
Causal Strategic Learning with Competitive Selection

Kiet Q. H. Vo1,2, Muneeb Aadil1,2, Siu Lun Chau1, Krikamol Muandet1

1CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
2Saarland University, Saarbrücken, Germany

huynh.vo@cispa.de, s8muaadi@stud.uni-saarland.de, siu-lun.chau@cispa.de, muandet@cispa.de

Abstract

We study the problem of agent selection in causal strategic
learning under multiple decision makers and address two key
challenges that come with it. Firstly, while much of prior
work focuses on studying a fixed pool of agents that remains
static regardless of their evaluations, we consider the impact
of selection procedure by which agents are not only evalu-
ated, but also selected. When each decision maker unilaterally
selects agents by maximising their own utility, we show that
the optimal selection rule is a trade-off between selecting the
best agents and providing incentives to maximise the agents’
improvement. Furthermore, this optimal selection rule re-
lies on incorrect predictions of agents’ outcomes. Hence, we
study the conditions under which a decision maker’s optimal
selection rule will not lead to deterioration of agents’ outcome
nor cause unjust reduction in agents’ selection chance. To that
end, we provide an analytical form of the optimal selection
rule and a mechanism to retrieve the causal parameters from
observational data, under certain assumptions on agents’ be-
haviour. Secondly, when there are multiple decision makers,
the interference between selection rules introduces another
source of biases in estimating the underlying causal parame-
ters. To address this problem, we provide a cooperative pro-
tocol which all decision makers must collectively adopt to re-
cover the true causal parameters. Lastly, we complement our
theoretical results with simulation studies. Our results high-
light not only the importance of causal modeling as a strategy
to mitigate the effect of gaming, as suggested by previous
work, but also the need of a benevolent regulator to enable it.

1 Introduction
Machine Learning (ML) has gained significant popular-
ity in facilitating personalised decision making across di-
verse domains such as healthcare (Wiens et al. 2019; Chau
et al. 2021; Ghassemi and Mohamed 2022), criminal jus-
tice (Kleinberg et al. 2018), college admissions (Harris et al.
2022), hiring (Deshpande, Pan, and Foulds 2020), and credit
scoring (Björkegren and Grissen 2020). In these critical do-
mains, mutual trust between decision makers and agents
who are affected by the decisions is of utmost importance.
As a result, the decision makers might need to render algo-
rithmic rules transparent to all stakeholders. However, this
transparency can incentivise agents to strategically adjust
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their variables to receive more favorable decisions, result-
ing in either genuine improvements or gaming (Bechavod
et al. 2021). Although in both scenarios agents receive better
decision outcomes, gaming is undesirable for the decision
makers as it negatively impacts their utility. Learning un-
der strategic behavior is well-studied in both economics and
machine learning (Hardt et al. 2016; Perdomo et al. 2020;
Dranove et al. 2003; Dee et al. 2019; Munro 2022). Our
work aligns with research efforts to identify causal features
that reduce gaming effects and to promote genuine agent im-
provements (Miller, Milli, and Hardt 2020), an approach of-
ten referred to as causal strategic learning (CSL).

Let us consider a college admission example from Har-
ris et al. (2022). The college, acting as the decision
maker (DM), aims to evaluate applicants (agents) by predict-
ing their prospective college GPAs based on their submitted
high school GPAs and SAT scores. For transparency, the col-
lege makes this evaluation rule public. In response, appli-
cants can strategically direct their efforts on certain exams
(high school or SAT) to optimise their evaluations. Recog-
nising this strategic approach, the college’s objective is to
formulate and publicise an evaluation rule that maximises
the expected college GPA (or agents’ outcome) for all appli-
cants. Envision a scenario where a student’s college GPA is
causally determined by their high school GPA only, yet the
deployed rule considers both exam results. There is poten-
tial for gaming behavior under this rule, if an applicant em-
phasises their SAT preparation over their high school GPA,
since this might boost their evaluation without necessarily
improving the actual college academic performance.

The above example underscores the necessity of incorpo-
rating causal knowledge into decision making to incentivise
agents towards genuine improvement, aligning with what
Miller, Milli, and Hardt (2020) have proven. CSL presents
numerous challenges. For example, Alon et al. (2020) ex-
plore mechanism designs that incentivise agents to respond
with the intended outcomes of the DM, assuming knowledge
of the true underlying causal structure. Similarly, Munro
(2022) also assumes knowledge of casual information and
incorporates stochasticity into their released decision rule to
discourage gaming. However, without prior causal knowl-
edge, learning the true causal mechanism in practice is chal-
lenging due to confounding bias in observational data. To
address this, Shavit, Edelman, and Axelrod (2020) show that

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15411



Figure 1: Causal strategic learning with two decision mak-
ers. The statistics (STAT) and cyber-security (CySec) de-
partments, each applies selection rules δθS and δθC to max-
imise their enrolled students’ expected outcomes (future
GPA). The parameters θS and θC are made public, prompt-
ing future students to strategically alter their attributes (X to
X̃) to boost admission chances.

a DM can publicise a sequence of evaluation rules specif-
ically to eliminate confounding bias and achieving causal
identifiability. In contrast, Harris et al. (2022) consider sce-
narios in which the DM can utilise the evaluation rule it-
self as instrumental variable, and identify the true causal
mechanism via instrumental variable regression (Angrist,
Imbens, and Rubin 1996; Newey and Powell 2003; Hartford
et al. 2017; Singh, Sahani, and Gretton 2019; Muandet et al.
2020). While much of previous CSL research focuses on
evaluating (and motivating) agents in light of strategic feed-
back from a single DM’s perspective, our research extends
further, considering not just evaluating, but also selecting
agents based on their evaluations. This brings in additional
challenges, notably the introduction of selection bias, which
undermines previous causal identifiability results. Addition-
ally, we venture into situations with multiple DMs compet-
ing to select agents. We believe this work is well-motivated
for real-world strategic learning scenarios that involve com-
petitive selection, such as in hiring and loan application.

