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Abstract
Learning from noisy data has attracted much attention, where
most methods focus on closed-set label noise. However, a
more common scenario in the real world is the presence of
both open-set and closed-set noise. Existing methods typi-
cally identify and handle these two types of label noise sep-
arately by designing a specific strategy for each type. How-
ever, in many real-world scenarios, it would be challenging to
identify open-set examples, especially when the dataset has
been severely corrupted. Unlike the previous works, we ex-
plore how models behave when faced with open-set exam-
ples, and find that a part of open-set examples gradually get
integrated into certain known classes, which is beneficial for
the separation among known classes. Motivated by the phe-
nomenon, we propose a novel two-step contrastive learning
method CECL (Class Expansion Contrastive Learning) which
aims to deal with both types of label noise by exploiting the
useful information of open-set examples. Specifically, we in-
corporate some open-set examples into closed-set classes to
enhance performance while treating others as delimiters to
improve representative ability. Extensive experiments on syn-
thetic and real-world datasets with diverse label noise demon-
strate the effectiveness of CECL.

Introduction
Deep neural networks (DNNs) have achieved remarkable
success in various tasks. The great success is primarily at-
tributed to large amounts of data with high-quality annota-
tions, which are expensive or even inaccessible in practice.
Actually, datasets collected via search engines or crowd-
sourcing platforms inevitably involve noisy labels (Xiao
et al. 2015; Li et al. 2018; Li, Huang, and Chen 2021; Shi, Li,
and Huang 2023). Given the powerful learning capacities of
DNNs, the model will ultimately overfit the label noise and
lead to poor generalization performance (Arpit et al. 2017;
Zhang et al. 2021a). To mitigate this issue, it is significant to
develop robust models for learning from noisy labels.

As shown in Figure 1, we divide the mislabeled examples
into two types: closed-set and open-set. More specifically, a
closed-set mislabeled example occurs when its true class fall
within the set of known classes {cat, dog, elephant}, while

*Equal contribution.
†Corresponding author.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Labeled as Cat

……

Clean samples

…

Closed-set noise Open-set noise

Labeled as Dog

……

Clean samples

…

Closed-set noise Open-set noise

Labeled as Elephant

……

Clean samples

…

Closed-set noise Open-set noise

Figure 1: An example of open-set noisy label learning prob-
lem. {cat, dog, elephant} is the concerned known classes.
The left, middle, and right columns respectively show im-
ages that are correctly labeled, wrongly labeled with closed-
set and open-set noise.

an open-set mislabeled example occurs when its true class
does not fall within the set of known classes in the train-
ing data. To our knowledge, existing works mainly focus
on closed-set scenarios (Li, Socher, and Hoi 2020; Li et al.
2022a), while a more common scenario in the real world is
the presence of both closed-set and open-set.

The problem has been formalized as a learning framework
called Open-Set Noisy Label Learning (OSNLL) (Wang
et al. 2018), which is also the main focus of our work. The
most challenging issue in OSNLL arises due to the presence
of open-set examples. The detection and handling of these
examples pose a significant challenge, especially when their
distribution is unknown. Several papers (Wang et al. 2018;
Yao et al. 2021; Sun et al. 2022) have proposed specific
methods and frameworks by identifying mislabeled open-set
examples and minimizing their impact. However, empirical
findings (Morteza and Li 2022) and theoretical results (Fang
et al. 2022) suggest that some open-set examples become
increasingly difficult for the model to distinguish. In some
cases, it is even impossible to recognize open-set examples
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from clean datasets, making learning with both closed-set
and open-set examples particularly challenging.

In this paper, we give a more in-depth study of the ef-
fect of open-set examples on OSNLL. Specifically, we first
investigate the model’s training behavior when facing open-
set examples, observing that some open-set classes get in-
tegrated with closed-set classes. By treating these open-set
examples as closed-set ones, the models surprisingly acquire
substantial enhancement in the classification ability. We call
this the Class Expansion phenomenon. An intuitive expla-
nation is, by introducing these ”false positive” examples
from the unknown class data, the representation of different
known classes becomes more generalized.

