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Abstract

Cross-modal hashing (CMH) is an efficient technique to re-
trieve relevant data across different modalities, such as im-
ages, texts, and videos, which has attracted more and more
attention due to its low storage cost and fast query speed. Al-
though existing CMH methods achieve remarkable processes,
almost all of them treat all samples of varying difficulty levels
without discrimination, thus leaving them vulnerable to noise
or outliers. Based on this observation, we reveal and study
dual difficulty levels implied in cross-modal hashing learning,
i.e., instance-level and feature-level difficulty. To address this
problem, we propose a novel Dual Self-Paced Cross-Modal
Hashing (DSCMH) that mimics human cognitive learning to
learn hashing from ‘easy’ to ‘hard’ in both instance and fea-
ture levels, thereby embracing robustness against noise/out-
liers. Specifically, our DSCMH assigns weights to each in-
stance and feature to measure their difficulty or reliability, and
then uses these weights to automatically filter out the noisy
and irrelevant data points in the original space. By gradually
increasing the weights during training, our method can fo-
cus on more instances and features from ‘easy’ to ‘hard’ in
training, thus mitigating the adverse effects of noise or out-
liers. Extensive experiments are conducted on three widely-
used benchmark datasets to demonstrate the effectiveness and
robustness of the proposed DSCMH over 12 state-of-the-art
CMH methods.

Introduction
With the rapid development of multimedia technology,
cross-modal retrieval (Jing et al. 2020; Hu et al. 2023; Qin
et al. 2023a) has attracted increasing attention from both
academic and industrial communities. However, due to the
massive growth of multimedia data (Qin et al. 2023b; Qin,
Pu, and Wu 2023; He et al. 2022), continuous-value meth-
ods suffer from high storage costs and computation time. To
solve this issue, cross-modal hashing (CMH) methods (Tan
et al. 2022; Zhang et al. 2022; Yang et al. 2023b) have been
proposed to achieve efficient performance. The essential key
of CMH is to map multimodal data into discriminative bi-
nary codes while eliminating the cross-modal gap.

To learn common hash representations, numerous CMH
methods (Liu et al. 2023; Tan et al. 2023; Zhu et al. 2023)
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have been proposed to project different modalities into a
common Hamming space, which can be roughly categorized
into unsupervised and supervised CMH methods. Specifi-
cally, unsupervised CMH methods often exploit data struc-
tures without semantic labels to learn hash codes. The rep-
resentative methods include unsupervised contrastive cross-
modal hashing (Hu et al. 2022), collective reconstructive
embeddings (Hu et al. 2019a), unsupervised cross-modal
hashing (Tu et al. 2023), and deep graph-neighbor coherence
preserving network (Yu et al. 2021). Different from unsuper-
vised methods, supervised CMH methods use semantic la-
bels to learn discriminative hash codes. Benefiting from se-
mantic information, supervised methods can learn more dis-
criminative hash codes and achieve better performance (Hu
et al. 2021, 2019b; Sun et al. 2023a).

Although these methods have achieved promising per-
formance, most existing cross-modal hashing methods im-
plicitly assume the collected multi-modal data (Yang et al.
2023a) is ideally clean without noise, which is hard to hold
in real-world scenarios. In practice, multimodal data in-
evitably exist noise due to occlusion, equipment fault, and
other open-world anomalies, producing noisy points or out-
liers. Therefore, data-driven methods will undoubtedly suf-
fer from disturbances and get stuck into bad local minima
during training, thereby remarkably degrading the perfor-
mance. To tackle this problem, self-paced learning (SPL)
(Kumar, Packer, and Koller 2010; Shao et al. 2022; Huang
et al. 2021; Pan et al. 2020) was proposed to train the model
from ‘easy’ to ‘hard’ samples inspired by human cognitive
learning, which has been proven to be beneficial in allevi-
ating the noise/outlier problem (Li et al. 2021). However,
almost all CMH methods treat all instances and features
equally during learning hash codes, while ignoring the diffi-
culty differences caused by noise or outliers. Based on this
observation, we expect to mitigate the effect of noise by
learning from ‘easy’ to ‘hard’, thus enhancing robustness.

