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Abstract

We propose novel fast algorithms for optimal transport (OT)
utilizing a cyclic symmetry structure of input data. Such
OT with cyclic symmetry appears universally in various
real-world examples: image processing, urban planning, and
graph processing. Our main idea is to reduce OT to a small
optimization problem that has significantly fewer variables
by utilizing cyclic symmetry and various optimization tech-
niques. On the basis of this reduction, our algorithms solve
the small optimization problem instead of the original OT. As
a result, our algorithms obtain the optimal solution and the
objective function value of the original OT faster than solving
the original OT directly. In this paper, our focus is on two cru-
cial OT formulations: the linear programming OT (LOT) and
the strongly convex-regularized OT, which includes the well-
known entropy-regularized OT (EROT). Experiments show
the effectiveness of our algorithms for LOT and EROT in
synthetic/real-world data that has a strict/approximate cyclic
symmetry structure. Through theoretical and experimental re-
sults, this paper successfully introduces the concept of sym-
metry into the OT research field for the first time.

Introduction
Given two probability vectors and a cost matrix, the discrete
optimal transport (OT) problem seeks an optimal solution
to minimize the cost of transporting the probability vector
toward another one. Its total transportation cost is an effec-
tive tool that compares two probability vectors. Therefore,
OT has been studied in various research areas, e.g., text em-
bedding (Kusner et al. 2015), image matching (Liu et al.
2020), domain adaptation (Courty et al. 2017), graph com-
parison (Nikolentzos, Meladianos, and Vazirgiannis 2017),
and interpolation (Solomon et al. 2015).

There are many formulations for OT. Kantorovich (1942)
was the first to formulate OT as the linear programming
problem, and the linear OT (LOT) made great progress to-
ward solving OT. Recently, the strongly convex-regularized
OT (SROT) has attracted much attention, especially, the
entropy-regularized OT (EROT) (Cuturi 2013; Blondel,
Seguy, and Rolet 2018; Peyré and Cuturi 2019; Guo, Ho, and
Jordan 2020). SROT is superior to LOT in terms of guaran-
teeing a unique solution and computational stability.
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Figure 1: A simple counter-example to the intuitive ap-
proach for OT with cyclic symmetry. Given the above two
gray images with 90◦ cyclic symmetry, it seems intuitively
sufficient to consider OT for only one of the symmetric ar-
eas (i.e., the red rectangular areas). However, when the cost
matrix is given by the pixel-wise Euclidean distance matrix,
the (0, 1)-th entry in the left image is optimally transported
toward the (0, 2)-th entry beyond the red rectangular area in
the right image. Thus, such an intuitive approach gives an
incorrect solution, so we must develop novel algorithms that
utilize cyclic symmetry appropriately in OT.

Many algorithms have been studied to solve OT. The net-
work simplex algorithm (Ahuja, Magnanti, and Orlin 1993)
is a well-known classical algorithm for LOT and has been
widely used. The Sinkhorn algorithm (Cuturi 2013) and
primal-dual descent algorithms (Dvurechensky, Gasnikov,
and Kroshnin 2018; Guo, Ho, and Jordan 2020) have been
proposed to solve EROT faster. Recently, algorithms utiliz-
ing special structures of input data have been in the spotlight
for solving OT faster, e.g., algorithms that utilize the low-
rankness of the input data (Tenetov, Wolansky, and Kimmel
2018; Altschuler et al. 2019). Besides, several algorithms
utilize the Gibbs kernel structure of the input cost matrix in
the Sinkhorn algorithm, such as separability (Solomon et al.
2015; Bonneel, Peyré, and Cuturi 2016) and translation in-
variance (Getreuer 2013; Peyré and Cuturi 2019).

In this paper, we propose novel fast algorithms for OT
utilizing a new special structure, cyclic symmetry, of input
data. Specifically, we assume n-order cyclic symmetry for
the input data; the input d-dimensional probability vector is
a concatenation of n copies of an m(:= d/n)-dimensional
vector, and the input d × d cost matrix is a block-circulant
matrix consisting of n matrices with size m × m (see As-
sumption 1). Such OT with cyclic symmetry appears uni-
versally in various real-world examples: image processing,
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Figure 2: Overview of our algorithm for LOT with cyclic symmetry (C-LOT). This algorithm reduces C-LOT to a small LOT
that has significantly fewer variables and solves the small LOT instead, resulting in fast computation. Note that the small cost
matrix is not just a part of the original one; it aggregates the original cost matrix on the basis of cyclic symmetry, see (11).

urban planning, and graph processing (for details, see Ex-
amples 1 to 3). Intuitively, we can obtain an optimal solution
to such a problem faster by solving OT for only one of the
symmetric components of the input data and concatenating
n copies of the obtained solution. However, this approach
cannot work due to ignoring interactions between the sym-
metric components (see Figure 1). Unlike such an intuitive
approach, we propose novel fast algorithms utilizing cyclic
symmetry for two crucial OT formulations: LOT and SROT.

First, we propose a fast algorithm for LOT with cyclic
symmetry (C-LOT). Figure 2 shows an overview of this al-
gorithm. Our main idea is to reduce C-LOT, which has d2

variables, to a small LOT, which has only m2 variables,
by utilizing cyclic symmetry. To achieve this reduction, we
introduce auxiliary variables considering cyclic symmetry
and rewrite C-LOT as a min-min optimization problem.
Surprisingly, the inner min problem can be solved analyt-
ically, and the min-min problem becomes a small LOT.
Therefore, this algorithm solves C-LOT faster by solving the
small LOT instead. Using the network simplex algorithm to
solve the small LOT, its time complexity bound becomes
O(m3 logm log(m∥C∥∞)+d2) where C is the cost matrix
and ∥C∥∞ := maxi,j |Cij |. This is greatly improved from
O(d3 log d log(d∥C∥∞)) when solving C-LOT directly.

