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Abstract

Multi-task learning (MTL) is essential for real-world applica-
tions that handle multiple tasks simultaneously, such as self-
driving cars. MTL methods improve the performance of all
tasks by utilizing information across tasks to learn a robust
shared representation. However, acquiring sufficient labeled
data tends to be extremely expensive, especially when hav-
ing to support many tasks. Recently, Knowledge Amalgama-
tion (KA) has emerged as an effective strategy for address-
ing the lack of labels by instead learning directly from pre-
trained models (teachers). KA learns one unified multi-task
student that masters all tasks across all teachers. Existing KA
for MTL works are limited to teachers with identical archi-
tectures, and thus propose layer-to-layer based approaches.
Unfortunately, in practice, teachers may have heterogeneous
architectures; their layers may not be aligned and their di-
mensionalities or scales may be incompatible. Amalgamating
multi-task teachers with heterogeneous architectures remains
an open problem. For this, we design Versatile Common Fea-
ture Consolidator (VENUS), the first solution to this problem.
VENUS fuses knowledge from the shared representations of
each teacher into one unified generalized representation for
all tasks. Specifically, we design the Feature Consolidator
network that leverages an array of teacher-specific trainable
adaptors. These adaptors enable the student to learn from
multiple teachers, even if they have incompatible learned rep-
resentations. We demonstrate that VENUS outperforms five
alternative methods on numerous benchmark datasets across
a broad spectrum of experiments.

Introduction
Multi-Task Learning (MTL) is the learning paradigm that
aims to improve the performance of multiple tasks simulta-
neously (Ruder 2017). MTL models learn mutually benefi-
cial shared representations between tasks, which tend to be
more robust than the representations learned separately by
single-task models (Caruana 1997). This robustness is re-
quired by real-world applications that solve multiple related
tasks concurrently, e.g., self-driving cars (Teichmann et al.
2018), disease detection (Zhou et al. 2011; Wan et al. 2012),
and natural language understanding (Clark et al. 2019).

State-of-the-Art. MTL is an active area of research
(Crawshaw 2020; Nekrasov et al. 2019; Bilen and Vedaldi
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Figure 1: Amalgamating Multi-Task Models with Heteroge-
neous Architectures (AmalMTH). Given pre-trained multi-
task models (teachers) and unlabeled data, the task is to train
a student that well performs on the union of teachers’ tasks.

2016; Lu et al. 2017; Gao et al. 2019). However, the exist-
ing MTL works (Liu, Johns, and Davison 2019; Kokkinos
2017; Misra et al. 2016; Ruder et al. 2019) have been de-
veloped using supervised learning. As the number of tasks
grows, training data and labeling requirements become large
- making this too prohibitively expensive in practice.

Fortunately, several organizations that utilize huge and at
times private data sets and extensive compute power have
released pre-trained multi-task models (Harutyunyan et al.
2019; Mormont, Geurts, and Marée 2020) for other practi-
tioners to reuse. Since these released models are each pre-
trained separately, they come with different architectures
and tend to handle different, though at times overlapping,
sets of tasks. However, the reuse of any individual model is
limited to their pre-trained tasks; several applications, e.g.,
self-driving cars, may need to solve a much broader task set
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2019a).
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2019b; Ye et al. 2019).
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Figure 2: Comparison of related Knowledge Amalgamation (KA) problems.

covered across multiple pre-trained models. Utilizing many
of these models concurrently is not ideal, due to the compu-
tational cost of using multiple models as well as the issue of
potential conflicts between model predictions.

Recently, Knowledge Amalgamation (KA) (Shen et al.
2019a) has become a popular approach to combine the
knowledge of multiple pre-trained models (teachers) into
one unified compact student using only unlabeled data. The
student’s objective is to become a master of all tasks solved
across all teachers. This unified student not only solves the
potential scalability and conflict issue mentioned above but
also mitigates costs in collecting the labeled data and in
reusing the pre-trained teachers. Yet, an effective strategy for
extracting and combining knowledge from disparate multi-
task teachers needs to be developed. An example of how KA
could be used for MTL is shown in Figure 1.