To achieve this, we propose a novel Dual Self-paced
Cross-Modal Hashing (DSCMH) that enables our model to
eliminate noise/outliers in the latent space. Our DSCMH
elaborately mimics human cognitive learning that starts with
easy instances and features, and gradually progresses to
more difficult ones. As shown in Fig.1, our key idea is to
gradually learn latent hash representations from ‘easy’ to
‘hard’ instances and features, respectively, thereby enhanc-
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Figure 1: The frameworks of DSCMH. We perform the
instance- and feature-level SPL in the row and column
space, such that the consistent latent representation is
learned from both ‘easy’ to ‘hard’ instances and features.

ing the robustness of dealing with noise/outliers. Specifi-
cally, DSCMH first evaluates the reliability/easiness of both
instances and features dynamically in the learning process.
Then, we use the dual self-paced regularize to adaptively op-
timize the model from ‘easy’ to ‘hard’, thereby making the
model focus on reliable/easy instances and features. Finally,
we adopt cross-space consensus learning to learn reliable
hash codes. In general, we summarize the main contribu-
tions as follows:

• To alleviate the negative effect of noise/outliers in the
learning process, we propose a hashing model with SPL
to learn robust and discriminative hash codes.

• We reveal and study the instance-level and feature-level
difficulty, and learn to hash from ‘easy’ to ‘hard’ in
both instance- and feature-level manners. To the best of
our knowledge, this could be the first work that utilizes
instances- and features-level SPL for CMH.

• Extensive experiments demonstrate our DSCMH outper-
forms the state-of-the-art CMH methods on three widely-
used benchmark datasets.

Related Work
Recently, many CMH methods are proposed to solve cross-
modal retrieval. Supervised CMH methods utilize labels to
guide the generation of hash codes, which generally out-
perform unsupervised ones. Label consistent matrix fac-
torization hashing (LCMFH) (Wang et al. 2018) extracts
the shared attributes from heterogeneous data and uses la-
bels to preserve the semantic similarities. To improve the
retrieval performance, discrete latent factor model based
cross-modal hashing (DLFH) (Jiang and Li 2019) proposes
a discrete scheme to directly learn hash codes without
continuous relaxation. In practice, the feature dimensions
of multi-modal data are often different, and using equal-

length hash codes could sacrifice the representation scala-
bility. Therefore, matrix tri-factorization hashing (MTFH)
(Liu et al. 2019) makes the first attempt to learn different-
length hash codes for multi-modal data. Since some meth-
ods use a large similarity matrix to preserve semantic infor-
mation, they have difficulty adapting to large-scale datasets.
To this end, scalable asymmetric discrete cross-modal hash-
ing (BATCH) (Wang et al. 2021c) proposes to minimize
a distance-distance difference. Considering large-scale re-
trieval applications and unequal hash length encoding sce-
narios, discrete asymmetric hashing (DAH) (Zhang et al.
2023b) proposes a flexible framework. To enhance the dis-
crimination of hash codes, adaptive marginalized seman-
tic hashing (AMSH) (Luo et al. 2023) proposes the adap-
tive margin matrices to alleviate the rigid zero-one linear
regression. However, these methods unconsciously ignore
the influence of noise and outliers in the hashing learning
process. Robust and discrete matrix factorization hashing
(RDMH) (Zhang and Wu 2022) use ℓ21 norm to alleviate
the adverse impact of noises/outliers, thus improving ro-
bustness against noise. Besides, some research shows that
SPL can resist noise interference. Prototype-supervised ad-
versarial network (ProS-GAN) (Wang et al. 2021a) utilizes
SPL to replace the previous Hamming distance loss, thereby
optimizing the target adversarial samples. Cognitive multi-
modal consistent hashing (CMCH) (An et al. 2022) uses
SPL to achieve feature aggregation gradually and fuse multi-
modal data into a common latent space. Different from these
methods, we reveal the inter-instance and inter-feature dif-
ferences and explore SPL in both instance and feature levels.