Next, we propose a fast algorithm for SROT with cyclic
symmetry (C-SROT). Unlike C-LOT, we cannot reduce C-
SROT to a small SROT due to the regularizer. To overcome
this issue, we consider the Fenchel dual of C-SROT. By uti-
lizing cyclic symmetry, we show that the Fenchel dual prob-
lem has only 2m variables, which is significantly fewer than
the 2d variables in the naive dual of C-SROT. Therefore, this
algorithm solves the small Fenchel dual problem by the al-
ternating minimization algorithm (Beck 2017, Chapter 14).
Since the number of variables is very few, its time complex-
ity for one iteration will be reduced, resulting in fast com-

putation as a whole. Especially, this algorithm for EROT
with cyclic symmetry (C-EROT), which is a subclass of C-
SROT, becomes a Sinkhorn-like algorithm. We call it cyclic
Sinkhorn algorithm. The interesting point is that the Gibbs
kernel in the cyclic Sinkhorn algorithm differs from that in
the original Sinkhorn algorithm and is designed by consider-
ing cyclic symmetry. Its time complexity bound of each iter-
ation is O(m2), which is significantly improved from O(d2)
when solving C-EROT by the original Sinkhorn algorithm.

Finally, we propose a two-stage Sinkhorn algorithm for C-
EROT with approximate cyclic symmetry. In the real world,
there are many cases where the input data exhibit only ap-
proximate cyclic symmetry due to slight noise and displace-
ment. The cyclic Sinkhorn algorithm cannot be applied to
such cases because strict cyclic symmetry of the input data
is assumed. To overcome this issue, the two-stage Sinkhorn
algorithm first runs the cyclic Sinkhorn algorithm to quickly
obtain a strict symmetric solution. It then runs the original
Sinkhorn algorithm to modify the solution. As a result, this
algorithm obtains the optimal solution to C-EROT with ap-
proximate cyclic symmetry faster by utilizing cyclic symme-
try at the first stage. In the Experiments section, we exper-
imentally confirmed the fast computation of this algorithm
when input data have approximate cyclic symmetry.

In summary, this paper introduces the concept of symme-
try into the OT research field for the first time and proposes
fast cyclic symmetry-aware algorithms that solve small opti-
mization problems instead of the original OT. We validated
the effectiveness of our algorithms in synthetic/real-world
data with a strict/approximate cyclic symmetry structure.

Related Work
OT was initially formulated by (Monge 1781). Later (Kan-
torovich 1942) relaxed it as the linear programming prob-
lem, which permits splitting a mass from a single source to
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multiple targets. The linear OT (LOT) is easier to solve than
Monge’s form and has made great progress toward solv-
ing OT. To solve OT, many algorithms have been proposed.
For example, the network simplex algorithm (Ahuja, Mag-
nanti, and Orlin 1993) is one of the classical algorithms for
LOT and has been widely used. Recently, algorithms have
been proposed to solve OT faster by adding the entropy reg-
ularizer (Cuturi 2013; Altschuler, Niles-Weed, and Rigol-
let 2017; Lin, Ho, and Jordan 2019b; Alaya et al. 2019).
The dual form of the entropy-regularized OT can be solved
faster by the Sinkhorn algorithm that updates dual vari-
ables via matrix-vector products (Sinkhorn 1967). For fur-
ther acceleration, many improvements to the Sinkhorn algo-
rithm have been proposed. For example, (Altschuler, Niles-
Weed, and Rigollet 2017), (Lin, Ho, and Jordan 2019b),
and (Alaya et al. 2019) proposed using greedy, randomized,
and safe-screening strategies, respectively, to efficiently up-
date the dual variables. Primal-dual algorithms have re-
ceived much attention (Dvurechensky, Gasnikov, and Krosh-
nin 2018; Lin, Ho, and Jordan 2019a; Guo, Ho, and Jor-
dan 2020) because they report faster computation than the
Sinkhorn algorithm and its variants but are rarely used in
practice due to the difficulty of implementation (Pham et al.
2020). This paper focuses on the network simplex algorithm
and Sinkhorn algorithm because they are widely used.

As another line of work to solve OT faster, utilizing spe-
cial structures of input data has been well studied (Solomon
et al. 2015; Bonneel, Peyré, and Cuturi 2016; Peyré and
Cuturi 2019; Getreuer 2013; Tenetov, Wolansky, and Kim-
mel 2018; Altschuler et al. 2019). Inspired by the fact
that geodesic distance matrices can be low-rank approxi-
mated (Shamai et al. 2015), a low-rank approximation for
the cost matrix in OT was introduced to reduce the time
complexity of the Sinkhorn algorithm (Tenetov, Wolansky,
and Kimmel 2018; Altschuler et al. 2019). Several ap-
proaches have utilized the Gibbs kernel structures of the
cost matrix appearing in the Sinkhorn algorithms. The key to
these approaches is to approximate the calculation involving
the Gibbs kernel; by utilizing separability (Solomon et al.
2015; Bonneel, Peyré, and Cuturi 2016) or translation in-
variant (Peyré and Cuturi 2019; Getreuer 2013) of the Gibbs
kernel on a fixed uniform grid, the matrix-vector product in
the Sinkhorn algorithm can be replaced with convolutions.
Thus, it can be computed faster by, e.g., a fast Fourier trans-
form. This paper introduces the utilization of a new special
but ubiquitous structure, cyclic symmetry, in OT.

Preliminary
Notations
R≥0 denotes the set of non-negative real numbers. ⟨·, ·⟩ de-
notes the inner product; that is, for vectors x,y ∈ Rd,
⟨x,y⟩ =

∑d−1
i=0 xiyi, and for matrices X,Y ∈ Rd×d,

⟨X,Y⟩ =
∑d−1

i,j=0 XijYij . The probability simplex is de-

noted as ∆d := {x ∈ Rd |
∑d−1

i=0 xi = 1, xi ≥ 0}. 1d

denotes the all-ones vector in Rd. 0d denotes the all-zeros
vector in Rd. Id denotes the d×d identity matrix.⊗ denotes
the Kronecker product.