Unfortunately, as depicted in Figure 2, most existing KA
works (Shen et al. 2019a; Luo et al. 2019; Thadajarassiri
et al. 2021, 2023) focus on amalgamating knowledge for
only a single task. There are few initial works that began
to study KA for multiple tasks (Ye et al. 2019; Shen et al.
2019b), though they all make the unrealistic assumption that
the teachers have identical architectures. This is too restric-
tive in practice, as models that specialize on different task
sets are rarely identical.

Problem Definition. We propose to study the open
problem of Amalgamating Multi-Task Models with
Heterogeneous Architectures (AmalMTH) as illustrated in
Figure 1. The goal is to train a multi-task student model
using only unlabeled data and pre-trained multi-task mod-
els (teachers). The teachers may have different architectures

and may each handle different sets of tasks. The student is
trained to master the union of the teachers’ task sets.

Challenges. Three challenges arise for AmalMTH:
● No labeled data. Traditional MTL methods are devel-

oped under the standard supervised setting, which requires
labeled data for training. Without labels, these existing MTL
methods are not applicable. Therefore, a solution that does
not need labeled data must be developed.
● Combining knowledge from heterogeneous architecture

teachers. Learning from the teacher’s internal layers could
preserve the teacher’s knowledge (Ye et al. 2019; Shen et al.
2019b). However, teachers may have different architectures,
with a different number and type of layers. This is challeng-
ing as there is no natural alignment between the architec-
tures of the teachers and student, and it is unknown which
layers the student may best learn from. Teachers may also
exhibit different sizes and scales in each layer. Therefore, the
student may be biased toward the teacher with larger scales
when minimizing loss for imitating the teachers’ layers.
●Distinct knowledge captured across teachers. Since each

teacher is pre-trained separately, they typically handle differ-
ent sets of tasks. Consequently, the internal representations
learned by each teacher capture different information. Worst
yet, when teachers share some but not all tasks in common,
the different information captured among them may lead to
conflicting predictions on their shared tasks. For example,
both teachers in Figure 1 are trained to predict the direction
control. However, for the input sample 1, Teacher 1 predicts
to go straight while Teacher 2 predicts to stop. It is thus chal-
lenging for a student to combine such distinct knowledge
into one integrated representation to be used across all tasks.
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Proposed Method. In this work, we propose the first
solution to solve the AmalMTH problem, named Versatile
Common Feature Consolidator (VENUS). VENUS trains a
multi-task student that combines the knowledge from mul-
tiple pre-trained multi-task teachers using only unlabeled
training data. Since the teachers may provide conflicting pre-
dictions, using only their final predictive outputs will lead to
contradicting signals when training the student model. We
thus propose, for the first time, to train a student to also
learn from the teachers’ shared representations as the key
information captured in most MTL models. This allows the
multi-task student to combine the knowledge across all tasks
handled by all teachers to improve generalized performance
for all tasks. A major roadblock to combining the represen-
tations of heterogeneous teachers is the fact that they may
have shared representations with disparate dimensionalities.
VENUS overcomes this using a novel unique adaptor com-
ponent for each teacher. Each adaptor facilitates the student
to align its features to the given teacher’s features by project-
ing the representations to a shared space. Therefore, it allows
the student to learn from multiple teachers even when their
architectures and representations are different.

Contributions. Our contributions include the following:
● We define the open problem of Amalgamating

Multi-Task Models with Heterogeneous Architectures
(AmalMTH): training a MTL student given heterogeneous
MTL teachers and unlabeled training data.
● We design the novel Versatile Common Feature

Consolidator (VENUS) strategy for AmalMTH. VENUS
learns a generalized representation for all tasks by unify-
ing the shared representations in all teachers using a Feature
Consolidator and dimensionality-correcting adapters.
● We demonstrate that VENUS outperforms five alterna-

tive methods on several benchmark datasets by achieving on
average the best accuracy across the board, and is consistent
when the number of tasks shared by teachers varies.