Methodology

Problem Definition

In this paper, suppose that Ot = [ot
1,o

t
2, · · · ,ot

n] ∈ Rht×n

(t = 1, 2, · · · ,m) are the collected multi-modal data with
n instances from m modalities, where ht is the feature
dimensionality of the t-th modality. These multi-modal
data shares the same ground-truth label Y ∈ {0, 1}c×n,
where c is the number of the classes. For each instance,
Yij = 1 if the j-th data pair belongs to the i-th class and
otherwise Yij = 0. To better capture the nonlinear structure
of multi-modal data, we use radial basis function (RBF)
kernel mapping (Sun et al. 2022, 2023b) to generate kernel
features. Specifically, we randomly choose d samples from
each modality as anchors at

i and use the Gaussian kernel
function to obtain the nonlinear features. Therefore, the ker-
nel features of the t-th modality can be represented as Xt

i =

[exp(
∥ot

i−at
1∥

2
2

−2σ2 ), exp(
∥ot

i−at
2∥

2
2

−2σ2 ), · · · , exp(∥o
t
i−at

d∥
2
2

−2σ2 )]T ,
where σ is the kernel width. Cross-modal hashing aims at
learning l-bit hash codes B ∈ {−1, 1}l×n in Hamming
space while preserving the intrinsic similarities from the
original feature space. It is a great challenge how to learn
high-quality hash codes from multi-modal data for cross-
modal retrieval due to the impact of noise and outliers. For
the sake of convenience in the presentation, we just focus
on two modalities, i.e., image and text.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15185



Problem Formulation
For multi-modal data, since different modal features jointly
describe the same instances, they should contain the similar
or same latent representation. Therefore, we can adopt ma-
trix factorization to excavate more hidden semantic informa-
tion in the latent space. Further, we impose orthogonal and
balanced constraints on the latent representation V ∈ Rl×n.
To be specific, to minimize the intra-modality redundancy,
we adopt the orthogonal constraint to facilitate the factors
of V independent. Besides, to preserve more discriminative
information, we utilize the balanced constraint to guarantee
V uniformly distributed. As a result, the objective function
can be defined as follows:

min
Ut,V

2∑
t=1

∥Xt −U tV ∥2F s.t.V 1 = 0,V V T = nI,

(1)
where U t ∈ Rd×l is the modality-specific latent factors.

Similar to the manner of human cognitive learning, SPL
gradually learns from easy concepts of the task to difficult
ones, which can relieve the influence of noise or outliers.
Hence, we introduce SPL into cross-modal hashing to im-
prove robust learning ability. Different from prior SPL meth-
ods, we discover that such a cognitive mechanism is appro-
priate for not only the instance dimension but also the fea-
ture dimension when generating the latent space. On the one
hand, easy instances and features can be helpful in learn-
ing latent representation; on the other hand, with the learn-
ing process, more and more instances and features become
easy for learning, which are gradually fed into the model to
train. To this end, we simultaneously perform the instance-
and feature-level SPL to gradually train the hashing model
from ‘easy’ to ‘hard’ until it is powerful enough to handle
the complex ones. To be precise, in the training phase, the
model is first trained with only easy instances and features.
Then, as the model is trained, hard instances and features are
gradually incorporated. Finally, the problem can be formu-
lated as follows

min
Ut,V ,ft,s

2∑
t=1

∥Et
f (X

t −U tV )Es∥2F + f(η,f t, s)

s.t.V 1 = 0,V V T = nI,

Et
f = diag

(√
f t
1,
√
f t
2, · · · ,

√
f t
d

)
,

Es = diag (
√
s1,

√
s2, · · · ,

√
sn) .

(2)

Note here that f(η,f t, s) is the self-paced regularizer that
controls the age parameter η. η is a scalar that controls the
features or instances to be selected for each learning phase to
gradually incorporate more ones into the training. f t

i and si
are respectively the weights of i-th feature-dimension and i-
th instance-dimension that estimate the reliability along dif-
ferent features and instances. Er and Es are two dynamical
diagonal matrices consisting of f t

i and si, respectively. To
achieve learning from ‘easy’ to ‘hard’, we use the following
formula (Xu, Tao, and Xu 2015; An et al. 2022)

f(η,f t, s) =
2∑

t=1

f(η,f t) + f(η, s), (3)

where we have

f(η,f t) =
d∑

i=1

(
1 + e−η − f t

i

)
ln

(
1 + e−η − f t

i

)
+ fi ln f

t
i − ηf t

i ,

(4)

f(η, s) =
n∑

i=1

(
1 + e−η − si

)
ln

(
1 + e−η − si

)
+ si ln si − ηsi,

(5)