Regularized Optimal Transport (ROT)
We define the regularized OT (ROT) that adds a convex reg-
ularizer to the linear OT (LOT) introduced by (Kantorovich
1942). Given two probability vectors a,b ∈ ∆d and a cost
matrix C ∈ Rd×d

≥0 , ROT can be defined as

min
T∈Rd×d

⟨C,T⟩+
d−1∑
i,j=0

ϕ(Tij)

s.t. T1d = a, T⊤1d = b,

(1)

where T is called a transportation matrix and ϕ : R → R ∪
{+∞} is a convex function, called a regularizer. We assume
ϕ(x) = +∞ if x < 0; this assumption imposes the non-
negative constraint on T.

ROT (1) is a generalization of various OT formulations.
For example, (1) leads to LOT when ϕ is given by

ϕ(x) =

{
0 if x ≥ 0,

+∞ otherwise.
(2)

Also, (1) leads to the strongly convex-regularized OT
(SROT) when ϕ is a strongly convex function; a function ϕ is
called strongly convex if ϕ− µ

2 ∥·∥ is convex for some µ > 0.
As an important subclass of SROT, (1) leads to the entropy-
regularized OT (EROT) introduced by (Cuturi 2013) when
ϕ is given by

ϕ(x) =

{
λx(log x− 1) if x ≥ 0,

+∞ otherwise,
(3)

where λ > 0. Note that, unlike the standard OT formulation,
(1) imposes the non-negative constraint on T via the regu-
larizer ϕ(x) for two purposes: (i) to unify the description of
LOT and SROT, and (ii) to describe the Fenchel dual of (8)
concisely and intuitively (see later in Theorem 2).

C-ROT: ROT with Cyclic Symmetry
This section explains our assumption of cyclic symmetry for
ROT (1) and real-world examples of this problem.

We assume that a,b,C in (1) have the following n-order
cyclic symmetry.
Assumption 1. There exists a divisor n of d, and the proba-
bility vectors a,b in (1) have a periodic structure:

a =


α
α
...
α

 , b =


β
β
...
β

 , (4)

where α,β ∈ Rm
≥0 and m := d

n is an integer. Also, the cost
matrix C in (1) has a block-circulant structure:

C =


C0 C1 · · · Cn−1

Cn−1 C0
. . .

...
...

. . . . . . C1

C1 · · · Cn−1 C0

 , (5)

where C0, . . . ,Cn−1 ∈ Rm×m
≥0 .
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In this paper, we call ROT (1) with Assumption 1 Cyclic
ROT (C-ROT). This problem appears universally in various
real-world examples given below.
Example 1 (Image with Cyclic Symmetry). Cyclic symme-
try in images has been a central image research topic. Es-
pecially, because image data are represented in a rectangle
form, mirror or 90◦ rotational symmetry has been utilized
for various tasks; mirror symmetry has been utilized for the
face recognition (Zhao et al. 2003) and rendering (Wu, Rup-
precht, and Vedaldi 2023), and 90◦ rotational symmetry in
medical and galaxy images has been utilized for the im-
age segmentation (Pang et al. 2022) and morphology predic-
tion (Dieleman, Willett, and Dambre 2015). Thus, we here
consider ROT between images with cyclic symmetry, A and
B ∈ Rh×w

≥0 . For images with mirror symmetry, we assume
mirror symmetry along the vertical axis;

Aij = Ai,w−j−1, Bij = Bi,w−j−1,

for 0 ≤ i < h and 0 ≤ j < w. We vectorize these images
by appropriately ordering pixels as follows:

a =
(
Aπ(0), Aπ(1), . . . , Aπ(hw−1)

)⊤
, (6)

b =
(
Bπ(0), Aπ(1), . . . , Bπ(hw−1)

)⊤
,

π(k) =

{
(k mod h, ⌊k/h⌋) 0 ≤ k < hw

2(
k mod h, 3w

2 − ⌊k/h⌋ − 1
)

hw
2 ≤ k < hw

.

By defining C as the Manhattan, Euclidean, or Chebyshev
distance matrix between pixel positions, a,b,C satisfy As-
sumption 1; thus, C-ROT for n = 2 will appear. Similarly,
by appropriately ordering pixels for a,b in the case of 90◦
rotational symmetry, C-ROT for n = 4 will appear.
Example 2 (Urban Planning with Cyclic Symmetry). ROT
has straightforward applications in logistics and econ-
omy (Kantorovich 1942; Guillaume 2012). Imagine a situa-
tion where planners design the structure of a city, this struc-
ture is simply given by two probability distributions: the dis-
tributions of residents a and services b. In this context, the
objective function value of ROT enables us to measure how
close residents and services are and evaluate the city’s ef-
ficiency. Several city structures, such as Howard’s garden
city (Howard 1965), assume that residents and services are
equally located along cyclic symmetry to improve quality of
life. In such structures, a,b and C, where Cij is given by
the Euclidean distance between each resident ai and service
bj , satisfy Assumption 1; thus, C-ROT will appear.
Example 3 (Graph with Cyclic Symmetry). Graphs are
commonly used to model real-world data. For example,
chemical molecules and crystal structures can be modeled
using graphs (Bonchev 1991; Xie and Grossman 2018), and
their graph structures often exhibit cyclic symmetry (Jaffé
and Orchin 2002; Ladd 2014). To compare two graphs, com-
puting their distance has been well-studied and OT-based
approaches have been proposed (Nikolentzos, Meladianos,
and Vazirgiannis 2017; Petric Maretic et al. 2019; Togninalli
et al. 2019). We here consider ROT for computing a distance
between two graphs, G1 and G2, whose structures exhibit
cyclic symmetry. Following (Togninalli et al. 2019), we de-
fine ai = bj =

1
d , where d is the number of nodes, to ensure

the same amount of outgoing/incoming flow from/to a node
and Cij as the Hamming distance between the Weisfeiler-
Lehman hash features of each node pair in G1 and G2,
namely Cij = hamming(f1,i, f2,j) where fk,l is the l-th
node hash feature in Gk. In this situation, a,b, and C satisfy
Assumption 1, and thus C-ROT for two graphs will appear.