Continuing from our motivating example, consider that
we now have multiple college departments (as DMs), e.g.
statistics and cyber-security, competing not only to evalu-
ate applicants but also to select them based on their eval-
uations (see Figure 1). Unlike previous methods, each de-
partment (DM) aims to optimise the expected GPA of their
enrolled students, rather than focusing on all applicants.
This natural objective nonetheless leads to a dilemma be-
tween selecting the top-performing candidates and motivat-
ing general candidates to improve. Furthermore, a selec-
tion rule focusing solely on top candidates can disincen-
tivise self-improvement, potentially lowering future college
GPAs (see Corollary 3.2). Additionally, as the optimal se-
lection rule has to rely on incorrect (non-causal) predictions
of agents’ outcomes, their chances of being selected can be
diminished compared to if evaluations were based on accu-
rate (causal) predictions (see Corollary 3.3). We refer to an
agent’s prospective outcome and selection chances collec-
tively as agent welfare. To safeguard such welfare, we adopt
a regulator’s viewpoint, proposing regulations for the DM
to follow, such that their resulting optimal decision rule will
lead to neither deterioration of agents’ outcomes nor exces-
sive reduction in agents’ selection chance. As such regula-
tion requires DM to have access to causal parameters, we

provide conditions for a single DM to achieve causal identi-
fiability under selection bias. With multiple DMs, the selec-
tion bias is now harder to correct for due to the interference
between decision rules. In particular, it is difficult for any
individual DM to predict an agent’s strategic response when
that agent is incentivised by all DMs. Additionally, anticipat-
ing their compliance behavior is challenging since this agent
can adhere to at most one DM’s positive decision. Conse-
quently, we propose a cooperative protocol for the DMs to
follow so that their causal parameters can be identified, to
subsequently safeguard the welfare of agents.

The rest of the paper is outlined as follows. Section 2 in-
troduces the CSL formulation with selection procedure un-
der multiple DMs. Section 3 then discusses the impact of
selection in the context of CSL alongside our main results
and extensions to the setting of competitive selection. We
validate our approach through various simulation studies in
Section 4. Finally, we conclude in Section 5. All proofs are
provided in the appendices.

2 CSL with Selection
Notations. We denote random variables and random vec-
tors with upper case letters, and their realisations with lower
case and bold lower case letters, respectively. Random ma-
trices are also denoted with upper case letters, and their re-
alisations with bold upper case. We write {1, . . . , n} as [n].

Following prior work (Shavit, Edelman, and Axelrod
2020; Harris et al. 2022; Bechavod et al. 2022), we build our
setting on the sequential decision making context, following
the framework of Stackelberg game. We assume throughout
that there exist n decision makers (DMs), with n ≥ 1, who
take turn with agents playing their strategies over T rounds
indexed by t ∈ [T ]. Let Wit be a binary variable represent-
ing the decision from DM i for the sole agent who arrives
at round t, e.g., whether or not the college i admits this stu-
dent. At the beginning of each round, each DM publicises
their decision rule δθit parameterised by the parameter vec-
tor θit ∈ Rm, i.e.,

δθit
: x 7→ p (Wit = 1 | Xt = x ; θit) , i ∈ [n]

where Xt ∈ Rm denotes the random vector containing the
covariates of the agent in round t and p(Wit = 1 |Xt =
x ; θit) is a probability that this agent will later receive a
positive decision, i.e., being admitted into the college, if
they report attributes Xt = x. We assume that Wit ∼
Bernoulli(δθit (Xt)). After knowing about {δθit}ni=1, this
agent modifies their attributes and then reports the final val-
ues x, e.g., SAT score and high school GPA, to all DMs,
so as to maximise the chance of receiving favorable deci-
sions. Next, all DMs evaluate this agent using their deci-
sion rules and return the selection statuses {wit}ni=1. Fi-
nally, the agent’s compliance to the decisions can be mod-
eled as a random variable Zt ∼ Categorical({0} ∪ [n]),
whose value dictates which positive decision the agent will
comply with1. Throughout this work, we focus on the per-
fect information setting where both DMs and agents know

1When Zt = 0, the agent either does not comply with any of
the positive decisions or does not receive any positive decision.
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all information about the decision rules including their
parameter vectors (Shavit, Edelman, and Axelrod 2020;
Harris et al. 2022). Specifically, for round ts, the agent
knows about {δθits

,θits}ni=1 and all DMs know about
{{δθit ,θit}ni=1}

ts−1
t=1 .

Following Harris et al. (2022), we assume that the poten-
tial outcome of an agent, Yit ∈ R, e.g., their future GPA,
in any environment i is a linear function of their covariates:
Yit := X⊤

t θ∗
i + Oit where θ∗

i ∈ Rm is the true causal pa-
rameter vector that maps the covariates Xt to the outcome
Yit ∈ R and Oit is the unobserved noise. In practice, the
DMs lack access to the true θ∗

i , so each of them bases their
decision on the predicted outcome ŷit = x⊤θit using the
agent’s covariates Xt = x where θit is a parameter esti-
mate. Finally, we assume that the covariates Xt is a linear
function of an agent’s baseline and their strategic improve-
ment, namely Xt := Bt+Etat where the conversion matrix
Et ∈ Rm×d translates their strategic action at ∈ Rd into
the improvement upon the baseline Bt ∈ Rm. The unob-
served noise Oit is correlated with the agent’s baseline Bt

and is specific to the environment i, which can be due to the
private type of each agent, e.g., a student’s socioeconomic
background, that can further influence their academic base-
line Bt and their cultural fit Oit in this environment.

Agents’ utilities. Since each agent has access to multi-
ple predicted outcomes ŷit (where i ∈ [n]) alongside their
preferred environments, we assume that the agent t aims at
maximising the following utility function

u(at) :=
n∑

i=1

γitŷit(at)−
1

2
∥at∥22 with γit ≥ 0, ∀i, t (1)

in each round t after being informed of the parameter vec-
tors, where {γit}ni=1 represents the preference of this agent.
Unlike previous work (Shavit, Edelman, and Axelrod 2020;
Harris et al. 2022; Bechavod et al. 2022), the utility func-
tion (1) also involves the agent’s preference over multiple
DMs. For any list of parameter vectors {θ1t,θ2t, . . . , θnt},
it is not difficult to see that the maximiser of (1) is at =
E⊤t (

∑n
i=1 γitθit); see Appendix A.1 for the full proof.