where f(η,f t, s) aims at making Et
f and Es gradually in-

crease from ‘low’ to ‘high’, thereby driving instance- and
feature-level learning from ‘easy’ to ‘hard’ with increasing
iterations. To simulate human cognitive learning, the weight
of hard instances or features should be assigned a smaller
value when learning begins. The loss decreases gradually
with the learning process, making the weights (i.e., f t and
s) larger. Finally, all instances or features are involved in the
model. Hence, we can regard the weight as the easiness/con-
tribution of each feature and instance, thereby learning from
‘easy‘ to ‘hard‘ as the number of iterations increases. Note
here, we will give a more theoretical analysis about f t and s
in the ‘Optimization’ section.

To obtain discriminative hash codes from heterogeneous
data, we propose cross-space consensus learning that utilizes
labels to minimize the similarities between Hamming space
and latent space, thereby preserving the semantic similari-
ties. Thus, we can easily obtain the following formula:

min
B

∥BTV − lY TY ∥2F s.t.B ∈ {−1, 1}l×n. (6)

By combining Eq.2 and Eq.6, the following overall objec-
tive function can be written as follows

min
Ut,V ,ft,s

2∑
t=1

∥Et
f (X

t −U tV )Es∥2F + f(η,f t, s)

+ α∥BTV − lY TY ∥2F
s.t.V 1 = 0,V V T = nI,B ∈ {−1, 1}l×n,

Et
f = diag

(√
f t
1,
√
f t
2, · · · ,

√
f t
d

)
,

Es = diag (
√
s1,

√
s2, · · · ,

√
sn) ,

(7)

where α is the trade-off parameter.

Optimization
To solve the optimization problem Eq.7, we adopt the alter-
native optimization algorithm that solves a variable in each
iteration while fixing others. Therefore, we can convert the
objective function into four sub-problems to be solved.

s-Step: Fixing other variables, the sub-problem s can be
updated by the following formula

min
s

∥Et
f (X

t −U tV )Es∥2F + f(η, s)

s.t. Es = diag(
√
s1,

√
s2, · · · ,

√
sn).

(8)

To solve the weight of the i-th instance, we can simplify
Eq.8 as the following problem

min
si∈(0,1)

sils
i + f(η, si). (9)
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where lsi = ∥(Et
f (X

t−U tV )):,i∥2F is the quantization loss
of the i-th instances. Afterwards, we can obtain the solution
by letting the partial derivative with regard to s to zero, i.e.,

si =
1 + e−η

1 + els
i−η

. (10)

Thereupon, the weights (i.e., s = {si}ni=1) of all instances
can be solved.

f t-Step: Fixing other variables, the sub-problem r can be
reduced as

min
ft

∥Et
f (X

t −U tV )Es∥2F + f(η,f t)

s.t. Et
f = diag

(√
f t
1,
√
f t
2, · · · ,

√
f t
d

)
.

(11)

By setting the partial derivative with regard to f t to zero, we
have

f t
i =

1 + e−η

1 + elf
t
i−η

, (12)

where lf t
i = ∥((Xt − U tV )Es)i,:∥2F is the quantization

loss of the i-th feature. Thereupon, the weights (i.e., f t =
{f t

i }di=1) of all features can be solved.
We can easily observe that the values of f t

i and si are al-
ways between zero and one, i.e., f t

i ∈ [0, 1] and si ∈ [0, 1].
η controls the rate of change of weight relative to the loss.
Eq.10 and Eq.12 assign each instance and each feature the
probabilities of being ’easy’, respectively. In other words,
we can use weights as a measure of easiness. Thus, if the
weights are higher, the instance or feature can be viewed as
easier. To be specific, when lsi < η or lf t

i < η, we implic-
itly regard the i-th instance and i-th feature as ‘easy’, other-
wise, viewed as ‘hard’. It indicates that lsi = η or lf t

i = η
is the threshold to divide ‘easy’ and ‘hard’ instances or fea-
tures. Moreover, for a given fixed η, the weights will vary
rapidly within a certain interval, which could affect hard in-
stances or features. Afterward, we normalize each loss lsi or
lf t