Based on the above observations, we propose a novel two-
step Class Expansion Contrastive Learning (CECL) frame-
work to make full use of open-set examples while minimiz-
ing the negative impact of label noise. In the first step, we
roughly tackle the data noise and maintain the basic concept
of clean and noisy examples. In the second step, we adopt
a contrastive learning scheme and selectively incorporate
certain indistinct open-set examples into their correspond-
ing similar known classes. In fact, the concept of known
classes is broadened to include these similar, but previously
unknown examples. Additionally, to enhance the discrimi-
nation between different classes, we use the remaining dis-
tinguishable open-set examples as delimiters.

In summary, our contributions are threefold:

• We explore the relationship between open-set and closed-
set classes and highlight the phenomenon of Class Ex-
pansion in OSNLL, demonstrating the potential of open-
set examples to facilitate known class learning.

• We propose a novel CECL framework that incorporates
contrastive learning to fully utilize open-set examples,
which better generalizes and discriminates the represen-
tation of different known classes.

• We provide theoretical guarantees for better representa-
tion capability of CECL, and conduct extensive experi-
ments on both synthetic and real-world noisy datasets to
validate its effectiveness.

Related Work
Noisy Label Learning Most of the methods in literature
mitigate the label noise by robust loss functions(Wang et al.
2019b,a; Xu et al. 2019; Liu et al. 2020; Wei et al. 2021),
noise transition matrix(Patrini et al. 2017; Tanno et al. 2019;
Xia et al. 2019; Li et al. 2022b), sample selection(Han et al.
2018; Yu et al. 2019; Wei et al. 2020; Li et al. 2022a; Huang,
Zhang, and Shan 2023; Xia et al. 2023), and label correc-
tion(Li, Socher, and Hoi 2020; Li, Xiong, and Hoi 2021;
Ortego et al. 2021; Zhang et al. 2023).
Open-set Noisy Label Learning Open-set examples in the
real-world are ubiquitous(Yang et al. 2022, 2023). Open-
set noisy label learning aims to develop a well-performing
model from real-world datasets that contain both closed-set
and open-set noisy labels. (Wang et al. 2018) proposes an
iterative learning framework called pcLOF to detect open-
set noisy labels and then uses a re-weighting strategy in the

objective function. (Yao et al. 2021; Sun et al. 2022) intro-
duces an approach based on consistency to identify open-
set examples, and then minimize the impact they bring, (Li,
Xiong, and Hoi 2020) proposes momentum prototypes for
webly-supervised representation learning which lacks con-
sideration for the diversity of open-set examples, (Wu et al.
2021) introduces a noisy graph cleaning framework that si-
multaneously performs noise correction and clean data se-
lection, (Xia et al. 2022) designs an extended T -estimator to
estimate the cluster-dependent transition matrix by exploit-
ing the noisy data. These methods rest on the assumption
that the open-set examples are harmful to known class learn-
ing, which is questionable as we will show in this work.

The Class Expansion Phenomenon
In real-world scenarios, open-set examples are pervasive,
posing significant challenges to many problems. Many re-
searchers strive to distinguish open-set examples and miti-
gate their influence. In fact, each inclusion of an open-set
example in the dataset has a reason behind it, either due
to misjudgment, inherent attributes that are easily confused,
or a lack of clear definition of the open-set, and so on. It
might be unreasonable to simply treat all open-set examples
caused by various reasons as a single type of outlier! Fur-
thermore, some open-set examples may share similar fea-
tures with closed-set examples, which can be confusing even
for humans. Simply eliminating the impact of open-set ex-
amples may potentially exert negative effects on the learning
of closed-set examples. So, is there room for us to explore a
different avenue?
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Figure 2: The distribution of open-set examples among dif-
ferent known classes on CIFAR10 and MNIST, respectively.