Related Works
Multi-Task Learning (MTL). As described above, MTL
aims to learn shared representations for related tasks to im-
prove overall performance (Caruana 1997). Early work in
MTL focused on hard parameter sharing (Caruana 1997),
which learn a single model composed of numerous shared
layers that ultimately split off into task-specific layers (Caru-
ana 1997; Long et al. 2017; Liu, Johns, and Davison 2019;
Yang, Salakhutdinov, and Cohen 2016; Alonso and Plank
2016). Other works utilize soft parameter sharing (Misra
et al. 2016; Lu et al. 2017; Ruder et al. 2019; Gao et al.
2019), where separate model is trained for each task. To en-
courage sharing across tasks, they apply regularization tech-
niques to constrain the parameters between the respective
parallel layers from all models to be similar (Duong et al.
2015; Misra et al. 2016; Yang and Hospedales 2016). These
methods suffer heavily from computational and/or memory
inefficiency issues, requiring a huge amount of resources
proportionally with the number of tasks.

Most importantly, existing MTL works have been devel-
oped using standard supervised learning. They thus require
a huge amount of labeled data as the number of tasks grows.

Since our target AmalMTH problem assumes no labels are
available, these existing MTL methods are not applicable.
Knowledge Amalgamation (KA). KA (Shen et al. 2019a),
a generalization of Knowledge Distillation (Hinton, Vinyals,
and Dean 2015), follows the teacher-student training con-
cept. While classic Knowledge Distillation learns a small
student model to mimic the predictions of one single larger
teacher model, KA combines knowledge from multiple
teachers handling different tasks into a student model that
learns the union of all teachers’ tasks. As shown in Fig-
ure 2, many existing KA works (Shen et al. 2019a; Luo
et al. 2019; Vongkulbhisal, Vinayavekhin, and Visentini-
Scarzanella 2019; Thadajarassiri et al. 2021, 2023) study
only single-task learning. Recent works have studied multi-
task KA (Ye et al. 2019; Shen et al. 2019b), but they make
the strong assumption that teachers share an identical ar-
chitecture, and thus they propose dedicated layer-to-layer
matching based approaches. However, as teacher models are
pre-trained separately on disparate tasks, they tend to fea-
ture heterogeneous architectures. Thus, approaches are not
applicable to many real-world cases.

Problem Formulation
This paper addresses the problem of Amalgamating
Multi-Task Models with Heterogeneous Architectures
(AmalMTH). We are given an unlabeled dataset containing
n instances with d features, denoted as X = {xi}ni=1 where
xi ∈ Rd. We are also given a set of m powerful pre-trained
multi-task models (teachers),M = {Mj}mj=1. Each teacher
Mj handles a particular task set of the tj distinct tasks, rep-
resented by T j = {T j

k}
tj
k=1. The teachers’ task sets may or

may not overlap with each other. For simplicity of exposi-
tion, we refer to each task as a binary classification task -
though in principle any type of task is possible. Then, for
each instance xi, the prediction from each teacher Mj on its
specialized task T j

k is ŷj,ik where ŷj,ik = 1 if the teacher Mj

predicts that the task T j
k associates (positive) with instance

xi or 0 (negative) otherwise.
Our goal is to train a student model to master all tasks

in the union of the teachers’ task sets, T = ⋃m
j=1 T j . For

clarity, T = {Tk}tk=1 where t is the number of distinct tasks
in the union of all teachers’ task sets. Thus, for each instance
xi, the student outputs the prediction for all tasks in T as
Ŷi = {ŷik}tk=1 where ŷik ∈ {0,1}. To improve readability, we
describe the rest of the paper in terms of one instance xi and
henceforth drop the superscript i.

The Proposed Method: VENUS
We now describe our proposed Versatile Common
Feature Consolidator (VENUS) method to solve the open
AmalMTH problem. The two key principles of VENUS are
learning from robust representations and merging knowl-
edge from diverse features of varying dimensionality. The
first principle is realized by our insight that the last shared
layer among tasks for each teacher will be more informa-
tion rich than the final representation of the model. We thus
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directly optimize our model to have a similar internal repre-
sentation to the final shared representation across teachers.
The second principle is required to merge these representa-
tions, as in general the final shared layer will be of different
dimensionality across the various teachers. To this end we
propose a Feature Consolidator that learns to project the
teacher’s representations along with the student’s internal
state into a shared information-preserving space. Together,
these principles allow us to utilize richer representation from
the teachers. We describe VENUS in more detail below.

