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Abstract

Building artificial intelligence (AI) systems on top of a set
of foundation models (FMs) is becoming a new paradigm
in AI research. Their representative and generative abili-
ties learnt from vast amounts of data can be easily adapted
and transferred to a wide range of downstream tasks with-
out extra training from scratch. However, leveraging FMs
in cross-modal generation remains under-researched when
audio modality is involved. On the other hand, automati-
cally generating semantically-relevant sound from visual in-
put is an important problem in cross-modal generation stud-
ies. To solve this vision-to-audio (V2A) generation problem,
existing methods tend to design and build complex systems
from scratch using modestly sized datasets. In this paper, we
propose a lightweight solution to this problem by leverag-
ing foundation models, specifically CLIP, CLAP, and Audi-
oLDM. We first investigate the domain gap between the la-
tent space of the visual CLIP and the auditory CLAP mod-
els. Then we propose a simple yet effective mapper mech-
anism (V2A-Mapper) to bridge the domain gap by translat-
ing the visual input between CLIP and CLAP spaces. Con-
ditioned on the translated CLAP embedding, pretrained au-
dio generative FM AudioLDM is adopted to produce high-
fidelity and visually-aligned sound. Compared to previous ap-
proaches, our method only requires a quick training of the
V2A-Mapper. We further analyze and conduct extensive ex-
periments on the choice of the V2A-Mapper and show that
a generative mapper is better at fidelity and variability (FD)
while a regression mapper is slightly better at relevance (CS).
Both objective and subjective evaluation on two V2A datasets
demonstrate the superiority of our proposed method com-
pared to current state-of-the-art approaches - trained with
86% fewer parameters but achieving 53% and 19% improve-
ment in FD and CS, respectively. Supplementary materials
such as audio samples are provided at our demo website:
https://v2a-mapper.github.io/.

Introduction
Foundation models (FMs), trained on large-scale data and
often making use of self-supervised learning, offer problem-
agnostic representative or generative capabilities to down-
stream tasks via adaptation (Bommasani et al. 2021). They
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Figure 1: Schematic illustrations of training and inference
pipelines from previous V2A algorithms and our lightweight
solution, respectively. Leveraging foundation models (FMs),
we only require the training of a single V2A-Mapper while
current works involve multiple modules to train.

have demonstrated robust generalization and knowledge
transfer ability across a broad spectrum of tasks in recent
AI research (Zhou et al. 2023; Cao et al. 2023; Yin et al.
2023). Despite success in many uni-modal tasks spanning
language (Paaß and Giesselbach 2023), vision (Awais et al.
2023), and audio (Li et al. 2023), the adaptation of FMs
in problems involving multiple modalities such as cross-
modal generation is greatly dominated by vision-language
research (Du et al. 2022). Although attempts (Ao et al. 2022;
Kreuk et al. 2023; Yang et al. 2023; Huang et al. 2023; Liu
et al. 2023a,b; Yuan et al. 2023; Ghosal et al. 2023) have
been made lately to bring FMs into text-to-audio genera-
tion and achieved remarkable performance, the viability of
adopting FMs in vision-to-audio generation is still unclear.

Vision and audio are two essential and correlated sources
through which people perceive the world. Humans have the
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ability to imagine the corresponding sound when just ob-
serving a visual event (Owens and Efros 2018). Mimicry
of this human-like cross-modal generation ability is appli-
cable to various scenarios such as enhancing the experience
of immersion in virtual reality, automating video editing for
content creators, and assisting people with visual impair-
ment (Ghose and Prevost 2020; Luo et al. 2023). Such rich
visual-audio consistency and wide application have drawn
constant interest in vision-to-audio (V2A) generation (Wei
et al. 2022). Not restricted to a specific in-domain sound type
(e.g., background music (Di et al. 2021), dance music (Zhu
et al. 2023b), speech (Prajwal et al. 2020)), in this paper, we
aim to generate natural sound from visual input in more di-
verse real-world scenarios, a V2A task that poses a markedly
elevated level of difficulty (Zhou et al. 2018).