Decision makers’ objectives. We assume that the DMs
are utility maximisers each of whom aims to maximise the
expected future outcome of the agents that comply with their
decisions. Without loss of generality, we specify the objec-
tive function for an arbitrary DM i:

max
θit

E
[
Yit({θ−i

t ,θit}) | Zt = i ; θit
]

(2)

where we use {θ−i
t ,θit}, θall

t , or {θit}ni=1 to denote a col-
lection of parameters associated with the deployed selection
rules. We use the notation Yit({θ−i

t ,θit}) to highlight that
the outcome variable is a function of all parameters θall

t due
to agents’ strategic behaviour. Furthermore, notice that the
expectation also depends on the conditional distribution of
the rival DMs’ parameters, p(θ−i

t |Zt = i,θit). More de-
tailed discussion will follow in subsequent sections.

In summary, our approach distinguishes itself from previ-
ous work in causal strategic learning mainly by its integra-
tion of the selection variable Wit within a competitive con-

Xt

Bt

θt

Wt

δθt

Ot

Yt

(a) Selection Variable

Xt

Bt

θit

δθit

Wit

Oit

Yit Zt

i = 1, . . . , n

(b) Competitive Selection

Figure 2: Causal graphs for our settings with selection vari-
able Wt (left) and multiple decision makers (right). The pat-
terned nodes Yt and Yit represent the partial observability
nature of these variables.

text involving multiple DMs. Figure 2 illustrates the causal
graphs associated with our novel setting.

3 Main Results
Our main results are based on the following two homogene-
ity assumptions on the strategic responses of agents.

H1. Homogeneous effort conversion: for all t ∈ [T ], Et = E
for some conversion matrix E .

H2. Homogeneous preference and compliance: for each
DM i and for all t ∈ [T ], γit = γi for some γi ≥ 0
and Zt ⊥⊥ {Xt, Bt} | {Wit}ni=1.

The former condition suggests that all agents exhibit the
same strategic response regardless of their individual base-
lines, i.e., they only differ by their baselines Bt, while the
latter condition implies that all agents share the same pref-
erence over the n DMs, and any two agents will demon-
strate identical compliance behavior based on the given set
of selection statuses {wit}ni=1. In the context of college
admission, the common preference {γi}ni=1 may naturally
align with the prestige of the colleges. Intuitively, these
two assumptions suggest that while strategic responses may
encompass both common and idiosyncratic elements, we
solely concentrate on the common part, simplifying our the-
oretical analyses at the cost of potentially overlooking sig-
nificant individual variations of agents’ strategic behaviour.

Our work thus concerns itself with a partially heteroge-
neous setting. On the contrary, when completely heteroge-
neous agents are subjected to selection, many variables are
rendered dependent; see, e.g., eq. (3), making our theoreti-
cal analyses much more cumbersome. However, such homo-
geneity assumptions do not undermine the impact of selec-
tion that we discuss throughout this section since it is likely
to persist in a more complex setting. This impact includes
the trade-off between choosing capable agents and provid-
ing a maximal incentive, e.g., Corollary 3.2, and the selec-
tion bias, e.g., Theorem 3.4. To understand the impact of
these two assumptions, we provide the sensitivity analyses
in Appendix F.2. A relaxation of these assumptions will be
considered in future work.
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3.1 Impact of Selection Procedure
To illustrate the impact of the selection procedure, we com-
mence with the single DM setting, i.e. n = 1. For simplicity,
we omit the subscript i and assume that all agents comply
with the decisions they receive. Figure 2a shows the associ-
ated causal graph. The objective (2), i.e., E [Yt | Wt = 1; θt],
for single DM then becomes

E
[
B⊤

t θ∗ +Ot | Wt = 1; θt

]
+ E

[
(Etat)

⊤ θ∗ | Wt = 1; θt

]
= cBP(θt) + cPI(θt) (3)

where the first and second terms on the right-hand side are
referred to as the conditional base performance (cBP) and
conditional performance improvement (cPI), respectively.
The former pertains to the agent outcome without strate-
gic behavior, while the latter represents the improvement
achieved through strategic behavior. Both cBP and cPI are
defined as expected values over the admitted agents, making
them functions of the selection parameter θt. Additionally,
the complexity of cBP and cPI relies on the chosen selection
function δθt . Our objective (3) differs from the marginal ex-
pected outcome commonly studied in prior work, where no
selection occurs (Shavit, Edelman, and Axelrod 2020; Harris
et al. 2022; Bechavod et al. 2022):

E [Yt; θt] = E
[
B⊤

t θ∗ +Ot

]
+ E

[
(Etat)⊤ θ∗; θt

]
. (4)

We refer to the two terms on the right-hand side of (4) simi-
larly as the marginal base performance (mBP) and marginal
performance improvement (mPI). Observe that maximising
(4) amounts to maximising only the mPI, whereas maximis-
ing our objective (3) might involve a trade-off between max-
imising cBP and cPI, as shown below.

Utility maximisation. We further impose the following
two assumptions, exclusively for utility maximisation:
S1. Linear effect: The selection yields a linear structure of

cBP as follows: cBP(θt) = α⊤θt + β for some vector
α ∈ Rm and constant β ∈ R;

S2. Bounded parameters: For all θt, ∥θt∥2 ≤ 1 (Shavit,
Edelman, and Axelrod 2020).

On the one hand, Assumption S1 allows us to further sim-
plify the analysis of the DM’s behaviour and to further sim-
plify the demonstration of the trade-off between choosing
agents and incentivising them, which we discuss later. Even
when S1 does not hold, this will only complicate the anal-
ysis without changing the implication resulted from Corol-
lary 3.2 and Corollary 3.3. On the other hand, asQ(θt) is not
scale-invariant, we adopt Assumption S2, which was also
used by previous work such as Shavit, Edelman, and Ax-
elrod (2020) and Bechavod et al. (2022). As a result, this
allows us to restrict θt to some arbitrarily small region and
justifies a linear approximation to cBP(θt). Nevertheless, we
acknowledge the limitation of these assumptions and pro-
vide a more detailed discussion in Appendix F.2.

We denote the objective (3) by Q(θt) and expand it as

Q(θt) := cBP(θt) + cPI(θt) =
(
α⊤θt + β

)
+ γθ⊤

t EE⊤θ∗

where we used the fact that a⊤t = γθ⊤
t Et and Et = E as

a result of Assumption (H1). Then, we formally state the
optimal behaviour of the DM with the next theorem.

Theorem 3.1 (Bounded optimum). Suppose Assumptions
(H1), (H2), (S1), and (S2) hold. Then, the optimal param-
eter vector for the DM can be expressed as θAO = (α +

γEE⊤θ∗)/∥α+ γEE⊤θ∗∥2.