Pre-Trained Teacher Models
We are given m pre-trained multi-task teachers, M =
{Mj}mj=1. In general, MTL models can almost always be de-
composed into two parts: the shared layers that learn a com-
mon feature for all tasks, and sequences of task-specific lay-
ers that learn particular task-specific features for each task
(Caruana 1997; Ruder 2017). Let cj be the number of the
shared layers in the teacher Mj where rj is the shared repre-
sentation across all tasks in T j , which is the output of these
cj shared layers. We refer to rj as the final shared represen-
tation of Mj . We denote the sequence of cj shared layers as
{hj

u}c
j

u=1. Thus, rj = hj
cj
(⋯(hj

2(h
j
1(x))))

For each task T j
k ∈ T j , we denote the number of task-

specific layers branching out of rj for this specific task as
uj
k. Then the task-specific layers for this particular task T j

k

are denoted by the sequence of layers: {hj
u}

cj+uj
k

u=cj+1. We use
ℓjk to represent the logit obtained from these task-specific
layers for T j

k , and predicted probability pjk is given by:

ℓjk = h
j

cj+uj
k

(⋯(hj
cj+2(h

j
cj+1(rj)))) (1)

pjk = σ(ℓ
j
k). (2)

The Proposed VENUS Framework
Our goal is to train one unified student model that effectively
combines the shared knowledge across all tasks in the teach-
ers’ union set of tasks into the unified common feature rep-
resentation that could generalize for better performance of
all tasks simultaneously. Our proposed student model adopts
an architecture composed of two main parts, namely, shared
layers and task-specific layers.

Shared Layers of the Student Model In our method, we
call the shared layers the backbone model, i.e., the cs lay-
ers shared across all tasks in T . We note that this backbone
model can adopt any arbitrary architecture, e.g., ResNet,
DenseNet, VGG, or any other customized architecture. The
aim of this component is to unify the common feature rep-
resentation (rs) that benefits all tasks. We denote the se-
quence of these cs shared layers as {hv}c

s

v=1. rs is computed
as rs = HΘ(x), where HΘ(x) = hcs(⋯(h2(h1(x)))) and
Θ are learnable parameters.

To extract the shared knowledge across tasks, this com-
mon representation, rs, is trained to be similar to the final
shared representation of each teacher. Thus, the loss LC en-
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Figure 3: The architecture of our proposed method, named
Versatile Common Feature Consolidator (VENUS).

courages the student to learn rs to be similar to each rj :

LC(Θ) =
1

m

m

∑
j=1
(rs − rj)

2
. (3)

However, the teachers and the student may have heteroge-
neous architectures, meaning, rs and rj may be of different
dimensionalities or with different supports. Thus, we cannot
directly compute Equation 3. Therefore, we develop a solu-
tion to this matching challenge in the form of the Feature
Consolidator strategy below.

Feature Consolidator (FC) As shown in Figure 3, FC
learns to align the common feature representation rs of the
student with each teacher’s final shared representation rj .
For this purpose, we train adaptors for each teacher.

These adaptors enable the student to unify knowledge
from heterogeneous teachers by learning to adjust their dif-
ferent sizes and scales through learnable parameters. For
each teacher Mj , the adaptor is a trainable network: r̂j =
ReLU(W j ⋅ rs + bj), where W j and bj are learnable pa-
rameters. Specifically, the weight matrix W j is trained to
transform the student’s feature representation into the same
size as the teacher’s feature representation while parameter
bj is trained to adjust each value in this transformed rep-
resentation to be most similar to the target representation
of the teacher. Moreover, the ReLU function allows us to
model non-linearity transformations with efficient computa-
tional costs. Using the output from the adaptor, r̂j , the com-
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mon feature loss function in Equation 3 is modified to:

LC(Θ) =
1

m

m

∑
j=1
(r̂j − rj)

2
. (4)

These adaptors are only required when computing loss.
After training they can be removed.