To solve this open-domain V2A generation problem, cur-
rent methods (Iashin and Rahtu 2021; Sheffer and Adi 2023;
Dong et al. 2023) often involve a complex system of sep-
arately optimized submodules trained with limited size of
datasets as illustrated in Fig. 1(a). It could be cumbersome
and resource-intensive to train each module individually and
the generalization capability of each module could be re-
stricted due to the lack of sufficient training data.

In this work, we explore the feasibility of adopting foun-
dation models in open-domain vision-to-audio generation
task. As shown in Fig. 1(b), our lightweight method only re-
quires the training of a V2A-Mapper to bridge the domain
gap between the vision representative FM CLIP (Radford
et al. 2021) and the audio generative FM AudioLDM (Liu
et al. 2023a). The V2A-Mapper is supervised by the au-
dio representative FM CLAP (Wu et al. 2023) to learn the
translation from visual space to auditory space. Leveraging
the generalization and knowledge transfer ability of foun-
dation models, the V2A-Mapper is trained with the same
modestly sized dataset but the overall system can achieve
much better performance. Our contribution includes: 1) in-
vestigating the potential of bringing FMs into the field of
vision-to-audio generation; 2) proposing a simple but effec-
tive V2A-Mapper to connect visual and auditory FMs; 3)
investigating both generative and regression strategies of the
V2A-Mapper; 4) both subjective and objective evaluation on
two V2A datasets demonstrate the efficiency and effective-
ness of our method - it is trained with 86% fewer parameters
but can achieve up to 53% and 19% improvement in fidelity
(FD) and relevance (CS).

Related Works
Vision-to-Audio Generation. Earlier V2A works (Owens
et al. 2016; Chen et al. 2017; Hao, Zhang, and Guan
2018) deal with limited sound in controlled environments.
VEGAS (Zhou et al. 2018) for the first time introduced
open-domain sound generation from in-the-wild visual in-
put. But VEGAS and later works (Chen et al. 2018,
2020b) had to train a separate model for each sound type
which is hard to scale up. To solve this issue, SpecVQ-
GAN (Iashin and Rahtu 2021) designed the first label-free
approach where a single model can produce diverse sound
types. SpecVQGAN used a pretrained image classifier net-
work to extract visual features from which a Transformer-

based (Vaswani et al. 2017) autoregressive model synthe-
sizes the mel-spectrogram. Upgrading this label-free ap-
proach, Im2Wav (Sheffer and Adi 2023) used the vision
foundation model CLIP (Radford et al. 2021) to get vi-
sual features of multimodal semantic information. Instead
of predicting the mel-spectrogram directly, Im2Wav au-
toregressively generates its latent code based on the vi-
sual prompt and a VQ-VAE (Van Den Oord, Vinyals et al.
2017) is trained to encode and decode between the mel-
spectrogram and the latent space as shown in Fig. 1(a).
Similar to Im2Wav, CLIPSonic-IQ (Dong et al. 2023) also
adopted CLIP but they trained a diffusion model (Nichol and
Dhariwal 2021) to directly generate the mel-spectrogram as
in SpecVQGAN. All of these attempts train multiple mod-
ules with limited amount of data from scratch. In this pa-
per, we propose to utilize FMs to inherit their generaliza-
tion ability obtained from large-scale training. Optimizing a
V2A-Mapper to connect FMs with the same modestly sized
dataset, our method is lightweight in the training phase and
effective in the generalization capability.