Since Q(θt) is linear in θt, the DM can obtain an un-
normalised version of θAO by regressing Q(θt) onto θt us-
ing ordinary least squares (OLS) regression. As shown in
Theorem 3.1, the optimal selection parameter θAO is de-
termined by the coefficients α and EE⊤θ∗ from cBP and
cPI, respectively. Intuitively, this implies that an optimal se-
lection rule might be a trade-off between selecting the best
agents and incentivising agents to maximise their improve-
ment. Figure 4 (in the supplementary material) illustrates
when this trade-off happens and there exists no θt for which
both cBP(θt) and cPI(θt) are maximised simultaneously.
The next corollary formalises this intuition.
Corollary 3.2 (Maximum improvement). Suppose Assump-
tions (H1), (H2), (S1), (S2) hold, and γ > 0. If α =
(k−γ)EE⊤θ∗ for some k > 0, then the maximiser ofQ(θt)
is also the maximiser of cPI(θt).

Generally speaking, the vector α represents the causal
mechanism translating θt into the base performance of the
chosen agents, i.e., cBP(θt), whereas the vector EE⊤θ∗

denotes the causal mechanism translating θt into the per-
formance improvement of the selected agents, i.e., cPI(θt).
Hence, θt serves not only as a selection parameter but also as
the incentive for agents’ improvement. From Corollary 3.2,
when k > γ, the two aforementioned causal mechanisms
align with each other, i.e., cos(α,EE⊤θ∗) = 1, then θAO

not only selects the best agents (i.e., in terms of cBP) but
also is the incentive that maximises their improvement.

Safeguarding the social welfare. There is therefore a
possibility that the deployed selection rule may result in un-
desirable societal outcomes. For instance, this would involve
rejecting agents who, with proper incentivisation, could have
been chosen. Another example is when a decision rule se-
lects the best agents but incidentally discourages them from
further improvement, which corresponds to the case when
cos(θAO,EEθ∗) = −1. To prevent such situations, a benev-
olent regulator may opt to enforce a regulation such that a
decision rule must result in cos(θAO,EE⊤θ∗) > 0, thereby
guaranteeing that the optimal parameters θAO do not lead to
a decline in the selected agents’ outcome.

In addition to the inherent trade-off induced by the se-
lection process, Theorem 3.1 also shows that θAO differs
from the true causal parameters θ∗ in general. Relying on
a selection criterion that uses the optimal parameters θAO

results in consistently inaccurate predictions of agents’ out-
comes. This unjustly reduces an agent’s admission chance,
compared to when the causal parameters were employed in-
stead. The following corollary then outlines conditions un-
der which the reduction in an arbitrary agent’s admission
chance can be bounded when DM utilises θAO as the selec-
tion parameter, instead of the causal parameter θ∗.
Corollary 3.3 (Bounded reduction). Suppose Assumptions
(H1), (H2), (S1), (S2) hold, and the DM considers only two
choices θt ∈ {θ∗,θAO}. Assume further that: (1) ∥θ∗∥2 ≤ 1;
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(2) α = (k − γ)EE⊤θ∗ with k, γ > 0; (3) Bt ∼ N (0, σ2I)
where I is the identity matrix and σ ∈ R+; (4) The selec-
tion function, δ(x; θt) := δ̃(ŷt(θt)), is increasing in ŷt and
is Lipschitz continuous, i.e. |δ̃(ŷ) − δ̃(ŷ′)| ≤ L|ŷ − ŷ′| for
L > 0. Then, for any M > 0: p

(
ξ(θ∗)− ξ(θAO) > M

)
≤

Φ
( −M/L−λ
σ∥θAO−θ∗∥2

)
where ξ(θt) := p(Wt = 1 |Bt;θt) de-

notes the admission chance of the agent t, Φ is the CDF
of N (0, 1), and λ := γ((θAO)⊤EE⊤θAO − (θ∗)⊤EE⊤θ∗).

Specifically, this corollary rewrites the admission proba-
bility of an agent in terms of their baseline Bt and denotes it
with ξ(θt). When the counterfactual quantity ξ(θ∗)−ξ(θAO)
is positive for an agent, it implies that the admission chance
of this agent will be reduced if the DM employs θAO instead
of θ∗. As a result, this corollary gives us an upper bound for
the probability of this reduction for an unknown agent.

Causal parameters estimation. As shown in Corol-
lary 3.2 and Corollary 3.3, it is necessary for the DM to
know the incentivising causal mechanism, EE⊤θ∗, in or-
der to comply with the regulations, and for the regulator to
know θ∗ in order to verify the conditions of Corollary 3.3.
Unfortunately, unbiased estimation of θ∗ from observational
data alone is impossible without imposing further assump-
tions on the data-generating process (Peters, Janzing, and
Schölkopf 2017). In our case, unobserved common causes
of the outcome Yt and covariates Xt create dependencies
between Xt and Ot, rendering it impossible to estimate θ∗

consistently via the OLS regression. To this end, Harris et al.
(2022) proposes to view θt as an instrumental variable (IV)
and subsequently applies a two-stage least square (2SLS) re-
gression (Cameron and Trivedi 2005) to estimate θ∗. How-
ever, existing IV regression approaches are not suitable for
our setting because the DM can only observe the outcomes
of the selected agents, violating the unconfoundedness as-
sumption of the IV; see Appendix B for the proof.

In what follows, we present an alternative approach to es-
timate θ∗. This approach can be readily adapted to directly
estimate EE⊤θ∗. To that end, we first consider a ranking-
based selection rule that is commonly deployed in practice.

Definition 1 (Ranking selection). The DM selects an agent
t based on their relative ranking compared to other agents
who are subject to the same selection parameters θt. Specif-
ically, δθt

(x) = p
(
X⊤

t θt ≤ x⊤θt
)
= CDFX⊤

t θt

(
x⊤θt

)
.

Based on this selection rule, the higher an agent’s eval-
uation (relative to their peers) the more likely they will be
selected. Note that in this work, we do not restrict the DM
to the ranking selection rule for utility maximisation. This
ranking selection rule is only provided so that the DM can
retrieve the true causal parameters, which are useful for de-
signing subsequent selection rules. The next theorem pro-
vides an unbiased estimate of the true causal parameter θ∗

in our setting with a selection variable.