Task-Specific Layers of the Student Model The task-
specific layers for each task Tk ∈ T in the student model
are branched out of the common feature representation rs.
These task-specific layers aim to learn the specific informa-
tion for each task given the generalized knowledge rs so to
be able to make a final prediction for the individual task Tk.
Let vk be the number of the task-specific layers for the task
Tk and ℓk be the logit for this task. We learn ℓk as:

ℓk =HΘk
(rs); HΘk

(rs) = hcs+vk
(⋯(hcs+2(hcs+1(rs))))

(5)

where Θk are the learnable parameters specific for the task
Tk. Then the predicted probability for the task Tk, denoted
by qk, is calculated by applying the sigmoid function (σ) to
the corresponding logit ℓk. The final prediction is obtained
by binarizing qk with a threshold of 0.5. Thus, ŷk = 1 if
qk > 0.5 and otherwise yk = 0. Let Lk be the set of logits for
task Tk gathered from all teachers specializing on Tk. The
consensus predicted probability for the task Tk, denoted as
pk, is obtained by applying the sigmoid function (σ) on the
average of the logits in Lk.

∀ℓa ∈ Lk, pk = σ(
1

∣Lk ∣

∣Lk ∣

∑
a=1

ℓa). (6)

For each task Tk, the task-specific layers are trained to
minimize the cross entropy loss between the predicted prob-
ability qk and the consensus predicted probabilities from the
teachers specializing on Tk. That is the parameters Θk are
trained to minimize the task-specific loss for the task Tk as:

LT (Θk) = −pklog(qk). (7)

Procedure for Training the Student Model
The student is trained to combine the common knowledge
across all teachers for all tasks and also imitate the teach-
ers’ consensus predictions simultaneously. Let ω denote all
trainable parameters used for the overall training process,
i.e., this includes Θ, Θk, W j , and bj for all tasks in T across
all teachers inM. These parameters are optimized by mini-
mizing the final loss:

L(ω) = 1

m

m

∑
j=1
(r̂j − rj)

2 − 1

t

t

∑
k=1
(pklog(qk)). (8)

Experimental Study
Our method, datasets, and all experimental details are avail-
able at https://github.com/jida-thada/VENUS.

Datasets
We follow the recent KA works on multi-task learning (Ye
et al. 2019; Shen et al. 2019b) by handling each class label
in each dataset as an independent binary classification task.
● PASCAL VOC 2007 (Everingham and Winn 2010) has

9,963 images. Each image can have up to 20 object-type la-
bels corresponding to 20 different predicting tasks.
● 3D contains four tasks extracted from the 3d-shapes

dataset (Burgess and Kim 2018). The four tasks are to iden-
tify (1) whether the object’s color is blue, (2) whether the
floor’s color is green, (3) whether the wall’s color is purple,
and (4) whether the wall’s color is pink. The dataset contains
168,959 images in total.
● CIFAR-10 (Krizhevsky 2009) consists of 60,000 images.

Each image is annotated with 10 class labels, leading to 10
binary classification tasks.

Compared Methods
We compare VENUS against two baselines and three KA
methods from the literature that we adapt for AmalMTH:
Baseline Methods:
● Teachers: The pre-trained MTL teachers are used as is,

each handles only a partial subset of the student’s tasks.
● Single-Task CFL (Luo et al. 2019): As proposed in (Luo

et al. 2019), each task has its own separate model trained by
the CFL method for heterogeneous teachers. It trains the stu-
dent to imitate the teachers’ logits and also their last layers
before the logits that are mapped into a common space.
Multi-Task KA Methods:
●MuST (Ghiasi et al. 2021): This method follows the idea

of pseudo labeling from (Ghiasi et al. 2021) to train a student
that imitates the pseudo-predictions generated by the teach-
ers. For the shared tasks between teachers, it learns from the
pseudo-predictions from all teachers with equal weights.
● KD (Hinton, Vinyals, and Dean 2015): The student is

trained using the Knowledge Distillation paradigm by learn-
ing to imitate the average of all teachers’ logits.
● Multi-Task CFL (Luo et al. 2019): We adapt the CFL

method proposed for Single-Task KA to the multi-task set-
ting. This solution learns from the teachers’ average logits
and here we also apply our proposed principle of learning
from the final shared representations of all teachers.