In the pursuit of an answer to the above question, we in-
vestigate the behavior of DNNs when encountering unseen
open-set examples. Specifically, we conducted a series of ex-
periments on the CIFAR10 (Krizhevsky 2009), MNIST (Le-
Cun 1998) and Tiny-Imagenet (Le and Yang 2015) datasets.
We randomly select 80% of the total categories as known
classes and treat the remaining classes as unknown for all
datasets. We train the model on labeled closed-set examples
and generated pseudo-labels on open-set examples. Figure 2
illustrates the class distribution of pseudo-labels generated
by the model. On the CIFAR10 dataset, it can be observed
that open-set dog examples are almost uniformly classified
as cat. This phenomenon occurs mainly due to the fact that
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dog and cat share high-level similarity, making the model
hard to distinguish between these two semantic objects and
merge them into a generalized concept of cat. We use the
term ”class expansion” to describe this phenomenon. The
class expansion phenomenon can also be found on MNIST
(e.g. open-set digit 7 are consistently being classified as
closed-set class 2), however, it is noteworthy that not all
open-set class concepts can be treated as class expansion
to a specific closed-set class concept (e.g. open-set digit 3
are relatively evenly distributed among multiple closed-set
classes). Our observations indicate that when encountering
open-set examples, the model tends to make reasoned judg-
ments rather than reckless ones. 1

(a) Test accuracy comparison.

(b) Training process on Tiny-Imagenet.

Figure 3: Experimental results of incorporating examples
from open-set classes into known classes for learning on CI-
FAR10 and Tiny-Imagenet. ’CS’, ’CS and OS’ respectively
denote training only on closed-set class examples and a mix-
ture of closed-set and open-set class examples.

To further explore the effectiveness of class expansion,
we perform simple experiments by selecting those open-set
examples with high prediction scores on closed-set classes
into the training set and retraining the model. Figure 3 (a)
presents the results obtained by training using only closed-
set examples (CS) and training using both closed-set exam-
ples and open-set examples simultaneously (CS and OS).
It is surprising that the incorporation of open-set examples
significantly improves the model’s performance on closed-
set classes, which contradicts our common sense. It is also
worth noting that the improvement becomes more obvious
as the dataset’s scale increases, see the training process for
Tiny-Imagenet shown in Figure 3 (b). The above findings
indicate the potential power of open-set examples to boost
known class recognition. Below, we amplify the usefulness
of open-set examples by incorporating the contrastive learn-
ing into model training, leading to our Class Expansion Con-
trastive Learning (CECL) method.

1A similar phenomenon is observed on Tiny-Imagenet, and we
provide the transition matrix in the Appendix.

Methodology
Let X denotes the instance space and Y = {1, 2, ..., c} the
label space with c distinct classes. We use D = {(xi, yi)|1 ≤
i ≤ n} to denote the training dataset, with yi ∈ [0, 1]c de-
noting the one-hot label vector over c classes. For datasets
with noisy labels, {yi} are not guaranteed to be correct. For-
mally, we represent the ground-truth label of example xi

with a one-hot label vector ŷi ∈ [0, 1]c+1 over c+1 classes,
where the (c + 1)-th class indicates the open-set class. It is
noteworthy that ŷi is unknown throughout the entire train-
ing process. Due to the presence of closed-set and open-set
label noise, directly training a model on D fails to achieve
favorable generalization performance.

In this paper, building on the comprehensive success of
contrastive learning in extensive tasks, we propose a novel
class expansion contrastive learning (CECL) framework to
better leverage and unlock the power of open-set examples.
Figure 4 shows the intuition of CECL. Provided that we have
detected representative examples for the known classes, then
the distinguishable open-set examples that possess very dif-
ferent features from the known class examples can be reli-
ably detected. The remaining examples can be either known
class examples or class expansion contributing open-set ex-
amples. From the contrastive learning perspective, we can
wisely use these two types of open-set examples to push
away the classes and better generalize their concept bound-
ary. In the following, we introduce the details.

Figure 4: The intuition of CECL. CECL incorporates certain
indistinct open-set examples into the known classes, which
are expected to contribute to class expansion with better gen-
eralization. Additionally, the distinguishable open-set exam-
ples are used as delimiters, which are expected to push away
between the known classes with better discrimination.