i to control the range of values, thereby keeping the loss
of each instance or feature with the rapidly varying interval
for η. Hence, we can describe as follows:

lsi :=
m ∗ lsi

max {ls1, ls2, . . . , lsn}
,

lf t
i :=

m ∗ lf t
i

max
{
lf t

1, lf
t
2, . . . , lf

t
d

} (13)

where m is a constant. To speed up the changes of the
weights, we set η = r∗η. From Eq.10 and Eq.12, we can ob-
serve that si and rti are proportional to η. In other words, the
weight will increase as η increases until approaching one,
thereby paying more attention to hard instances and features.
Thanks to the property, our model could gradually consider
more hard samples from ‘easy’ to ‘hard’ to prevent fitting on
noise or outliers first, thus embracing stronger robustness.

U t-Step: We fix the remaining variables to solve U t. The
Eq.7 can be simplified as

min
Ut

∥Et
f (X

t −U tV )Es∥2F . (14)

Afterwards the Eq.14 can be converted into the following
trace form

min
Ut

Tr((Et
f (X

t −U tV )Es)(E
t
f (X

t −U tV )Es)
⊤).

(15)
Then we set the derivative of 15 w.r.t. U t to zero, and the
solution can be obtained by

U t = XtEs2V
T (V Es2V

T )−1, (16)

where E2
s = EsE

T
s .

V -Step: We fix the other variables except V , and Eq.7
can be rewritten as

min
V

Tr(V (Es2(X
t)TEt

f2U t))

s.t.V 1 = 0,V V T = nI
(17)

where Et
f2 = Et

f (E
t
f )

T .
Let Z = Es2(X

t)TEt
f2U t, Eq.17 can be transformed

as max tr(ZTV ). We adopt the approximate maximization
algorithm (Liu et al. 2014) to update the solution V =√
d[K K̄][D D̄]T . Here, we can use SVD to update D

and D̄, i.e., ZTJZ = [D D̄]

[
Σ2 0
0 0

]
[D D̄]T , where

J = I − 1
d11

T . For K̄, we use the Gram-Schmidt pro-
cess (Björck 1994) to define it as a random orthogonal ma-
trix, and obtain K = JZDΣ−1.

B-Step: We fix the other variables and easily get the
closed-form solution by the following formula

B = sign(αlV Y TY ). (18)

Hash Function Learning
Our DSCMH main has two stages in the training phase, in-
cluding hash codes learning and hash functions learning.
Generally, to balance the accuracy and the efficiency, we
learn hash codes and hash function separately, thereby en-
dowing hash function more flexibility. Specifically, given the
learned hash codes B and the kernel features Xt, we can
calculate the hash function for each modality by the follow-
ing problem, i.e.,

min
W t

2∑
t=1

∥B −W tXt∥2F + λ∥W t∥2F (19)

where λ is a trade-off parameter. Thereupon, we can obtain
W t as follows

W t = B(Xt)T (Xt(Xt)T + λI)−1). (20)

Further, we can obtain hash codes Ht of query multi-modal
data Qt by hash functions, i.e.,

Ht = sign(W tQt). (21)

Hence, we can use Hamming distance to calculate the simi-
larities between training data and query data, thereby achiev-
ing cross-modal retrieval.
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Task Method MIRFlickr IAPR-TC12 NUS-WIDE
8 16 32 64 8 16 32 64 8 16 32 64

I → T

RFDH 57.53 58.14 57.78 58.07 35.32 44.85 45.53 45.83 34.54 47.33 57.76 58.32
LCMFH 68.08 69.73 69.28 70.27 32.69 42.73 44.70 45.69 55.52 63.18 64.21 64.87
DLFH 71.24 75.56 76.20 76.62 44.90 48.29 50.27 54.19 61.72 62.13 64.68 66.17
MTFH 67.40 71.09 71.28 73.43 47.14 48.32 50.45 51.98 / / / /
FCMH 74.48 75.22 76.16 76.12 46.25 49.48 51.70 53.20 64.66 65.82 66.40 67.20
FDDH 72.91 73.00 76.13 75.83 44.37 48.04 52.29 53.89 59.75 62.07 65.79 68.60