Theorem 3.4 (Local exogeneity). Under Assumptions
(H1) & (H2), if there exists a pair of rounds t and
t′ such that θt = kθt′ for some k > 0, then
we have: E [Yt |Wt = 1 ; θt] − E [Yt′ |Wt′ = 1 ; θt′ ] =
(E [Xt |Wt = 1 ; θt]− E [Xt′ |Wt′ = 1 ; θt′ ])

⊤θ∗

Intuitively, when all agents exert an equal amount of ef-
fort, ranking their covariates Xt is equivalent to ranking
their baselines Bt. Therefore, multiplying θt by a positive
scalar preserves the ranking. Consequently, we obtain a lin-
ear equation that contains no endogenous noise (from Theo-
rem 3.4), allowing for unbiased estimation of the true causal
parameters θ∗. Specifically, if we refer to the left-hand side
as ∆ȳ and the coefficient on the right-hand side as ∆x̄, then
θ∗ can be estimated by regressing ∆ȳ onto ∆x̄. We refer
to this procedure as Mean-shift Linear Regression (MSLR)
and discuss a sample algorithm in Section 4.

3.2 Impact of Competitive Selection
When there are multiple DMs (n ≥ 2), selecting an agent
becomes competitive as their incentives affect the agent’s
covariates Xt simultaneously. Also, whether an agent com-
plies with any DM is also influenced by other DMs’ deci-
sions. Consequently, additional assumptions are required to
safeguard the agent’s welfare as before.

We assume each DM aims at unilaterally maximis-
ing the expected outcome of their own agents. We de-
note the objective of DM i as maxθit

Qi

(
θall
t

)
=

maxθit E
[
Yit | Zt = i;θall

t

]
and expand the expectation as

E
[
B⊤

t θ∗
i +Oit | Zt = i;θall

t

]
+

( n∑
j=1

γjθjt

)⊤EE⊤θ∗
i (5)

where the first and second terms are denoted similarly
as cBPi(θ

all
t ) and cPIi(θall

t ), respectively, and a⊤t =
(
∑n

j=1 γjtθjt)
⊤E is again the agents’ optimal strategic ac-

tion. We highlight that the objective (5) depends not only
on θit but also on θ−i

t due to the interaction between DMs
via competitive selection. As a result, Qi({θit,θ

−i
t }) can

be seen as a family of objective functions parameterised by
θ−i
t . When DM i is an expected-utility maximiser, we would

maximise the expectation of Qi({θit,θ
−i
t }) to marginalise

out the effect of θ−i
t . However, this requires knowledge on

the conditional distribution p(θ−i
t |Zt = i,θit) which the

DM i does not have. To tackle this challenge, we consider
the worst-case scenario in which all rival DMs cooperate to
minimise the objective and study how DM i can in response
maximise this worst-case objective function. We show in
Appendix C that our solution, specifically in this case, is also
a maximin strategy of the DM i.

Utility maximisation. The objective (5) is difficult to op-
timise as it depends not only on the choice of selection rules
but also on the behaviour of other DM’s objective. To sim-
plify the analysis, we rely on the following assumptions, ex-
clusively for utility maximisation:

M1. Partially additive interaction between DMs: For
an arbitrary DM i, their cBPi can be decomposed as
cBPi({θit,θ

−i
t }) = gi(θit) + hi(θ

−i
t ) + ci for some

function gi, hi and constant ci.
M2. Linear self-effect: The contribution of DM i to cBPi

admits a linear structure, i.e. gi(θit) = α⊤
i θit + βi for

some vector αi ∈ Rm and constant βi ∈ R;
M3. Bounded parameters: For all θit, ∥θit∥2 ≤ 1.
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Assumptions (M2) & (M3) are extensions of (S1) and
(S2), whereas (M1) is an additional assumption.
Proposition 1 (Dominant strategy). Suppose Assump-
tions (H1), (H2), and (M1) hold for DM i. Then,
argmaxθit Qi({θit ,θ

−i
• }) = argmaxθit Qi({θit ,θ

−i
⋄ })

for any pair of distinct values θ−i
• and θ−i

⋄ of θ−i
t .

This proposition shows that the monotonicity of the ob-
jective Qi remains unaffected regardless of other values θjt
released by the DMs j where j ̸= i. Based on Assumption
(M1) and this result, any DM i is provided with a condi-
tion to maximise all the objective functions within the family
Qi({θit,θ

−i
t }) simultaneously.

Theorem 3.5 (Bounded optimum, extended). Suppose that
(H1), (H2), and (M1)-(M3) hold. Then, the optimal param-
eter vector for any DM i takes the form θAO

i = (αi +

γiEE⊤θ∗
i )/∥αi + γiEE⊤θ∗

i ∥2.
As each objective function Qi({θit,θ

−i
⋄ }), conditioned

on some arbitrary θ−i
t := θ−i

⋄ , is a linear function of θit,
the DM i can obtain an un-normalised version of θAO

i by re-
gressing Qi({θit,θ

−i
⋄ }) onto θit using the OLS regression.

Safeguarding the social welfare. Like the previous set-
ting, we provide below an extension of Corollary 3.2 on
maximum agents’ improvement, with the difference being
that θAO

i is also a dominant strategy for cPI({θit,θ−i
t }).

Corollary 3.6 (Maximum improvement, extended). Sup-
pose Assumptions (H1), (H2), and (M1)-(M3) hold for an
arbitrary DM i, and that γi > 0. If αi = (ki − γi)EE⊤θ∗

i

for some ki > 0, then θAO
i maximises both Qi({θit,θ

−i
t })

and cPIi({θit,θ
−i
t }), regardless of θ−i

t .
As a result, if the interaction between DMs and agents ex-

hibits additive structures, regulations can be solely imposed
on DM i to ensure improved average outcome of the agents
who are selected by (and comply with) DM i. Next, we ex-
tend Corollary 3.3 regarding agents’ admission chance for
the environment i.
Corollary 3.7 (Bounded reduction, extended). Suppose as-
sumptions (H1), (H2), (M1)-(M3) hold for all DMs and
each DM considers only two choices θjt ∈ {θ∗

j ,θ
AO
j } for

j ∈ [n]. Let i be an arbitrary DM and assume further
that: (1) ∥θ∗

i ∥2 ≤ 1; (2) αj = (kj − γj)EE⊤θ∗
j with

kj , γj > 0 for j ∈ [n]; (3) θ⊤
jtEE

⊤(θAO
i − θ∗

i ) ≥ 0 for
j ̸= i; (4) Bt ∼ N (0, σ2I); (5) The selection function
δi(x; θit) := δ̃i(ŷit(θ

all
t )) is increasing in ŷit and is Lip-

schitz continuous, i.e., |δ̃i(ŷit) − δ̃i(ŷ
′
it)| ≤ L|ŷit − ŷ′it|

for L > 0. Then, for any M > 0: p
(
ξi(θ

all
• ) − ξi(θ

all
⋄ ) >

M
)
≤ Φ

(
−M/L−λ

σ∥θAO
i −θ∗

i ∥2

)
where θall

• = {θ−i
t ,θ∗

i }, θall
⋄ =

{θ−i
t ,θAO

i }, and ξj(θ
all
t ) := p(Wjt = 1 |Bt;θ

all
t ) denotes

the admission chance of the agent t from the DM j, given re-
leased decision parameters θall

t . The function Φ is the CDF
ofN (0, 1) and λ :=

(
at(θ

all
⋄ )