Class Expansion Contrastive Learning
Although supervised contrastive learning has been exten-
sively studied, its application in OSNLL has not been ex-
plored due to two main challenges. First, it is difficult to con-
struct the positive example set, second, it is challenging to
determine whether an open-set example should be included
in the positive example set.

To solve the above challenges, we introduce an efficient
and robust two-step framework. In the first step, we per-
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Figure 5: Illustration of CECL. According to the information obtained in the first step, clean examples are used to generate
prototypes for each class, certain open-set examples are incorporated into known classes in the form of class expansion, and re-
maining are perceived as delimiters. The momentum embeddings are maintained by a queue structure. ’//’ means stop gradient.

form a pretraining phase to obtain coarse labels for the entire
dataset and identify whether each example is clean or not.

In the second step, we leverage the predictions from the
first step to generate cluster prototypes for each class, which
we then use to perform label noise filter and open-set deci-
sion. The identified distinguishable open-set examples are
used to enhance the model’s representation learning abil-
ity in our improved contrastive learning framework. Over-
all, our proposed framework provides an effective approach
for training models on datasets with noisy labels in open-set
scenarios. Our approach is illustrated in Figure 5.
Step 1: Clean Example Identification. To ensure more ef-
ficient training in the subsequent step, we conduct the first
step in our proposed method. Specifically, we adopted one
effective off-the-shelf closed-set noisy label learning method
Promix (Wang et al. 2022) to identify a subset of clean ex-
amples. Promix adopts a dual network co-teaching learning
style, we further ameliorate it with one correction record T
indicating whether one instance is mislabeled. T (·) is a 0/1
valued indicator that records whether the model’s prediction
is the same as the instance’s label during the whole train-
ing process. Then, we can divide the original noisy dataset
D into two subsets Dclean and Dnoisy . Dclean includes the
examples that are highly believed to be clean, i.e., T (·) = 0.
Dnoisy contains the rest unclear examples might be noisy.
For Dnoisy , Promix re-labels them with the most similar
known class, thus, we obtain coarse labels Y ′ for D.
Step 2: Contrastive Learning We adopt the most popu-
lar contrastive learning setups following SupCon (Khosla
et al. 2020) and MoCo (He et al. 2020). Given each ex-
ample (x, y), we generate its query and key view through
randomized data augmentation Aug(x), then feed them
into the query and key network g(·), g′(·), yielding a pair
of L2-normalized embeddings q = g(Augq(x)), k =

g′(Augk(x)). In implementations, the query network shares
the same convolutional blocks as the classifier, followed by
a prediction head. Following MoCo, the key network uses a

momentum update with the query network. We additionally
maintain a queue storing the most current key embeddings k
and update it chronologically. To this end, we have the con-
trastive embedding pool A = Bq ∪ Bk ∪ queue, where Bq

and Bk are vectorial embeddings corresponding to the query
and key views of the current mini-batch. Given an example
x, the per-example contrastive loss is defined by contrasting
its query embedding with the remainder of the pool A:

Lcont(g;x, t, A) =

− 1

|P (x)|
∑

k+∈P (x)

log
exp

(
q⊤k+/t

)∑
k′∈A(x) exp

(
q⊤k′/t

) . (1)

Here P (x) is the set of positive examples for x, and A(x) =
A\{q}, τ is the temperature. Conventionally, the positive
examples are from the same class and the negative exam-
ples are from different classes. However, in the OSNLL
problem, the existence of label noise and open-set exam-
ples makes constructing the positive example set P (x) par-
ticularly challenging. Below, we explain how we perform
prototype-based contrastive learning to select positive exam-
ple set and make use of open-set examples.
Positive Set Selection The positive example set is entirely
derived from A(x), where A(x) consists of subsets from
Dclean and Dnoisy , which are referred to as the clean part
and the noisy part, respectively. For the clean part, we can
directly construct the positive examples based on its label:

Pclean(x) = {k | k ∈ A(x) ∩ Dclean, y = y′} , (2)
where y′ and y are the coarse label of example x and k.