Foundation Model Adaptation. Adapting FMs to down-
stream tasks has been actively explored in NLP for
uni-modal tasks, which can be categorized into prompt-
based (Le Scao and Rush 2021), fine-tune-based (Za-
ken, Goldberg, and Ravfogel 2022; Hu et al. 2021),
and lightweight adapter-based methods (Houlsby et al.
2019). When introducing this new paradigm into multi-
modal domain, pioneering works in the vision-language
(VL) field follow the third strategy and freeze FMs to
avoid catastrophic forgetting (McCloskey and Cohen 1989).
PICa (Yang et al. 2022) considered language FM GPT3
as a knowledge base for visual question answering tasks
while ClipCap (Mokady, Hertz, and Bermano 2021) and
Flamingo (Alayrac et al. 2022) learnt auxiliary modules (i.e.,
interleaving new layers or tokens) to utilize vision and lan-
guage FMs for image captioning. Compared to VL field,
there is much less research on FM adaptation in vision-
audio domain. In this paper, we propose a simple yet ef-
fective V2A-Mapper to connect visual and auditory FMs for
open-domain V2A generation task. In line with VL works,
we keep our FMs frozen but, unlike previous attempts, we
do not change the inner architecture of FMs. Our method
keeps FMs completely intact and only adds a mapper, which
guarantees easy deployment and updating.

Method
Our lightweight solution includes a visual encoder FM
(CLIP), an audio encoder FM (CLAP), an audio genera-
tor FM (AudioLDM), and a trainable V2A-Mapper. Fig. 2
presents how we train the V2A-Mapper with frozen CLIP
and CLAP models and how we incorporate it with frozen
CLIP and AudioLDM models to produce high-fidelity and
visually-aligned sound. In this section, we first revisit the
adopted foundation models. We then analyze the domain gap
between visual and auditory spaces and introduce how we
train the V2A-Mapper to bridge the gap. Lastly, we present
the details of our generative diffusion-based V2A-Mapper.
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Figure 2: Top: Our lightweight V2A-Mapper training process. We first extract the source visual embedding Ev and the target
audio embedding Ea with frozen pretrained foundation models CLIP and CLAP. We explore different aggregators σ to project
the video data into a single feature vector. We then train the proposed V2A-Mapper using the audio-visual pair {Ev, Ea} with
MSE loss. Bottom: The compact inference pipeline of our method for vision-to-audio generation. We first adopt pretrained CLIP
image encoder to project video/image into text-image space (the aggregation process for video input is omitted for brevity) and
then use the trained V2A-Mapper to translate the visual embedding into CLAP text-audio space. Conditioned on the pseudo
CLAP audio embedding, AudioLDM can be utilized to produce the sound waveform.

Selected Foundation Models
We choose the following foundation models because they
are currently the state-of-the-art FMs for vision represen-
tation, audio representation, and audio generation, respec-
tively. They can be replaced given better alternatives.

CLIP. As our V2A generation task spans across two
modalities, adapting multimodal FMs is a natural way of
utilizing their semantic features for tasks involving multi-
ple domains (Lu et al. 2021). CLIP (Radford et al. 2021) is
a text-image representation model which is trained to max-
imize the similarity between 400M paired text and image
data via contrastive learning. Since the vision space learnt
by CLIP is guided by language supervision which is of high-
level semantic meaning, the visual feature is rich in semantic
information. Therefore, we use a pretrained CLIP model to
extract the features of visual prompts.

CLAP. CLAP (Wu et al. 2023) is currently the largest au-
dio representation FM trained with 2.5M text-audio paired
data. Similar to CLIP, CLAP learns a joint text-audio em-
bedding space via contrastive learning under the language
supervision. A critical reason we choose CLIP and CLAP is
that they both share the text modality as a common domain

during their training. We assume text could serve as a bridge
which makes the translation from vision to audio easier.

AudioLDM. AudioLDM (Liu et al. 2023a) is a continuous
latent diffusion model (LDM) trained in a self-supervised
way with 3.3M 10-second audio clips. Conditioned on
CLAP audio embedding, it generates the latent code of au-
dio mel-spectrogram which can be decoded and converted
into audio waveform. The original work only explores the
usage of the LDM part in text-to-audio (T2A) generation
task. Since CLAP represents text and audio jointly, Audi-
oLDM can directly take text as input when being adapted to
T2A task. We note that despite being proposed specifically
for T2A generation task, AudioLDM is expected to adapt
more naturally to audio features. This inspires us to ponder
if we could translate a vision feature into its corresponding
audio embedding in CLAP space, then we could keep Au-
dioLDM completely intact and utilize it as an off-the-shelf
audio generator FM.