Implementation Details
In each experiment, the dataset is randomly split into 70%
for training the teachers, 20% for training the student, and
10% for testing. Since in our setup the data for each task
would tend to suffer from a significant class imbalance as
the majority of instances would belong to the negative class,
we down-sample to obtain balanced datasets. In each exper-
iment, the teachers may have a different number of shared
tasks as described in the next section. The choice of the
shared tasks is randomly assigned. The remaining tasks are
randomly spit into the teachers’ specialized task sets. The
student is trained on unlabeled data to handle the union of
the teachers’ specialized tasks. Each experiment is repli-
cated three times with different seeds. We report the mean
and standard deviation of accuracy. Our model is written in
PyTorch and optimized using Adam (Kingma and Ba 2015).
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Tasks
Methods Baseline Methods Multi-Task KA Methods

Teacher 1 Teacher 2 Single-Task CFL MuST KD Multi-Task CFL Ours: VENUS

Dataset: PASCAL VOC 2007
Airplane NA .7552±.0335 .6852±.0248 .9182±.0054 .7862±.0288 .7642±.0163 .8176±.0393
Bicycle .6061±.0167 NA .6024±.0154 .6079±.0120 .6064±.0275 .6333±.0218 .6302±.0146
Boat .7564±.0392 NA .7009±.0369 .6182±.0364 .6939±.0379 .7334±.0139 .7394±.0138
Bus .6901±.0396 NA .6534±.0093 .5128±.0222 .6068±.0605 .6410±.0339 .6432±.0364
Car NA .6399±.0238 .6372±.0264 .5914±.0427 .7098±.0156 .6796±.0146 .7175±.0150
Scooter .6794±.0414 NA .6818±.0186 .5586±.0420 .7106±.0138 .6685±.0593 .7180±.0271
Train NA .6608±.0204 .6115±.0088 .5490±.0362 .6299±.0663 .6716±.0765 .7034±.0236
Bottle NA .6031±.0378 .6102±.0096 .5053±.0092 .6640±.0040 .6307±.0528 .6813±.0300
Chair NA .5918±.0394 .5821±.0205 .5919±.0367 .6593±.0437 .6587±.0386 .6655±.0183
Table .6977±.0300 NA .6380±.0200 .6297±.0253 .6786±.0496 .6702±.0578 .7036±.0371
Planter .6231±.0338 .6014±.0335 .5831±.0097 .7402±.0104 .5932±.0114 .6168±.0470 .5932±.0060
Sofa .6534±.0577 NA .6324±.0298 .5735±.0601 .6434±.0112 .6523±.0244 .6667±.0135
TV .6293±.0383 NA .5955±.0199 .5542±.0481 .6278±.0360 .6292±.0547 .6625±.0254
Bird NA .5617±.0169 .5456±.0284 .5578±.0619 .6378±.0269 .6800±.0231 .6733±.0592
Cat .6842±.0341 .6473±.0331 .6474±.0207 .8090±.0056 .6311±.0254 .6479±.0374 .6367±.0577
Cow NA .5626±.0518 .5603±.0134 .5505±.0232 .6869±.0574 .6263±.0088 .7071±.0315
Dog .5756±.0084 .6071±.0349 .5708±.0156 .8100±.0133 .5734±.0105 .6375±.0201 .6061±.0594
Horse .6675±.0802 NA .6418±.0241 .8496±.0057 .6585±.0204 .6455±.0057 .6634±.0295
Sheep .6917±.0703 .7453±.0459 .6180±.0061 .8526±.0400 .7179±.0867 .6859±.0111 .6923±.0385
Person NA .5851±.0115 .5811±.0431 .5902±.0172 .5682±.0201 .5919±.0104 .5728±.0128

Ave. RANK NA NA 4.05 3.45 3.05 2.55 1.85

Dataset: 3D
Blue object .7392±.0057 NA .7450±.0089 .6428±.1193 .7402±.0159 .7139±.0073 .7493±.0014
Green floor NA .8247±.0012 .8358±.0065 .5542±.0442 .8338±.0036 .8362±.0010 .8392±.0034
Purple wall .8801±.0024 .9434±.0180 .9726±.0024 .9703±.0025 .9723±.0050 .9761±.0027 .9784±.0024
Pink wall NA .9376±.0188 .9712±.0024 .6604±.1472 .9750±.0046 .9747±.0055 .9787±.0023