However, we cannot directly construct the positive exam-
ple set from the noisy part due to the existence of noise.
Therefore, we utilize Dclean to guide the construction of
positive example set within the noisy part, by generating an
initialized L2-normalized prototype for each class:

Qi =
1

ni

ni∑
j=1

qij , i ∈ Y, (3)
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where ni denote the total number of examples for class i in
Dclean and qij represents the L2-normalized embedding of
j-th example in class i.

Subsequently, we compute the distances between the ex-
amples in noisy part and their corresponding class proto-
types and then determine whether they belong to the positive
example set based on a threshold τ :

Pnoisy(x) = {k |k ∈ A(x) ∩ Dnoisy, y = y′,

Distance(k, Qy) < τ},
(4)

where Distance(a, b) = 1 − (a · b)/(∥a∥∥b∥). Then, we
combine with Pclean to obtain a complete positive example
set:P (x) = Pclean(x) ∪ Pnoisy(x). Correspondingly, we
can also formalized the incorporated examples from Dnoisy

as: Fq = I(q ∈ Dnoisy and Distance(q,Qy′) < τ). When
Fq = 0, we treat q as a distinguishable open-set example
and refer to this process as the open set decision. When
Fq = 1, we consider q as a clean example. During the subse-
quent training process, we update the prototype in a moving-
average style: Qi = Normalize(γQi+(1−γ)q), if i = y′.
Here the prototype Qi of class i is defined by the moving av-
erage of the normalized query embeddings q whose coarse
label conforms to i. γ is a tunable hyperparameter.

Also, our classification term can be represented as:

LCLS =− 1

|Dclean|
∑

i∈Dclean

c∑
j=1

yji log
(
pji

)
−

1∑n
k=1 I(Fk = 1)

∑
i∈Dnoisy

c∑
j=1

I(Fi = 1)y′
j
i log

(
pji

)
,

(5)
where yji and pji denote values of the one-hot label and soft-
max output of the network of example xi in the j-th class.
Training Objective For examples that are distinct from any
known classes, their embeddings tend to project toward the
inter-class rather than the intra-class. Therefore, by lever-
aging the nature of these examples, we treat them as de-
limiters, continuously pushing the known classes away from
them, i.e., they are used as negative examples for all known
classes. Thus, our contrastive term can be represented as:

LCONT =
1

|Dclean|
∑

i∈Dclean

Lcont(g;xi, t, A)+

1∑n
i=1 I(Fi = 1)

∑
i∈Dnoisy

I(Fi = 1)Lcont(g;xi, t, A).

(6)
Finally, we put it all together and jointly train the classi-

fier as well as the contrastive network with the overall loss
function as:

L = LCLS + βLCONT , (7)

in which β is a trade-off parameter.

Theoretical Analysis
In this section, we theoretically demonstrate that distin-
guishable open-set examples can contribute to enhancing the
discriminative capabilities of contrastive learning.

Definition 1 ((σ, δ)-Augmentation). The augmentation set
A is called a ( σ , δ )-augmentation, if for each class Ck,
there exists a subset C0

k ⊆ Ck (called a main part of
Ck), such that both P[x ∈ C0

k ] ⩾ σP[x ∈ Ck] where
σ ∈ (0, 1] and supx1,x2∈C0

k
, dA(x1, x2) ⩽ δ hold, where

dA(x1,x2) = minx′
1∈A(x1),x′

2∈A(x2) ∥x′
1 − x′

2∥ It repre-
sents the augmented distance. (Wang and Isola 2020; Khosla
et al. 2020; Duchi and Namkoong 2021).

With Definition 1,our analysis will focus on the exam-
ples in the main parts with good alignment, i.e., (C0

1 ∪ · · · ∪
C0

K) ∩ Sε, where Sε := {x ∈ ∪K
k=1Ck : ∀x1,x2 ∈

A(x), ∥f(x1) − f(x2)∥ ≤ ε} is the set of examples with
ε-close representations among augmented data. Furthermore
we let Rε := P

[
Sε

]
.

