the data
sets, which validates the effectiveness of the kernel.

Additionally, we also conduct experiments on sensitivity
of different hyper-parameters in the Supplementary.

Conclusion
In this paper, a novel mutual supervision paradigm in partial
label learning called PLCP is proposed. Specifically, a part-
ner classifier is introduced and a novel collaborative term is
designed to link the base classifier and the partner classifier,
which enables mutual supervision between the two classifiers.
A blurring mechanism is involved in this paradigm for bet-
ter disambiguation. Comprehensive experiments validate the
outstanding performance of PLCP coupling with stand-alone
approaches and deep-learning based methods, which further
validates that the mislabeled examples can be identified and
corrected by PLCP. In the future, it is also interesting to in-
vestigate other methods to identify and correct mislabeled
samples.
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