Fast Algorithms for C-ROT
In this section, we propose fast algorithms for C-ROT.

Block-Cyclic Structure of Optimal Solution
We first show the following lemma.
Lemma 1. Under Assumption 1, there exists an optimal so-
lution to (1) that has the following structure:

T =


T0 T1 · · · Tn−1

Tn−1 T0
. . .

...
...

. . . . . . T1

T1 · · · Tn−1 T0

 , (7)

where T0, . . . ,Tn−1 ∈ Rm×m
≥0 .

Proof. Let T′ be an optimal solution to (1). We define T∗

as follows:

T∗ :=
1

n

n−1∑
k=0

PkT′ (Pk
)⊤

,

where

Pk :=

(
0⊤
n−1 1

In−1 0n−1

)k

⊗ Im

is the block-circulant permutation matrix.
First, we will show that T∗ is a feasible solution to (1).

T∗ satisfies the constraints of row summation because

T∗1d =
1

n

n−1∑
k=0

PkT′ (Pk
)⊤

1d =
1

n

n−1∑
k=0

PkT′1d

=
1

n

n−1∑
k=0

Pka =
1

n

n−1∑
k=0

a = a.

Similarly, we can show that T∗ satisfies the constraints of
column summation (i.e., (T∗)⊤1d = b). Thus, T∗ is a fea-
sible solution to (1).

Next, we will show that T∗ is an optimal solution to (1).
For this purpose, we check the objective function value of
(1) when T = T∗. Let f(T) be the objective function of
(1), we get

f(T∗) = f

(
1

n

n−1∑
k=0

PkT′(Pk
)⊤)

≤ 1

n

n−1∑
k=0

f
(
PkT′(Pk

)⊤)
=

1

n

n−1∑
k=0

f(T′) = f(T′).
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Note that, we use the convexity of f and Jensen’s inequality
in the inequality relationship of the above equation. Thus,
T∗ is an optimal solution to (1).

Finally, for l = 0, . . . , n− 1, we get

PlT∗(Pl)⊤ =
1

n

n−1∑
k=0

Pk+lT′(Pk+l)⊤

=
1

n

n−1∑
k=0

PkT′(Pk)⊤ = T∗.

Therefore, T∗ has a block-circulant structure of (7).

From Assumption 1 and Lemma 1, C and T have the
same block-circulant structure. Plugging (5) and (7) into C-
ROT (1) yields the following optimization problem:

min
T0,...,Tn−1∈Rm×m

n−1∑
k=0

⟨Ck,Tk⟩+
n−1∑
k=0

m−1∑
i,j=0

ϕ(Tijk)

s.t.
n−1∑
k=0

Tk1m = α,
n−1∑
k=0

T⊤
k 1m = β,

(8)

where Tijk is the (i, j)-th entry of Tk. Note that the optimal
objective function value of (8) is exactly 1

n of that of (1).

Fast Algorithm for C-LOT
We here propose a fast algorithm for cyclic LOT (C-LOT),
which is the special case of C-ROT (1) where ϕ is given by
(2). From (8), C-LOT (1) can be rewritten as

min
T0,...,Tn−1∈Rm×m

≥0

n−1∑
k=0

⟨Ck,Tk⟩

s.t.
n−1∑
k=0

Tk1m = α,
n−1∑
k=0

T⊤
k 1m = β.

(9)

By introducing auxiliary variables S :=
∑n−1

k=0 Tk and
rewriting (9) for S, we can show the following theorem.
Theorem 1. We consider a small LOT

min
S∈Rm×m

≥0

⟨G,S⟩ s.t. S1m = α, S⊤1m = β, (10)

where
Gij := min

0≤k≤n−1
Cijk. (11)

Let S∗ be an optimal solution to (10). Then, (T∗
k)k=0,...,n−1

defined by

T ∗
ijk =

S∗
ij if k = min

(
argmin
0≤k≤n−1

Cijk

)
,

0 otherwise

(12)

is an optimal solution to (9). Also, the optimal objective
function value of (9) is the same as that of (10).

Note that argmin0≤k≤n−1Cijk in (12) will return a set of
indices if the same minimum value exists in several indices,
and we can choose any one but the smallest index by min.

Algorithm 1: Fast Algorithm for C-LOT

Require: a,b ∈ ∆d and C ∈ Rd×d
≥0 under Assumption 1.

1: Compute G whose entry is given by (11).
2: Compute the optimal solution S∗ to (10).
3: for i, j, k do
4: Compute Tijk by the relationship (12)
5: end for
6: Compute T by Lemma 1 with (Tijk)
7: return T

Proof. We fix S :=
∑n−1

k=0 Tk in (9). The matrix S satisfies
S1m = α,S⊤1m = β and we can rewrite (9) as

min
S∈Rm×m

≥0
,

S1m=α, S⊤1m=β

 min
T0,...,Tn−1∈Rm×m

≥0
,∑n−1

k=0 Tk=S

n−1∑
k=0

⟨Ck,Tk⟩

 .

The inner problem is equivalent to individual problems for
each (i, j)-th entry of T0, . . . ,Tn−1, that is we can consider

min
Tij0,...,Tij(n−1)∈R≥0

n−1∑
k=0

CijkTijk s.t.

n−1∑
k=0

Tijk = Sij ,

for each (i, j) independently. This problem can be solved
analytically; the optimal solution is given by (12), and
the optimal objective function value is ⟨G,S⟩. Next, we
solve the outer optimization problem for S. Because S ∈
Rm×m

≥0 ,S1m = α, S⊤1m = β and the objective function is
⟨G,S⟩, this optimization problem is identical with (10).

Theorem 1 indicates that C-LOT (1) can be reduced to
the small LOT (10), which has significantly fewer m2 vari-
ables than d2 = m2n2 variables of the original C-LOT (1).
Therefore, we will obtain the optimal solution to C-LOT (1)
by solving the small LOT (10) instead. The proposed algo-
rithm is summarized in Algorithm 1. Also, Figure 2 shows
the overview of this algorithm.