We transform Eq.(6) to the following formulation:

LCONT = a
∑
i∈Y

∑
m∈Di

Lalign + b
∑
i,j∈Y
i̸=j

∑
m∈Di
t∈Dj

Luniform,

where Dy denotes index set corresponding to true class y,
a and b are fixed constant related to the example quan-
tity, and Lalign = Eu+

m∈Pos(um)[∥f(um) − f(u+
m)∥2],

Luniform = E ut∈A(um)
ut /∈Pos(um)

[−∥f(um)− f(ut)∥2], where

um ∼ P (u|xm), Pos(·) denotes positive example set.
Theorem 1 We assume f is normalized by |f | = r, and
it is L-Lipschitz continuity, i.e., for any x1,x2, ∥f(x1) −
f(x2)∥ ≤ L∥x1−x2∥. We let pk := P[x ∈ Ck] for any k ∈
[K]. Let µk =

∑
i∈Dk

f(ui)
|Dk| , µℓ =

∑
i∈Dℓ

f(ui)
|Dℓ| be cen-

troids of cluster k and cluster ℓ with k ̸= ℓ. If the augmented
data is (σ, δ)-Augmented, then for any ε ≥ 0, we have

µ⊤
k µℓ ≤ log(exp{Luniform + τ(σ, δ, ε, Rε)

pkpℓ
}−exp(1−ε)),

where τ(σ, δ, ε, Rε) is a non-negative term, decreas-
ing with smaller ε,Rε or sharper concentration of aug-
mented data. The specific formulation of τ(σ, δ, ε, Rε)
and the proof are deferred to the appendix.
Remark. Theorem 1 indicates that the distance between
the cluster k and the cluster ℓ can be lower bounded by
−Luniform. With the introduction of distinguishable open-
set examples, a higher lower bound is ensured, thereby en-
hancing the discriminative nature of different class.

Experiments
Experiment Setting
Datasets We evaluate our CECL approach using the setup
from (Sun et al. 2022) on several datasets. CIFAR80N
and CIFAR100N, generated from CIFAR100 (Krizhevsky
2009), offer distinct challenges. CIFAR80N contains an
open-set noisy dataset with 20 unknown classes, while CI-
FAR100N is a closed-set noisy dataset examining methods’
versatility with different label noise scenarios (Sym-20%,
Sym-80%, Asym-40%). Real-world datasets (Web-Aircraft,
Web-Bird, Web-Car) tackle fine-grained vision categoriza-
tion, presenting over 25% training examples with ambigu-
ous noisy labels and lacking label verification. Additionally,
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Methods CIFAR80N CIFAR100N
Sym - 20% Sym - 80% Asym - 40% Sym - 20% Sym - 80% Asym - 40%

Standard 29.37 ± 0.09 4.20 ± 0.07 22.25 ± 0.08 35.14 ± 0.44 4.41 ± 0.14 27.29 ± 0.25
Decoupling 43.49 ± 0.39 10.01 ± 0.29 33.74 ± 0.26 33.10 ± 0.12 3.89 ± 0.16 26.11 ± 0.39
Co-teaching 60.38 ± 0.22 16.59 ± 0.27 42.42 ± 0.30 43.73 ± 0.16 15.15 ± 0.46 28.35 ± 0.25
Co-teaching+ 53.97 ± 0.26 12.29 ± 0.09 43.01 ± 0.59 49.27 ± 0.03 13.44 ± 0.37 33.62 ± 0.39
JoCoR 59.99 ± 0.13 12.85 ± 0.05 39.37 ± 0.16 53.01 ± 0.04 15.49 ± 0.98 32.70 ± 0.35
MoPro 65.60 ± 0.34 30.29 ± 0.21 60.22 ± 0.12 54.22 ± 0.26 28.32 ± 0.34 49.69 ± 0.45
NGC 74.26 ± 0.23 36.36 ± 0.48 65.73 ± 0.44 68.47 ± 0.28 37.17 ± 0.41 64.79 ± 0.38
Jo-SRC 65.83 ± 0.13 29.76 ± 0.09 53.03 ± 0.25 58.15 ± 0.14 23.80 ± 0.05 38.52 ± 0.20
PNP 67.00 ± 0.18 34.36 ± 0.18 61.23 ± 0.17 64.25 ± 0.12 31.32 ± 0.19 60.25 ± 0.21