Ave. RANK NA NA 3.00 5.00 3.25 2.75 1.00

Dataset: CIFAR-10
Airplane NA .7136±.0158 .7122±.0067 .5789±.0527 .8128±.0104 .7975±.0096 .8170±.0139
Automobile .6933±.0117 NA .7103±.0097 .5453±.0049 .8434±.0029 .8281±.0148 .8509±.0113
Bird .6200±.0107 NA .5930±.0021 .5422±.0351 .6970±.0054 .6936±.0224 .7031±.0093
Cat NA .6167±.0084 .6031±.0167 .5283±.0184 .7095±.0129 .7314±.0140 .7253±.0043
Deer .6253±.0027 NA .6014±.0276 .5564±.0342 .7286±.0169 .7153±.0102 .7484±.0101
Dog .6631±.0056 NA .6572±.0175 .5136±.0138 .7581±.0165 .7381±.0286 .7633±.0079
Frog NA .6719±.0097 .6603±.0117 .5050±.0047 .8056±.0138 .7967±.0217 .8144±.0167
Horse .6511±.0155 .6203±.0089 .6336±.0180 .8200±.0080 .7844±.0179 .7883±.0036 .7747±.0281
Ship .7505±.0118 .7345±.0046 .7505±.0107 .8686±.0048 .8503±.0122 .8547±.0043 .8645±.0086
Truck NA .6908±.0142 .6811±.0056 .5570±.0472 .8092±.0122 .7947±.0208 .8072±.0042

Ave. RANK NA NA 4.20 4.20 2.30 2.70 1.60

Table 1: Compared performance on the three benchmark datasets. Ave. RANK shows the overall performance across all tasks.

Experimental Results
We report the accuracy of all tasks. To show the overall
performance for a dataset, we follow (Thadajarassiri et al.
2023) by reporting the average rank of all compared meth-
ods across all tasks, where 1 indicates the best performance.
For a fair comparison, we use ResNet18 (He et al. 2016) as
the backbone model for the student in all experiments.
Effectiveness of VENUS in learning a high quality com-
mon feature representation. We first investigate how ef-
fective our proposed method is compared against the other
methods across all datasets. To observe this, for each dataset,
we train a student from the two teachers with heterogeneous

architectures—DenseNet (Huang et al. 2017) for Teacher 1
and ResNet18 (He et al. 2016) for Teacher 2. Each of them
is trained on approximately the same number of tasks with
roughly 30% of their tasks shared.

The results, as demonstrated in Table 1, show that the
proposed VENUS outperforms alternative methods signifi-
cantly as it reaches the best average accuracy across all tasks
for all datasets. First, we observe that the multi-task KA
methods generally outperform the two baselines of using the
teachers as is and the Single-Task KA. This means the multi-
task KA methods succeed in utilizing information across
each task in order to improve the performance of all tasks
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Tasks
Methods Baseline Methods Multi-Task KA Methods

Teacher 1 Teacher 2 Single-Task CFL MuST KD Multi-Task CFL Ours: VENUS

Teacher 1: DenseNet, Teacher 2: VGG
Blue object .8913±.0286 .8337±.0097 .9379±.0021 .9369±.0112 .9370±.0036 .9218±.0071 .9401±.0022
Green floor .8076±.0148 NA .8088±.0008 .6514±.0939 .8253±.0154 .8180±.0181 .8205±.0204
Purple wall .9037±.0577 .8516±.0208 .9695±.0015 .9637±.0016 .9539±.0128 .9660±.0037 .9685±.0006
Pink wall NA .8421±.0189 .8824±.0073 .5382±.0333 .8926±.0202 .8996±.0414 .9045±.0204