BATCH 74.01 75.73 75.88 76.43 44.91 48.05 50.40 52.62 63.17 65.72 66.49 67.47
EDMH 74.26 75.07 75.59 76.08 46.39 49.86 50.85 52.43 64.56 65.83 67.16 67.44
DAH 72.47 74.60 75.48 75.74 43.40 44.72 48.15 52.01 62.63 63.58 66.29 66.31

ALECH 73.90 75.34 76.14 76.62 45.68 48.30 50.35 52.07 65.02 66.08 67.85 68.22
WASH 73.01 74.35 74.53 74.64 46.75 48.25 51.00 53.45 62.45 64.04 64.18 63.34
AMSH 74.06 75.39 76.49 76.96 46.81 49.05 51.62 53.66 64.63 65.37 67.60 67.34

DSCMH 76.68 77.35 78.03 78.76 49.34 52.40 54.81 56.75 66.80 67.72 68.86 69.26

T → I

RFDH 58.07 58.25 58.03 57.06 34.83 45.52 46.40 57.54 35.48 53.66 58.22 62.73
LCMFH 72.97 75.31 75.40 76.95 34.69 49.86 53.68 56.42 58.43 67.08 72.23 73.64
DLFH 77.25 80.36 80.50 81.42 46.24 50.44 54.85 63.01 67.75 70.50 73.02 75.27
MTFH 74.62 79.19 80.01 80.54 52.27 57.36 60.92 62.33 / / / /
FCMH 79.56 80.16 81.93 82.38 53.47 58.50 61.92 65.13 75.57 77.64 78.84 80.76
FDDH 76.87 77.60 80.92 81.38 49.33 55.16 61.14 65.00 70.20 74.79 77.98 81.58

BATCH 79.61 80.31 81.75 82.44 52.75 57.77 61.85 64.88 76.57 77.58 79.41 80.20
EDMH 80.22 80.84 81.59 82.12 53.61 58.70 60.53 63.53 73.12 78.50 79.61 79.64
DAH 78.63 78.85 81.03 81.63 49.80 54.75 58.17 61.17 73.82 77.45 78.05 79.09

ALECH 79.15 80.43 81.73 82.02 52.55 57.74 61.44 64.61 76.26 77.64 78.89 79.77
WASH 77.42 78.74 79.55 79.66 50.89 54.25 61.50 65.02 73.31 77.70 80.39 81.09
AMSH 80.31 81.36 82.43 83.07 53.89 58.87 62.98 66.32 77.05 78.46 80.12 80.83

DSCMH 81.41 82.29 83.30 83.59 55.14 60.43 64.48 67.21 79.28 80.11 80.95 80.99

Table 1: The mAP results (%) with different bit lengths on the three datasets. The best results are in bold.

Method I → T T → I
8 16 32 64 8 16 32 64

RFDH 54.92 55.63 55.79 55.80 57.10 57.38 57.45 57.60
LCMFH 57.98 58.02 58.57 58.27 70.54 73.80 76.20 77.52
DLFH 60.54 61.32 62.05 63.12 71.45 75.67 76.59 78.13
MTFH 59.80 60.02 60.15 61.03 70.84 73.54 75.01 76.03
FCMH 60.14 61.34 62.53 62.49 71.74 76.79 79.34 79.56
FDDH 63.10 63.25 63.61 63.75 73.69 74.05 76.02 76.02
BATCH 60.21 60.62 60.73 61.12 79.53 80.02 81.63 82.10
EDMH 62.94 63.06 63.17 64.21 79.47 80.03 81.68 82.37
DAH 59.12 59.43 59.55 60.52 76.80 79.28 79.42 80.93
ALECH 59.50 59.78 60.06 60.24 79.08 80.81 81.63 81.97
WASH 60.05 60.05 60.85 60.90 78.28 79.68 80.62 80.99
AMSH 59.55 60.17 61.17 61.76 78.83 80.61 82.43 82.34
DSCMH 66.27 66.38 66.23 66.76 80.00 82.03 82.59 82.90

Table 2: The mAP results (%) with noise on MIRFlickr. The
best results are in bold.

Complexity Analysis

In the hash codes learning stage, the main complexity of
each iteration mainly includes O(

∑2
t=1 tdl

2) for updating
Eq.10, O(dln) for updating Eq.12, O(

∑2
t=1 t(dnl + l2n +

l3)) for updating Eq.16, O(dln + l2n) for updating Eq.17,
and O(c2ln + cln + ln) for updating Eq.18, respectively.