We evaluate the time complexity of Algorithm 1. The
time complexity depends on the algorithm to solve the
small LOT (10). We here use the network simplex algo-
rithm, the most popular algorithm to solve LOT, to eval-
uate the time complexity. Tarjan (1997) showed that the
time complexity of the network simplex algorithm to solve
LOT (1) with the regularizer (2) is O(d3 log d log(d∥C∥∞)),
where ∥C∥∞ := maxi,j |Cij |. This enables the time
complexity of line 2 in Algorithm 1 to be bounded by
O(m3 logm log(m∥C∥∞)). Because line 1 and lines 3–7
can be conducted in O(d2) time for inputting C and out-
putting T respectively, the total time complexity of Algo-
rithm 1 is O(m3 logm log(m∥C∥∞) + d2). This is signifi-
cantly improved from O(d3 log d log(d∥C∥∞)) when solv-
ing C-LOT (1) directly. Note that we can consider that in-
putting only C0, . . . ,Cn−1 (in line 1) and outputting only
T0, . . . ,Tn−1 (in lines 3–7) are sufficient because T con-
sists of T0, . . . ,Tn−1. In this case, those lines can be con-
ducted in O(m2n) time, and thus the total time complexity
of Algorithm 1 will be O(m3 logm log(m∥C∥∞) +m2n).
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Fast Algorithm for C-SROT
We propose a fast algorithm for cyclic SROT (C-SROT)
which is the special case of C-ROT (1) where ϕ is a strongly
convex regularizer. Note that because ϕ defined by (2) is not
strongly convex, we cannot apply this algorithm to C-LOT.

The following theorem follows from Fenchel’s duality
theorem and optimality conditions in convex analysis (see,
e.g., (Rockafellar 1970, Section 31)).
Theorem 2. The Fenchel dual of the problem (8) is

max
w,z∈Rm

⟨w,α⟩+ ⟨z,β⟩

−
n−1∑
k=0

m−1∑
i,j=0

ϕ⋆(wi + zj − Cijk),
(13)

where ϕ⋆ : R → R ∪ {+∞} is the Fenchel conjugate of ϕ
defined by ϕ⋆(y) := sup{yx − ϕ(x) | x ∈ R}. Also, the
optimal solutions to the problem (8), T∗

k, and to the problem
(13), w∗ and z∗, have the following relationship:

T ∗
ijk = (ϕ⋆)

′
(w∗

i + z∗j − Cijk). (14)

Proof. We rewrite (8) with Lagrange multipliers w and z for
the two equality constraints as follows:

min
T0,...,Tn−1∈Rm×m

max
w,z∈Rm

L(T0, . . . ,Tn−1,w, z) (15)

where

L(T0, . . . ,Tn−1,w, z)

:=
n−1∑
k=0

⟨Ck,Tk⟩+
n−1∑
k=0

m−1∑
i,j=0

ϕ(Tijk)

+

〈
w,α−

n−1∑
k=0

Tk1m

〉
+

〈
z,β −

n−1∑
k=0

T⊤
k 1m

〉
= ⟨w,α⟩+ ⟨z,β⟩

+
n−1∑
k=0

〈
Ck −w1⊤ − 1z⊤,Tk

〉
+

n−1∑
k=0

m−1∑
i,j=0

ϕ(Tijk).

Note that Problem (8) is convex and the constraints are lin-
ear and that Slater’s constraint qualification holds. Hence,
the strong duality holds (see, e.g., (Boyd and Vandenberghe
2004, Section 5.2.3)), and we can swap the min- and max-
operations in (15):

max
w,z∈Rm

min
T0,...,Tn−1∈Rm×m

L(T0, . . . ,Tn−1,w, z)

= max
w,z∈Rm

⟨w,α⟩+ ⟨z,β⟩

−
n−1∑
k=0

m−1∑
i,j=0

ϕ⋆(wi + zj − Cijk).

Thus, the Fenchel dual of the problem (8) is given by (13),
and one of the optimality conditions is

T ∗
ijk = (ϕ⋆)′(wi + zj − Cijk).

Note that ϕ⋆ is a smooth and differentiable convex func-
tion because ϕ is strongly convex. Theorem 2 indicates that
we will obtain the optimal solution to C-SROT (1) by solv-
ing the dual problem (13) instead because we can reconstruct
it by the relationship (14) and Lemma 1.

We here propose to apply the alternating minimization al-
gorithm (Beck 2017, Chapter 14) to (13); we iteratively op-
timize the objective function of (13) with respect to w while
fixing z, and vice versa. When we fix z, the partial derivative
of the objective function with respect to wi is

αi −
n−1∑
k=0

m−1∑
j=0

(ϕ⋆)
′
(wi + zj − Cijk), (16)

and wi is optimal if (16) equals to 0. Because (16) mono-
tonically decreases with respect to wi, we can find such wi

easily by, e.g., the well-known Newton’s method. This also
applies to the optimization with respect to z while fixing w.
The alternating minimization algorithm for a smooth convex
function is guaranteed to attain fast convergence (see (Beck
and Tetruashvili 2013) for more details).

The distinguishing feature of this algorithm is treating a
few dual variables. If the alternating minimization algorithm
is used for the dual problem of (1) without considering cyclic
symmetry, the number of dual variables is 2d = 2mn. In
contrast, our algorithm treats only 2m dual variables, which
is significantly reduced to 1

n . Therefore, the computational
time required for one iteration in the alternating minimiza-
tion will be considerably reduced.

Fast Algorithm for C-EROT
We here propose a fast algorithm for cyclic EROT (C-
EROT), which is the crucial special case of C-ROT (1) where
ϕ is given by (3). Because (3) is strongly convex, we can
apply the cyclic-aware alternating minimization algorithm
introduced in the previous subsection to C-EROT.