CECL 77.23 ± 0.26 37.21 ± 0.11 68.48 ± 0.14 69.20 ± 0.09 36.37 ± 0.12 65.49 ± 0.24

Table 1: Test accuracy (%) comparison on synthetic noisy datasets CIFAR80N and CIFAR100N. The average mean and standard
deviation results over the last 10 epochs are recorded. Bold values represent the best methods.

Methods Web-Aircraft Web-Bird Web-Car Food101N

Standard 60.80 64.40 60.60 84.51
Decoupling (Malach and Shalev-Shwartz 2017) 75.91 71.61 79.41 -
Co-teaching (Han et al. 2018) 79.54 76.68 84.95 -
CleanNet-hard (Lee et al. 2018) - - - 83.47
CleanNet-soft (Lee et al. 2018) - - - 83.95
SELFEI (Song, Kim, and Lee 2019) 79.27 77.20 82.90 -
PENCIL (Yi and Wu 2019) 78.82 75.09 81.68 -
Co-teaching+ (Yu et al. 2019) 74.80 70.12 76.77 -
Deep-Self (Han, Luo, and Wang 2019) - - - 85.11
JoCoR (Wei et al. 2020) 80.11 79.19 85.10 -
AFM (Peng et al. 2020) 81.04 76.35 83.48 -
CRSSC (Sun et al. 2020) 82.51 81.31 87.68 -
Self-adaptive (Huang, Zhang, and Zhang 2020) 77.92 78.49 78.19 -
DivideMix (Li, Socher, and Hoi 2020) 82.48 74.40 84.27 -
Jo-SRC (Yao et al. 2021) 82.73 81.22 88.13 86.66
Sel-CL (Li et al. 2022a) 86.79 83.61 90.40 -
PLC (Zhang et al. 2021b) 79.24 76.22 81.87 -
NGC (Wu et al. 2021) 85.94 83.12 91.83 89.64
Peer-learning (Sun et al. 2021) 78.64 75.37 82.48 -
PNP (Sun et al. 2022) 85.54 81.93 90.11 87.50

CECL 87.46 83.87 92.61 90.24

Table 2: Test accuracy(%) comparison on four real-world noisy datasets. Bold values represent the best methods.

Food101N (Lee et al. 2018) showcases 101 food categories
with more than 310k examples, posing a challenge due to its
unspecified noise ratio and diverse noise types.
Comparison methods On CIFAR80N and CIFAR100N, re-
ferring (Sun et al. 2022), we compare with the following
baselines: Standard which conducts cross entropy loss min-
imization, Decoupling (Malach and Shalev-Shwartz 2017),
Co-teaching (Han et al. 2018), Co-teaching+ (Yu et al.
2019), JoCoR, which are commonly used denoise ap-
proaches in learning with noisy labels, and recently pro-
posed methods MoPro, NGC, Jo-Src, PNP customized for
OSNLL. On the four real-word datasets, we compare with
Standard, NGC, Jo-Src, PNP and 16 other closed-set noisy
label learning approaches as shown in Table 2.

For baselines, their experimental results are directly
adopted from (Sun et al. 2022). For our CECL method, we
maintain the same backbone as PNP. For optimization, we

uniformly adopt SGD with a momentum of 0.9, a learning
rate decay strategy of CosineAnnealingLR, and a batch size
of 256, 16, 96 for CIFAR, Web, Food101N datasets.

Classification Comparison
Table 1 and Table 2 respectively show results for the syn-
thesized and real-world datasets. Regarding the error bars in
Table 1, we have maintained the same setting as PNP, and
reported the average and standard deviation of the last 10
epochs, under the condition of a random seed value 0. Bold
values represent the best results among all methods.