)⊤E⊤θAO
i −

(
at(θ

all
• )

)⊤E⊤θ∗
i .

As demonstrated in the corollary, this extension neces-
sitates additional conditions compared to Corollary 3.3 to
ensure the protection of agents’ chances of being selected,

thus effectively highlighting the impact of competitive selec-
tion. Firstly, as shown in Section 2, the agent’s best response
is influenced by all DMs in which the agent has an inter-
est, i.e., γj > 0. This dynamic creates competition among
DMs to incentivise agents effectively. Secondly, the compli-
ance status zt of an agent depends on its selection statuses,
{wjt}nj=1, which in turn are affected by the selection rules
δθjt

for j ∈ [n], resulting in another competition in evaluat-
ing and selecting agents.

The third condition in Corollary 3.7 is of particular in-
terest. Recall that under this corollary, any θAO

j is simply a
normalised version of EE⊤θ∗

j . Consequently, this condition
implies that when agents prefer only DMs whose environ-
ments are sufficiently similar to each other (reflected via the
θ∗
j and θ∗

i ), then the benevolent regulator can enforce the
regulation as outlined in Corollary 3.6 for all DMs to protect
the agents from unjust reductions in admission chances. We
provide a more detailed discussion on this third condition in
Appendix D. We delay the discussion on an agent’s admis-
sion chance into other environments j ̸= i in the appendix.

Causal parameters estimation. Similar to the previous
setting, all DMs must have access to the causal mechanism
EE⊤θ∗

i to be able to comply with the regulation in Corol-
lary 3.6 and the regulator must know θ∗

i to let agents know
which environments are sufficiently similar (Corollary 3.7).
Unfortunately, DMs encounter additional challenges esti-
mating causal parameters {θ∗

i }ni=1 under competitive selec-
tion. Specifically, they cannot correct the selection bias alone
due to the interference with other DMs, which we demon-
strate empirically in the following section. To address this,
we propose a cooperative protocol for the regulator. This en-
sures unbiased estimation of causal parameters for all DMs.

Definition 2 (Cooperative protocol). Let [n] be the set of all
n DMs. If for any two arbitrary rounds t and t′, a non-empty
subset of DMs, S ⊆ [n], employs the ranking selection rule
(Definition 1) and their respective decision parameters sat-
isfy θit = kiθit′ for some ki > 0 for all i ∈ S, then we say
that S follows the cooperative protocol in these two rounds.

This cooperative protocol extends the condition in Theo-
rem 3.4 and suggests that DMs should synchronise the re-
leases of their positively scaled parameters. When all DMs
follow the cooperative protocol for multiple pairs of rounds,
they have a way to obtain unbiased estimates of the causal
parameters θ∗

i as shown in the next theorem.

Theorem 3.8 (Local exogeneity, extended). Under Assump-
tions (H1) and (H2). If all DMs follow the cooperative pro-
tocol (i.e., ∃S : S = [n] in Definition 2) in two rounds t and
t′, then: E

[
Yit |Zt = i ; θall

t

]
− E

[
Yit′ |Zt′ = i ; θall

t′

]
=(

E
[
Xt |Zt = i ; θall

t

]
− E

[
Xt′ |Zt′ = i ; θall

t′

] )⊤
θ∗
i .

Recall that in the previous setting, the ranking of agents
can be preserved by scaling the selection parameters with a
positive scalar. With the cooperative protocol and Assump-
tion (H2), we can now also preserve the enrollment distri-
bution of agents. We can then deploy the same MSLR pro-
cedure from the single DM settings to retrieve the causal
parameters. Further details are discussed in Section 4.
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Algorithm 1: Mean-shift Linear Regression (MSLR)
Require: a subset of ns decision makers out of all n decision
makers, where 1 ≤ ns ≤ n. These decision makers use
ranking selection (Definition 1).
Parameters: number of rounds T , block’s length η.

1: Di ← {} for i = 1, . . . , ns

2: for t ∈ {1, . . . , T} do
3: blockindex← ⌊t/(η + 1)⌋
4: if blockindex %2 = 0 then
5: θit ∼ p(θit) for i = 1, . . . , ns

6: else
7: t′ ← t− η
8: for i ∈ {1, . . . , ns} do
9: θit = kitθit′ with kit > 0

10: ∆ȳi ← (ȳit | zt = i)− (ȳit′ | zt′ = i)
11: ∆x̄i ← (x̄ | zt = i)− (x̄ | zt′ = i)
12: Di ← Di ∪ {∆ȳi,∆x̄i}
13: end for
14: end if
15: end for
16: for i ∈ {1, . . . , ns} do
17: θ̂∗

i ← Regress ∆Ȳi onto ∆X̄i with OLS and the data
set Di

18: end for

4 Experiments
We complement our theoretical results with simulation stud-
ies. Starting with the single DM setting, our experiments first
compare the optimal decision parameters θAO and the causal
parameter θ∗ in terms of utility maximisation, and then we
demonstrate that our algorithms estimate θ∗ consistently.
We then generalise the experiments to multiple DMs. Fur-
ther experimental details are included in Appendix F. The
code to reproduce our experiments is publicly available.2