Ave. RANK NA NA 2.75 4.50 3.00 3.25 1.50

Teacher 1: DenseNet, Teacher 2: AlexNet
Blue object .8791±.0247 .8188±.0025 .9138±.0037 .9189±.0061 .9221±.0042 .9141±.0118 .9332±.0132
Green floor .7971±.0133 NA .8087±.0041 .5649±.0279 .8058±.0204 .8036±.0082 .8090±.0173
Purple wall .8695±.0605 .8831±.0035 .9564±.0043 .9563±.0020 .9605±.0017 .9628±.0023 .9620±.0086
Pink wall NA .8272±.0012 .8810±.0019 .5002±.0003 .9165±.0188 .8981±.0101 .8980±.0180

Ave. RANK NA NA 3.75 4.50 2.25 2.75 1.75

Teacher 1: VGG, Teacher 2: AlexNet
Blue object .9061±.0007 .8263±.0144 .9086±.0015 .9183±.0096 .9081±.0039 .9097±.0041 .9098±.0010
Green floor .8121±.0018 NA .8364±.0037 .5313±.0257 .8582±.0141 .8500±.0092 .8327±.0177
Purple wall .9375±.0017 .8690±.0246 .9254±.0027 .9334±.0061 .9209±.0183 .9374±.0111 .9490±.0037
Pink wall NA .8319±.0171 .8896±.0084 .5052±.0062 .9011±.0219 .8963±.0137 .9057±.0029

Ave. RANK NA NA 3.75 3.50 3.25 2.50 2.00

Table 2: Compared performance on more cases of combining teachers with heterogeneous architectures.

simultaneously. We notice that the Single-Task KA method
barely shows an improvement over the performance of the
baseline teachers. This Single-Task KA method may suffer
from having not enough data to train each model separately.

We observe that MuST shows consistently the worst
performance. This suggests that using only the pseudo-
predictions from the teachers cannot provide enough infor-
mation for the student to learn high-quality features to be
used across all tasks. In all settings, we see that the Multi-
Task CFL and VENUS clearly outperform MuST, indicating
that incorporating the knowledge from teachers’ final shared
representations could lead the student to learn better com-
mon features that are generalizable across all tasks. How-
ever, we notice that unlike VENUS that clearly performs bet-
ter than KD, Multi-Task CFL does not show a significantly
superior performance over KD. This implies although both
Multi-Task CFL and VENUS utilize more information from
the teachers’ final shared representations, our VENUS fea-
tures a more successful strategy for fusing such knowledge
achieved through the Feature Consolidator.
Further investigating heterogeneous teachers. We explore
more cases of learning from teachers with heterogeneous ar-
chitectures. We pre-train the teachers using three popular
models with distinct architectures: DenseNet (Huang et al.
2017), VGG (Simonyan and Zisserman 2015), or AlexNet
(Krizhevsky, Sutskever, and Hinton 2017). Then we train the
student from different combinations of these pre-trained het-
erogenous teachers as shown in Table 2. In each setting, the
two teachers are trained using different data from the 3D
dataset and they have 50% of shared tasks.

In Table 2, we observe that VENUS consistently outper-
forms the other methods, achieving the best average rank.

Thus, VENUS succeeds to combine knowledge across het-
erogeneous teachers into a high-quality common feature rep-
resentation that generalizes effectively to all tasks. The re-
sults show that Multi-Task CFL and our VENUS clearly out-
perform MuST and KD. This indicates that learning from the
teachers’ final shared representations is effective for training
the multi-task student model. VENUS consistently shows
superior performance over Multi-Task CFL. This is likely
achieved due to VENUS’s strategy of fusing knowledge
from teachers even with heterogeneous architectures.

Conclusion

We introduce the new problem of Amalgamating Multi-Task
Models with Heterogeneous Architectures (AmalMTH) and
propose the first solution, named Versatile Common Fea-
ture Consolidator (VENUS). Our method trains a multi-task
student to improve the performance of all tasks across all
teachers without using labeled data. VENUS amalgamates
rich information encoded in the teachers’ representations.
VENUS introduces a Feature Consolidator that allows the
student model to learn from teachers with heterogeneous ar-
chitectures. Our experiments demonstrate that VENUS sig-
nificantly outperforms all alternative methods by achieving
the top average accuracy across all tasks in all settings.
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