Table 1 shows results for the 20%, 80% symmetric noise
case and 40% asymmetric noise case. By varying the struc-
ture and ratio of label noise, we try to provide a more com-
prehensive view of our proposed method. Compared with
existing OSNLL methods which minimize the impact of
open-set examples, CECL wisely leverages them to learn
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CONT OSD sym 20% asym 40%

CECL w/o CONT & OSD ✘ ✘ 70.54 62.41
CECL w/o CONT ✘ ✔ 73.17 64.57
CECL w/o OSD ✔ ✘ 72.87 64.26
CECL with RDOS ✔ ✔ 75.86 66.73
CECL ✔ ✔ 77.23 68.48

Table 3: Ablation study on CIFAR80N with sym 20% and
asym 40%, OSD denotes open-set decision, RDOS denotes
removing distinguishable open-set examples.

better representation space for the known classes, leading to
significant performance gains. Surprisingly, on the closed-
set label noise dataset CIFAR100N, our proposed CECL still
achieves better performance than the closed-set baselines.
We hypothesize that this may be due to the models’ tendency
to treat the difficult and ambiguous examples as open-set ex-
amples, which is more reasonable than forcing them to some
incorrect classes and resulting in negative effects.

Table 2 displays the experimental results on the four real-
world noisy datasets. Compared with the synthetic datasets,
the types of label noise in these datasets become more com-
plicated with relatively lower noise ratios. We can observe
similar superiority of our CECL method, which outperforms
other methods. Such results validate our method works ro-
bustly on complex scenarios in learning with noise.

Ablation Study
In this subsection, we present our ablation results to show
the effectiveness of CECL. We ablate two key components
of CECL: contrastive learning (CONT ) and open-set deci-
sion (OSD).

We compare CECL from four views: 1) To validate the ef-
fectiveness of Step 2: CECL w/o CONT & OSD, which uses
neither CONT nor OSD, that is, our Step 1, Promix; 2) To
validate the effectiveness of contrastive component: CECL
w/o CONT, which removes the contrastive learning and only
trains a classifier with clean examples and closed-set exam-
ples with corrected label identified by the prototype-based
open-set decision; 3) To validate the effectiveness of OSD:
CECL w/o OSD, specifically, we regard all the examples
identified as noise in Step 1 as known classes examples
and let them participate in contrastive learning, that is, the
conventional supervised contrastive learning; 4) To validate
the benefits brought by the distinguishable open-set exam-
ples: CECL with removing distinguishable open-set exam-
ples (RDOS), this means that we ignore the distinguishable
open-set examples. As shown in Table 3, the combination of
CONT and OSD can achieve the best performance.

Further Analysis
Feature Space Visualization The CECL framework con-
sistently emphasizes improving representation learning. To
evaluate its progress in representation capabilities, we com-
pared it with PNP and visualized the results using t-
SNE(Maaten and Hinton 2008), as shown in Figure 6.

(a) PNP (b) CECL

Figure 6: The t-SNE on CIFAR80N with Sym 20%.

We show the t-SNE of the randomly selected 20 classes on
CIFAR80N with symmetric 20% noise. The features learned
by our method are more discriminative in every class com-
pared with PNP, which verifies our method can learn better
features under different noise levels and types.
Parameter Sensitivity We explore the impact of varying τ
on the performance of our method. We conduct experiments
on the CIFAR80N with Sym20% and Asym40%, and the re-
sults are shown in Figure 7. The results indicate that the per-
formance significantly higher than PNP at different values
of τ , demonstrating the robustness of our method.
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Figure 7: Sensitivity analysis of hyper-parameter τ on CI-
FAR80N with Sym 20% and Asym 40%.

Conclusion

This paper tackles the task of learning from real-world open-
set noisy labels. Unlike conventional methods that merely
identify and minimize the impact of open-set examples,
we reveal the Class Expansion phenomenon, demonstrating
their ability to enhance learning for known classes. Our pro-
posed CECL approach integrates appropriate open-set ex-
amples into known classes, treating the remaining distin-
guishable open-set examples as delimiters between known
classes. This strategy, coupled with a modified contrastive
learning scheme, boosts the model’s representation learning.
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