Experimental setup. Following Harris et al. (2022), we
generate a synthetic college admission dataset. In particu-
lar, covariates Xt = (XSAT

t , XHS GPA
t )⊤ represent SAT score

and high school GPA of the student arriving at round t, while
Yit represents the college GPA after enrolling in college i. A
confounding factor is simulated to indicate the private type
of a student’s background: disadvantaged and advantaged.
The distribution of the disadvantaged students’ baseline Bt

has a lower mean than that of their advantaged counterparts
and the same applies for the distribution of noise Oit. After
bt is simulated and all colleges publicise their parameters
{θit}ni=1, we compute xt = bt + Eat and ŷit = x⊤

t θit for
i ∈ [n]. Unlike Harris et al. (2022), each DM i now assigns
an admission status wit ∈ {0, 1} to the student at round t
using a variant of the ranking selection rule. Precisely, the
student is admitted into college i if their prediction ŷit lies
within the top ρ-percentile of all applicants where ρ ∈ [0, 1]
and we set ρ = 0.5. Further discussion of this variant of
ranking selection is included in Appendix F.1. As ranking
selection (Definition 1) requires access to the distribution
p(X⊤

t θit), we estimate it by simulating 1000 students in

2https://github.com/muandet-lab/csl-with-selection

θ̂AO θ̂OLS θ̂∗

Q(θt) 2.530 ±0.006 2.511 ±0.006 2.511 ±0.006

Table 1: [Higher is better] Utility Q(θt) (± standard error)
of a DM for various values of the parameter θt.

each round.3 Afterwards, the compliance zt ∈ [n] is com-
puted to indicate the college in which this student enrols,
based on the admission statuses {wit}ni=1. Finally, for stu-
dents enrolled in college i at round t, i.e., zt = i, we com-
pute the target college GPA yit = x⊤

t θ
∗
i + oit. The true

causal parameters θ∗
i = (θ∗,SAT

i , θ∗,HS GPA
i )⊤ are distributed

as normal distribution around θ∗
i = (0, 0.5)⊤, which was

inferred from a real world dataset by Harris et al. (2022).
Additional details for MSLR. Because there are in-

finitely many ways to carry out the releases of θt as required
by Theorem 3.4 and there are infinitely many ways for mul-
tiple DMs to synchronise their releases of θit as required by
Definition 2, we provide only an instantiation of the MSLR
procedure via Algorithm 1 that we use in our experiments.
We use the word coalition to refer to the subset of ns DMs
who perform this algorithm together. Line 9 refers to the
cooperative protocol (Definition 2) and line 10 to 12 refer
to the extended theorem on local exogenity (Theorem 3.8).
The branching in line 4 (and in line 6) checks whether the
current round t is of the type t• or t⋄ which we discuss next.
Recall that according to Definition 2, DMs i and j are coop-
erative if they deploy linearly dependent parameter vectors
{θit• ,θit⋄} in the same pair of two arbitrary rounds t• and
t⋄. To easily simulate the cooperative and non-cooperative
aspects of DMs in our experiments, we control the interval
for deploying dependent vectors with the integer constants
ηi ∈ N+ where t• + ηi = t⋄. Each batch of such linearly
dependent vectors gives us a linear equation as shown in
Theorem 3.8 and we want to have multiple distinct batches
with sufficient span in Rm so that θ∗

i is solvable. Because
ηi creates a gap between t• and t⋄ of the same batch, dis-
tinct batches are generated in an interleaved manner using
the following formula:

t• = k +

(⌊
k − 1

ηi

⌋
× ηi

)
, t⋄ = t• + ηi,

where k ∈ {1, 2, . . .} denotes the k-th batch to which
{θit• ,θit⋄} belong. Finally, we say that a set of DMs de-
ploys the parameter vectors synchronously if they deploy
the linearly dependent vector at the same frequency (i.e.,
∀i, ηi = η for some constant η), otherwise, we say their
deployments are asynchronous.

Impact of selection procedure (n = 1). We first demon-
strate our estimated θAO in fact results in higher utility
than other plausible selection parameters such as θ̂∗ and
θ̂OLS, echoing the theoretical analysis from Theorem 3.1.
We regressQ(θt) onto θt to estimate θAO (see Section 3.1),
and utilise our MSLR algorithm to estimate θ∗, whereas

3Having multiple students per round is equivalent to having
each student arrive at different rounds subject to the same θall.
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Figure 3: Estimation of the causal parameters θ∗ under various scenarios. Error bars show 95% confidence interval.

θ̂AO
1 θ̂OLS

1 θ̂∗
1

θ̂AO
2 2.529 ±0.028 2.507 ±0.029 2.506 ±0.029

θ̂OLS
2 2.561 ±0.028 2.546 ±0.029 2.545 ±0.029

θ̂∗
2 2.560 ±0.029 2.546 ±0.029 2.544 ±0.029

Table 2: [Higher is better] UtilitiesQ1(θ1t,θ2t) (± standard
error) of the first DM for various values of {θ1t,θ2t}.

θ̂OLS is obtained from performing ordinary regression with
Yt|Wt = 1 and Xt|Wt = 1. Conforming to Assumption
(S2), we use ∥θ̂∗∥2 as the threshold and scale θ̂AO, such that
∥θ̂AO∥2 = ∥θ̂∗∥2 to ensure a fair comparison. On the other
hand, if θ̂OLS has a larger magnitude than the threshold, we
scale it down accordingly (see Appendix F.4 for the detailed
explanation). Table 1 reports their utility values Q(θt). We
can see that θ̂AO induces the highest utility compared to
other plausible options of θt. To demonstrate the impact of
selection on estimating θ∗, which is needed for the DM to
comply with the regulation (Corollary 3.2), we compare the
MSLR algorithm (cf. Theorem 3.4) with that of Harris et al.
(2022), i.e., 2SLS. Figure 3a shows estimation errors as the
number of rounds increases. Unlike the OLS and 2SLS esti-
mates, our estimate of θ∗ is asymptotically unbiased.

Impact of competitive selection (n ≥ 2). Next, we show
that θ̂AO

1 induces the optimal utilityQ1(θ1t,θ2t) for the first
DM as a dominating strategy. Analogous to the previous ex-
periment, Table 2 shows that our estimate θ̂AO

1 induces the
highest utility Q1 for the first DM, regardless of θ2t de-
ployed by the second DM. We normalise the parameter sim-
ilarly as before and use ∥θ̂∗

1∥2 and ∥θ̂∗
2∥2 as thresholds.