In the hash functions learning stage, the complexity is about
O(d2+ d2l+ d2n+ dln). Since d, l, t ≪ n, we can observe
the overall complexity approximates to O(n), i.e., linear to
the size of the training set.

Experiments
Datasets
To evaluate the performance of our DSCMH, we compare
it with thirteen baselines on three used-widely benchmark
datasets, i.e., MIRFlickr, IAPR-TC12, and NUS-WIDE.
MIRFlickr includes 25000 images marked by one or more
of 24 textual tags, which crawled from the Flickr web-
site. We select data with more than 20 tags, resulting in
20015 image-text pairs. Image-text pairs are represented
by the 512-dimensional GIST feature vector and the 1386-
dimensional BOW vectors, respectively. IAPR-TC12 has
20000 image-text pairs with 255 labels. Image-text pairs are
represented by the 512-dimensional GIST feature vectors
and the 2912-dimensional BOW vectors, respectively. NUS-
WIDE consists of 269648 instances of 81 concepts, with
the largest ten concepts corresponding to 186577 instances.
Image-text pairs are represented by the 500-dimensional
SIFT vectors and the 1000-dimensional BOW vectors, re-
spectively. We randomly select 2000 image-text pairs as the
query set on MIRFlickr and IAPR-TC12, and choose 1867
image-text pairs as the query set on NUS-WIDE.
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Figure 2: Precision-recall curves with 64 bits on MIRFlickr. (a-c) and (d-f) is the I → T task and the T → I task, respectively.

Baselines and Implementation
To verify the performance of our method, we compare
DSCMH with thirteen state-of-the-art cross-modal hashing
methods, including RFDH (Wang, Wang, and Gao 2017),
LCMFH (Wang et al. 2018), DLFH (Jiang and Li 2019),
MTFH (Liu et al. 2019), FCMH (Wang et al. 2021b),
FDDH (Liu, Wang, and Cheung 2021), BATCH (Wang et al.
2021c), EDMH (Chen et al. 2022), DAH (Zhang et al.
2023b), ALECH (Li et al. 2023), WASH (Zhang et al.
2023a), and AMSH (Luo et al. 2023).

In our experiments, we conduct two cross-modal re-
trieval tasks, including searching image modality data by
text modality data (T → I) and searching text modality
data by image modality data (I → T). Further, we use the
mean Average Precision (mAP) and precision-recall curve
to evaluate the performance. For the sake of fairness, all
comparison methods use the codes provided by the authors
and the suggested parameters in the original paper. In the
experiments, we empirically set m = 15, q = 1.2, and
d = 1500. From the parameter analysis, we set α and λ
as {10−3, 10−2}, {10−2, 10−3}, and {10−3, 10−4} on three
datasets, respectively.

Comparison with State-of-the-Art Methods
Table 1 shows the mAP scores of all comparison methods
on the three datasets. From these tables, we can observe
the following conclusion: (1) The proposed DSCMH out-
performs all baselines for two retrieval tasks on all datasets,
which indicates the effectiveness of the dual self-paced

cross-modal hashing framework. Specifically, compared to
the best baseline, DSCMH achieves a relative improvement
of 2.2%, 1.62%,1.54%, and 1.8% for the T → I task on
MIRFlickr, respectively. (2) Since the textual features pos-
sess more discriminative semantic information, almost all
baselines perform better for the T → I task than the I →
T task. (3) The performance of all baseline methods in-
creases synchronously with the bit length. This is because
long hash codes can preserve more discriminative informa-
tion. (4) Since MTFH has the large n× n similarity matrix,
it leads to not enough storage space on the large dataset (i.e.,
NUS-WIDE), making the program unable to execute.

We further draw the precision-recall curves with 64 bits of
all comparison methods on the three datasets. As shown in
Fig.2, we can notice that our DSCMH can achieve the best
results on these datasets, which demonstrates the effective-
ness of our dual self-paced hashing framework. Moreover,
we can observe that precision-recall curves of the proposed
method have slower downward trends than all comparison
methods, which shows the stability and superiority on the
cross-modal retrieval tasks.