Because ϕ⋆(y) = λ exp( yλ ), (16) can be written as

αi − exp
(wi

λ

)m−1∑
j=0

Kij exp
(zj
λ

)
, (17)

where

Kij :=
n−1∑
k=0

exp

(
−Cijk

λ

)
. (18)

From (17), we can get optimal wi in closed form:

wi = λ

logαi − log

m−1∑
j=0

Kij exp
(zj
λ

). (19)

We can rewrite (19) and describe the optimal qj as follows:

pi =
αi∑m−1

j=0 Kijqj
, qj =

βj∑m−1
i=0 Kijpi

,

where pi := exp
(
wi

λ

)
, qj := exp

( zj
λ

)
. This algorithm re-

sembles the Sinkhorn algorithm (Cuturi 2013); we call it
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Algorithm 2: Cyclic Sinkhorn Algorithm for C-EROT

Require: a,b ∈ ∆d,C ∈ Rd×d
≥0 under Assumption 1 and

λ > 0.
1: Compute K whose entry is given by (18).
2: Initialize q← 1m.
3: repeat
4: p← α⊘ (Kq) ▷ ⊘ denotes elementwise division
5: q← β ⊘ (K⊤p)
6: until convergence
7: for i, j, k do
8: Tijk ← piqj exp

(
−Cijk

λ

)
9: end for

10: Compute T by Lemma 1 with (Tijk)
11: return T

cyclic Sinkhorn algorithm. Note that the optimal solution T
to C-EROT (1) can be easily reconstructed from the optimal
w and z by (14) and Lemma 1. The proposed algorithm is
summarized in Algorithm 2.

We evaluate the time complexity of Algorithm 2. The time
complexity depends on the matrix-vector product iterations
in lines 4 and 5 in Algorithm 2 to solve the Fenchel dual
problem (13). In the original Sinkhorn algorithm, the time
complexity of each iteration is O(d2) = O(m2n2) (Cu-
turi 2013). In contrast, in our cyclic Sinkhorn algorithm, the
time complexity of each iteration is O(m2); thus, our algo-
rithm solves C-EROT significantly faster than the original
Sinkhorn algorithm.

Two-Stage Algorithm for C-EROT with
Approximate Cyclic Symmetry

There are many real-world cases in which input data show
only approximate cyclic symmetry. In Example 1, C sat-
isfies Assumption 1 strictly when using the pixel-wise Eu-
clidean distance, but input distributions a,b (namely, im-
ages) often satisfy Assumption 1 only approximately due to
slight noise and displacement. Thus, the above-proposed al-
gorithms cannot be applied to such cases because they as-
sume to satisfy Assumption 1 strictly. To overcome this is-
sue, we here propose a fast two-stage Sinkhorn algorithm for
C-EROT with approximate cyclic symmetry. Because EROT
is commonly used thanks to its differentiability and com-
putational efficiency (Peyré and Cuturi 2019; Guo, Ho, and
Jordan 2020), we focused on C-EROT here. The two-stage
Sinkhorn algorithm first runs the cyclic Sinkhorn algorithm
(Algorithm 2) to quickly obtain a strict symmetric solution.
It then runs the original Sinkhorn algorithm (Cuturi 2013)
to modify the solution. Therefore, this algorithm obtains the
optimal solution to C-EROT with approximate cyclic sym-
metry faster by utilizing cyclic symmetry at the first stage.
The proposed algorithm is described in Algorithm 3.

If satisfying Assumption 1 strictly, the time complexity
of this algorithm is the same as that of the cyclic Sinkhorn
algorithm. If not, it will be complex due to mixing the two
Sinkhorn algorithms at Stages 1 and 2. This analysis is for
future research, but we experimentally confirmed that this

Algorithm 3: Two-Stage Sinkhorn Algorithm for C-EROT
with Approximate Cyclic Symmetry

Require: a,b ∈ ∆d, C ∈ Rd×d
≥0 and λ > 0.

// Stage1: Cyclic Sinkhorn algorithm
1: for i = 0, . . . ,m− 1 do
2: αi =

1
n

∑n−1
k=0 ai+mk ▷ the average of n-divided a

3: βi =
1
n

∑n−1
k=0 bi+mk ▷ the average of n-divided b

4: end for
5: Compute K whose entry is given by (18).
6: Initialize q̂← 1m.
7: repeat
8: p̂← α⊘ (Kq̂) ▷ ⊘ denotes elementwise division
9: q̂← β ⊘ (K⊤p̂)

10: until convergence
// Stage2: Sinkhorn algorithm (Cuturi 2013)

11: Initialize p,q as the n concatenated p̂, q̂, respectively.
12: Compute Kij = exp

(
−Cij

λ

)
.

13: repeat
14: p← a⊘ (Kq)
15: q← b⊘ (K⊤p)
16: until convergence
17: return T← diag(p)Kdiag(q)

algorithm shows fast computation when input data have ap-
proximate cyclic symmetry in the next section.

Experiments
To validate the effectiveness of our algorithms, we con-
ducted experiments on synthetic/real-world data that satisfy
Assumption 1 strictly/approximately. In all experiments, we
evaluated whether our algorithms, which solve small opti-
mization problems instead of the original OT, show the same
results as the original OT but with faster computation; for
details, we checked the average and standard deviation of
the objective function values, marginal constraint errors de-
fined by ||T⊤1d − b||2, and the computation time when us-
ing different algorithms. The computation time was recorded
between inputting the data and outputting the optimal solu-
tion. These experiments were performed on a Windows lap-
top with Intel Core i7-10750H CPU, 32 GB memory. All the
codes were implemented in Python.

Synthetic Data with Strict Cyclic Symmetry
We created 20 synthetic random data for each of the two di-
mensions, d ∈ {5000, 10000}, that satisfy Assumption 1
strictly in n = 50; for details, we created a and b by
concatenating n copies of m-dimensional uniform distribu-
tion with the half-open interval [0.0, 1.0) like (4) and nor-
malized a and b so that the sum of each is 1. For C, we
first sampled C0, . . . ,Cn−1 by m ×m-dimensional Gaus-
sian distribution with the mean 3.0 and the standard devia-
tion 5.0. We then add the absolute minimum value, namely
|mink=0,...,n−1 (mini,j=0,...,m−1 Cijk)|, to the all entries to
ensure their non-negativity. After that, we created C by con-
catenating n copies of C0, . . . ,Cn−1 like (5). For valida-
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Algorithm n
d = 5000 d = 10000

Obj. value Marginal error Time (sec.) Obj. value Marginal error Time (sec.)