We now demonstrate the impact of competitive selection
on the estimation of causal parameter θ∗

i for i ∈ [n], which
are needed for DMs to comply with our regulations. By The-
orem 3.8, they must follow the cooperative protocol (Defi-
nition 2) by deploying linearly dependent parameter vectors
θit = kiθit′ in the same pair of rounds t and t′. To this
end, we test whether DMs can estimate θ∗ when they deploy
linearly dependent vectors (a) synchronously, as required
by the protocol (i.e., cooperation), and (b) asynchronously
(i.e., no cooperation). Figure 3b shows that cooperation en-
ables all DMs to obtain unbiased estimates of θ∗,HS GPA, the

ground-truth causal effect of the high-school GPA covariate.
We provide the results for the other covariate in Appendix
F.3. Lastly, we demonstrate that following the cooperative
protocol is of mutual benefit to all DMs for obtaining accu-
rate estimates of θ∗

i . To this end, we generate the data with
n = 3, for two scenarios: a group of two DMs (A and B) de-
ploys linearly dependent parameter vectors synchronously,
while the remaining DM (C) deploys its respective linearly
dependent vector (i) asynchronously (i.e., leading to par-
tial cooperation between DMs), and (ii) synchronously (i.e.,
full cooperation). We use the converged estimates (i.e., after
T = 100 rounds) of causal parameters under both scenarios
to demonstrate that, in terms of accuracy, not only does the
DM C gain substantially by joining the coalition, but it also
benefits the current members of the coalition; see Figure 3c.

5 Conclusion
To conclude, we study the problem of causal strategic learn-
ing under competitive selection by multiple decision mak-
ers. We show that in this setting, optimal selection rules re-
quire a trade-off between choosing the best agents and mo-
tivating their improvement. In addition, these rules may un-
justly reduce the admission chances of agents due to reliance
on non-causal predictions. To address these issues, we pro-
pose conditions for a benevolent regulator to impose on de-
cision makers, allowing them to recover true causal param-
eters from observational data and ensure optimal incentives
for agents’ improvement without excessively reducing their
admission chances, thus safeguarding agents’ welfare.

Our results rest on assumptions like homogeneous strate-
gic behavior and linearity in agent models. Although these
assumptions undoubtedly limit the applicability of our meth-
ods, they do not undermine the implication of our work.
Intuitively, this inherent trade-off emerges because a DM
has only one degree of freedom in designing the selection
rule that may result in two distinct effects. Consequently,
selecting the best candidates (private reward) and incentivis-
ing their improvements (social return) can indeed differ; and
when they do, the benevolent regulator, e.g., governments, is
needed to align the two. Our finding reinforces causal iden-
tification as an essential instrument to achieve this. Future
studies could delve into non-linear agent models, fully het-
erogeneous setting, or scenarios in which certain decision
makers cooperate strategically.
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Chau, S. L.; Ton, J.-F.; González, J.; Teh, Y.; and Sejdinovic,
D. 2021. Bayesimp: Uncertainty quantification for causal
data fusion. Advances in Neural Information Processing
Systems, 34: 3466–3477.
Dee, T. S.; Dobbie, W.; Jacob, B. A.; and Rockoff, J. 2019.
The causes and consequences of test score manipulation:
Evidence from the New York regents examinations. Amer-
ican Economic Journal: Applied Economics, 11(3): 382–
423.
Deshpande, K. V.; Pan, S.; and Foulds, J. R. 2020. Miti-
gating Demographic Bias in AI-Based Resume Filtering. In
Adjunct Publication of the 28th ACM Conference on User
Modeling, Adaptation and Personalization, 268–275. Asso-
ciation for Computing Machinery.
Dranove, D.; Kessler, D.; McClellan, M.; and Satterthwaite,
M. 2003. Is more information better? The effects of “report
cards” on health care providers. Journal of political Econ-
omy, 111(3): 555–588.
Ghassemi, M.; and Mohamed, S. 2022. Machine learning
and health need better values. npj Digital Medicine, 5(1):
51.
Hardt, M.; Megiddo, N.; Papadimitriou, C.; and Wootters,
M. 2016. Strategic classification. In Proceedings of the 2016
ACM conference on innovations in theoretical computer sci-
ence, 111–122.

Harris, K.; Ngo, D. D. T.; Stapleton, L.; Heidari, H.; and Wu,
S. 2022. Strategic instrumental variable regression: Recov-
ering causal relationships from strategic responses. In In-
ternational Conference on Machine Learning, 8502–8522.
PMLR.
Hartford, J.; Lewis, G.; Leyton-Brown, K.; and Taddy, M.
2017. Deep IV: A Flexible Approach for Counterfactual
Prediction. In Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70, 1414–1423. PMLR.
Kleinberg, J.; Lakkaraju, H.; Leskovec, J.; Ludwig, J.; and
Mullainathan, S. 2018. Human decisions and machine pre-
dictions. The quarterly journal of economics, 133(1): 237–
293.
Miller, J.; Milli, S.; and Hardt, M. 2020. Strategic classifi-
cation is causal modeling in disguise. In International Con-
ference on Machine Learning, 6917–6926. PMLR.
Muandet, K.; Mehrjou, A.; Lee, S. K.; and Raj, A. 2020.
Dual instrumental variable regression. Advances in Neural
Information Processing Systems, 33: 2710–2721.
Munro, E. 2022. Learning to personalize treatments when
agents are strategic. arXiv preprint arXiv:2011.06528.
Newey, W. K.; and Powell, J. L. 2003. Instrumental Variable
Estimation of Nonparametric Models. Econometrica, 71(5):
1565–1578.
Perdomo, J.; Zrnic, T.; Mendler-Dünner, C.; and Hardt, M.
2020. Performative prediction. In International Conference
on Machine Learning, 7599–7609. PMLR.
Peters, J.; Janzing, D.; and Schölkopf, B. 2017. Elements of
causal inference: foundations and learning algorithms. The
MIT Press.
Shavit, Y.; Edelman, B.; and Axelrod, B. 2020. Causal
strategic linear regression. In International Conference on
Machine Learning, 8676–8686. PMLR.
Singh, R.; Sahani, M.; and Gretton, A. 2019. Kernel instru-
mental variable regression. Advances in Neural Information
Processing Systems, 32.
Wiens, J.; Saria, S.; Sendak, M.; Ghassemi, M.; Liu, V. X.;
Doshi-Velez, F.; Jung, K.; Heller, K.; Kale, D.; Saeed, M.;
Ossorio, P. N.; Thadaney-Israni, S.; and Goldenberg, A.
2019. Do no harm: a roadmap for responsible machine learn-
ing for health care. Nature Medicine, 25(9): 1337–1340.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15419