Robustness Analysis
To demonstrate the robustness of the proposed DSCMH
against the noise/outliers, we conduct robustness experi-
ments by simulating noise. Specifically, we randomly select
half of the image and text data. And we randomly add 20%
impulsive noise and flip the value of one/two bits for im-
ages and texts, respectively. Table 2 shows the mAP results
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Figure 3: Convergence results and the mAP results from varying values of α and λ with 64 bits on MIRFlickr.

of all methods on MIRFlickr. We can see that our method
achieves the best retrieval performance both without noise
and with noise which demonstrates its strong robustness
against noise.

Convergence Experiments
To observe the proposed DSCMH, we plot the convergence
and mAP curves with 64 bits on MIRFlickr. In Fig.3 (a), we
can observe that the objective function fast converges to a
stable value within 5 iterations. Besides, we can find that the
mAP scores gradually increases with the number of itera-
tions, and tends to be stable as the objective function con-
verges. In general, the fast and stable convergence property
can be experimentally demonstrated.

Parameter Sensitivity Analysis
To evaluate the parameter sensitivity, we first set the code
length to 64 bits, and then adopt grid search to set the val-
ues of α and λ from [10−4, 10−3, · · · , 1]. As shown in Fig.3
(b) and (c), on MIRFlickr, the different values of these pa-
rameters have only small fluctuations in the retrieval perfor-
mance, which indicates that the proposed DSCMH is very
stable. Hence, we can easily obtain the optimum parameters
to achieve the best performance.

Time Cost Comparison
To evaluate the efficiency of the proposed method, we record
the training time with different bits on NUS-WIDE as shown
in Table 3. Obviously, the training time increases accord-
ingly as the bit length increases. Although our method takes
some time on the reliability/easiness evaluation of features
and instances, our DSCMH still has some advantages in
terms of time cost compared with the benchmark baselines.
This is because DSCMH is a two-step method that learns
hash codes and hash function separately, thereby reducing
the computation complexity.

Ablation Analysis
To further analyze the effectiveness of our DSCMH, we per-
form the ablation study on MIRFlickr. DSCMH has two
variations including DSCMH-1 and DSCMH-2. Thereinto,
DSCMH-1 denotes learning specific-view latent represen-
tation instead of learning consensus latent representation.

Method
Training time

8 16 32 64
RFDH 170.53 203.52 302.83 621.01
LCMFH 12.49 12.59 13.72 15.42
DLFH 4.86 8.42 20.45 55.86
FCMH 146.34 147.82 152.55 163.23
FDDH 61.54 64.04 68.65 77.42
BATCH 85.44 86.86 92.23 100.59
EDMH 11.80 12.94 15.20 20.74
DAH 0.81 1.43 2.73 5.36
ALECH 3.46 3.65 4.60 6.07
WASH 11.58 12.03 13.25 15.10
AMSH 36.85 38.84 41.67 47.48
DSCMH 30.82 31.05 31.83 32.46

Table 3: The training time (second) on NUS-WIDE.

Method I → T T → I
8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bit

DSCMH-1 74.59 75.86 77.45 78.24 80.57 81.42 82.15 82.34
DSCMH-2 73.07 74.22 75.33 76.14 78.78 80.22 81.49 81.86
DSCMH 76.68 77.35 78.03 78.76 81.41 82.29 83.30 83.59

Table 4: Ablation results (mAP: %) on MIRFlickr.

DSCMH-2 denotes to discard dual self-paced learning. Ta-
ble 4 shows the ablation experimental results. It can be seen
that dual self-paced cross-modal hashing can enhance re-
trieval performance.

Conclusion
In this paper, we propose a novel dual self-paced cross-
modal hashing (DSCMH) for learning from both feature and
instance levels, which can alleviate the negative effect of the
hard instances and features in the learning process. Specif-
ically, inspired by SPL, our DSCMH first estimates the re-
liability of each instance and feature by the instance-level
and feature-level weighting. Then we simultaneously con-
duct the instance- and feature-level SPL that gradually train
the hashing model by starting from ‘easy’ to ‘hard’ ones.
Comprehensive experiments on three benchmark datasets
demonstrate our DSCMH outperforms 12 state-of-the-art
CMH methods in terms of the effectiveness and robustness.
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