Network Simplex – 6.034± 0.824 0.000± 0.000 6.523± 1.013 6.526± 0.917 0.000± 0.000 33.660± 3.238

Cyclic
Network Simplex

2 6.034± 0.824 0.000± 0.000 1.477± 0.235 6.526± 0.917 0.000± 0.000 7.084± 0.728
5 6.034± 0.824 0.000± 0.000 0.300± 0.030 6.526± 0.917 0.000± 0.000 1.391± 0.155
10 6.034± 0.824 0.000± 0.000 0.136± 0.026 6.526± 0.917 0.000± 0.000 0.618± 0.073
25 6.034± 0.824 0.000± 0.000 0.080± 0.019 6.526± 0.917 0.000± 0.000 0.381± 0.044
50 6.034± 0.824 0.000± 0.000 0.056± 0.015 6.526± 0.917 0.000± 0.000 0.329± 0.034

Sinkhorn – 6.233± 0.821 0.000± 0.000 3.271± 1.445 6.745± 0.916 0.000± 0.000 14.589± 4.213

Cyclic Sinkhorn

2 6.233± 0.821 0.000± 0.000 0.918± 0.463 6.745± 0.916 0.000± 0.000 3.973± 0.922
5 6.233± 0.821 0.000± 0.000 0.207± 0.170 6.745± 0.916 0.000± 0.000 1.262± 0.324
10 6.233± 0.821 0.000± 0.000 0.116± 0.036 6.745± 0.916 0.000± 0.000 0.636± 0.259
25 6.233± 0.821 0.000± 0.000 0.093± 0.036 6.745± 0.916 0.000± 0.000 0.381± 0.127
50 6.233± 0.821 0.000± 0.000 0.067± 0.034 6.745± 0.916 0.000± 0.000 0.320± 0.053

Table 1: Experimental results in the synthetic data. “Obj. value” indicates objective function value.

Figure 3: Real-world image and graph samples with cyclic symmetry (n = 2) that are used in the experiments of real-world
cases. The above-shown chemical graph images are obtained by PubChem (Kim et al. 2022).

tion, we compared the network simplex algorithm (Ahuja,
Magnanti, and Orlin 1993), Algorithm 1 using the network
simplex algorithm in line 2 (we call it cyclic network sim-
plex algorithm), the Sinkhorn algorithm (Cuturi 2013), and
the cyclic Sinkhorn algorithm (Algorithm 2). We set λ = 0.5
for the regularizer (3). Because these synthetic data also sat-
isfy Assumption 1 for all n that are divisors of 50, namely
n ∈ {2, 5, 10, 25, 50}, we conducted experiments for each
n; larger n leads to smaller problems that output the same
result. The network simplex algorithm was implemented us-
ing LEMON (Dezső, Jüttner, and Kovács 2011).

Table 1 lists the results. The network simplex algorithm
and cyclic one had the same optimal objective function
values, but the latter showed faster computation times as
n becomes larger. This was also the case when using the
Sinkhorn algorithm and the cyclic one. Moreover, we exper-
imentally confirmed that the marginal errors of the cyclic al-
gorithms are 0. These results support our theoretically exact
reformulations in Theorems 1 and 2 and the effectiveness of
our proposed algorithms; higher cyclic symmetry (i.e., larger
n) results in faster computation time.

Real-World Image Data with Approximate Cyclic
Symmetry
We tested our algorithms on the real-world case of mirror
symmetry (n = 2) in Example 1 with the NYU Symme-
try Database (Cicconet et al. 2017). In this database, we
selected 20 images with mirror symmetry along the ver-
tical axis (see Figure 3). These images were converted to
gray-scale, resized to be 64 × 64 or 96 × 96 pixels, and
normalized so that the sum of the intensity is 1. We then

obtained a,b by (6) and C by the pixel-wise Euclidean
distance. Because EROT is commonly used in real appli-
cations (Peyré and Cuturi 2019), we focused on C-EROT
here and compared the Sinkhorn algorithm (Cuturi 2013),
the cyclic one (Algorithm 2), and the two-stage one (Al-
gorithm 3) over 190(= 20C2) image pairs, for validation.
Note that, in the two-stage Sinkhorn algorithm, we stopped
Stage 1 before the end of convergence to prevent the so-
lution far from the optimal one for real-world images; we
first run the cyclic Sinkhorn algorithm until the marginal er-
ror || (diag(p̂)Kdiag(q̂))

⊤
1m − β||2 is below 1.0 × 10−3

and then run the Sinkhorn algorithm until the difference be-
tween its objective function value and the value obtained by
directly solving C-EROT with the Sinkhorn algorithm is be-
low 1.0× 10−4. We set λ = 0.5 for the regularizer (3).

Table 2 lists the results. The cyclic Sinkhorn algorithm
showed the fastest computation time. However, because this
algorithm assumes to satisfy Assumption 1 strictly, its ob-
jective function value differed from that of the original
Sinkhorn algorithm, and marginal error occurred. In con-
trast, the two-stage Sinkhorn algorithm showed the same
objective function value as that of the original one and no
marginal error but with faster computation time than us-
ing the original one. These results indicate that the cyclic
Sinkhorn algorithm can be a good choice for real-world data
because of its fastest computation time if users tolerate the
objective function value difference and the marginal error. If
not, the two-stage Sinkhorn algorithm is promising for real-
world data, which solves C-EROT with approximate cyclic
symmetry faster than the original Sinkhorn algorithm.
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Algorithm (h,w) = (64, 64), d = 4096 (h,w) = (96, 96), d = 9216

Obj. value Marginal error Time (sec.) Obj. value Marginal error Time (sec.)

Sinkhorn 4.320± 2.056 0.000± 0.000 16.610± 6.502 6.296± 3.100 0.000± 0.000 117.152± 53.442

Cyclic Sinkhorn 4.289± 2.048 0.001± 0.001 3.837± 1.286 6.250± 3.089 0.001± 0.001 26.087± 11.985

Two-Stage Sinkhorn 4.320± 2.056 0.000± 0.000 13.877± 6.244 6.296± 3.100 0.000± 0.000 91.790± 43.000

Table 2: Experimental results in the real-world image data.

Algorithm C20H42 dataset, d = 62 C40H82 dataset, d = 122

Obj. value Marginal error Time (msec.) Obj. value Marginal error Time (msec.)

Sinkhorn 0.598± 0.186 0.000± 0.000 1.534± 0.840 0.640± 0.220 0.000± 0.000 4.204± 4.331

Cyclic Sinkhorn 0.598± 0.186 0.000± 0.000 1.338± 0.619 0.640± 0.220 0.000± 0.000 1.712± 1.297

Table 3: Experimental results in the real-world C20H42 and C40H82 alkanes graph data.

Real-World Graph Data with Strict Cyclic
Symmetry
We also tested our algorithms on another real-world case of
2-order cyclic symmetry in Example 3. No well-maintained
graph dataset with symmetry exists, so we made two new
chemical graph datasets about C20H42 and C40H82 alka-
nes, which consist of 15 and 10 chemical graphs of different
structures with 2-order cyclic symmetry, respectively (see
Figure 3). In this test, we set d as the number of atoms and
n = 2. Following (Togninalli et al. 2019), we defined a,b
and C as those in Example 3. Because these graph data are
real-world but with strict 2-order cyclic symmetry, we fo-
cused on C-EROT and compared only the Sinkhorn algo-
rithm and the cyclic one (Algorithm 2), excluding the two-
stage one (Algorithm 3), for validation. This validation was
performed over 105(= 15C2) graph pairs in C20H42 dataset
and 45(= 10C2) graph pairs in C40H82 dataset, respec-
tively. We set λ = 0.1 for the regularizer (3).

Table 3 lists the graph comparison results. Our cyclic
Sinkhorn algorithm had the same objective function values
and marginal errors as the original one but showed faster
computation times. These results support the effectiveness
of our algorithm on real-world graph data.

Discussions and Limitations
Through this paper, we confirmed that our algorithms can
solve C-ROT faster. For further progress, we discuss the fol-
lowing future issues. (I) In Assumption 1, we assume know-
ing the cyclic order n in advance. Because cyclic symmetry
arises naturally from the physical structure of input data, this
assumption is reasonable in some real-world cases. How-
ever, we must improve our algorithms for unknown-order
cyclic symmetry. (II) It is unknown whether our algorithms
can be generalized for other symmetries, e.g., dihedral sym-
metry (Gatermann and Parrilo 2004). Further development
of our algorithms for general symmetries remains as future
work. (III) The main contribution of this paper is show-
ing the utilization of cyclic symmetry in OT with theoreti-
cal proofs, but we must test our algorithms in various real-

world data for further development. (IV) Our study is or-
thogonal to the existing OT methods; our algorithms can
be combined with many existing OT methods, including the
state-of-the-art methods like the primal-dual descent meth-
ods (Dvurechensky, Gasnikov, and Kroshnin 2018; Guo, Ho,
and Jordan 2020). As the first step, this paper combined the
most widely adopted OT methods (the network simplex and
Sinkhorn methods) with our algorithms to evaluate the com-
putational improvements but a detailed analysis of the com-
bination of our algorithms with the state-of-the-art methods
remains as future work. (V) Approaches that combine spe-
cial structures, such as low rankness or separability, with
symmetry have excellent potential. However, it is not so triv-
ial to combine them well because our symmetry approach
may break such special structures. We must explore this po-
tential in the future.

Conclusion
We proposed novel fast algorithms for OT with cyclic sym-
metry. We showed that such OT can be reduced to a smaller
optimization problem that has significantly fewer variables
as higher cyclic symmetry exists in the input data. Our
algorithms solve the small problem instead of the orig-
inal OT and achieve fast computation. Through experi-
ments, we confirmed the effectiveness of our algorithms
in synthetic/real-world data with strict/approximate cyclic
symmetry. This paper cultivates a new research direction,
OT with symmetry, and paves the way for future research.
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remblais. De l’Imprimerie Royale.
Nikolentzos, G.; Meladianos, P.; and Vazirgiannis, M. 2017.
Matching Node Embeddings for Graph Similarity. In Pro-
ceedings of the Thirty-First AAAI Conference on Artificial
Intelligence.
Pang, S.; Du, A.; Orgun, M. A.; Wang, Y.; Sheng, Q. Z.;
Wang, S.; Huang, X.; and Yu, Z. 2022. Beyond CNNs: Ex-
ploiting Further Inherent Symmetries in Medical Image Seg-
mentation. IEEE Transactions on Cybernetics, 1–12.
Petric Maretic, H.; El Gheche, M.; Chierchia, G.; and
Frossard, P. 2019. GOT: An Optimal Transport framework
for Graph comparison. In Advances in Neural Information
Processing Systems.
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Borgwardt, K. 2019. Wasserstein Weisfeiler–Lehman Graph
Kernels. In NeurIPS, 6436–6446.
Wu, S.; Rupprecht, C.; and Vedaldi, A. 2023. Unsupervised
Learning of Probably Symmetric Deformable 3D Objects
From Images in the Wild (Invited Paper). IEEE Trans. Pat-
tern Anal. Mach. Intell., 45(4): 5268–5281.
Xie, T.; and Grossman, J. C. 2018. Crystal Graph Convo-
lutional Neural Networks for an Accurate and Interpretable
Prediction of Material Properties. Phys. Rev. Lett., 120:
145301.
Zhao, W.; Chellappa, R.; Phillips, P. J.; and Rosenfeld, A.
2003. Face Recognition: A Literature Survey. ACM Comput.
Surv., 35(4): 399–458.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15221