Bridge the Domain Gap Between Vision and Audio
We first investigate if there exists a domain gap between the
vision and audio spaces learnt by CLIP and CLAP respec-
tively. Following (Liang et al. 2022), we measure it by ran-
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(a)

(b)

Figure 3: We visualize the domain gap between CLIP im-
age space and CLAP audio space in (a). In (b), we present
the process of closing the domain gap during the training of
the V2A-Mapper. The accompanying histograms display the
cosine similarity between paired embeddings from two do-
mains. The larger the value is, the closer two domains are.

domly selecting 5000 samples from the video dataset VG-
GSound (Chen et al. 2020a) to get an estimation of both the
visual and auditory feature distributions. Specifically, we en-
code the video frames into 512-d feature vectors with pre-
trained CLIP image encoder and average them along the
time axis to get one single embedding for each video. For
audio data, we project each audio sample into 512-d fea-
ture vector with pretrained CLAP audio encoder. We then
use UMAP visualization (Sainburg, McInnes, and Gentner
2021) to project 5000 CLIP image embeddings and 5000
CLAP audio embeddings into the same 2-d space. As shown
in Fig. 3(a), the average cosine similarity between paired vi-
sual (CLIP) and audio (CLAP) features is near 0 and there
indeed exists a considerable gap between CLIP image do-
main and CLAP audio domain.

To bridge the domain gap, we propose to train a mapper,
namely V2A-Mapper, between CLIP and CLAP so that the
visual embedding could be translated into the CLAP space.
The upper part of Fig. 2 shows the training pipeline. A video
Vi is a sequence of n images

{
V 1
i , ..., V

n
i

}
. To get the vi-

sual embedding for a video, we use frozen CLIP model to
encode each frame into 512-d feature vector to get a set of
frame features

{
(E1

i )
v, ..., (En

i )
v
}

. We then use an aggrega-
tor function σ to get a single vector Ev

i as the visual feature

for the video input. The aggregator function could be: 1) ran-
domly picking one vector; 2) picking the vector of the mid-
dle frame; 3) averaging along time axis. According to the
experiments, the third option obtains the best performance
in both fidelity and relevance. Similarly, for the paired au-
dio data Ai, we encode it into 512-d feature vector Ea

i with
frozen CLAP model. Once we have paired visual features
Ev

i and auditory features Ea
i , we can train the mapper to

convert the CLIP embedding Ev
i into a pseudo CLAP em-

bedding Ea′

i . We use Mean Square Error loss to guide the
training. The training process can be formulated as below:

L = Ei∼[1,K]

[
∥ Ea

i − Ea′

i ∥2
]
, (1)

where K is the batch size and Ea′

i is from mapper(Ev
i ).

Fig. 3(b) visualizes the domain shift after the training.
Since the mapper is randomly initialized at the beginning,
the translated embedding cluster is still far from the target
CLAP space as displayed in Fig. 3(b)(i). When training fin-
ishes, the translated space and the target CLAP space be-
come overlapped as suggested in Fig. 3(b)(ii) indicating the
mapper is optimized successfully.

Diffusion-based V2A-Mapper
Since the mapper is expected to project the embedding from
visual space to audio space, a natural way to implement
the mapper is a stack of multilayer perceptrons (MLPs) as
a one-to-one regression task. Inspired by DALLE2’s prior
model (Ramesh et al. 2022), we consider the projection pro-
cess as a conditional generation task, which models a one-to-
many mapping ensuring the diversity and generalization of
the target audio distribution. Specifically, we train the map-
per as a diffusion model (Ho, Jain, and Abbeel 2020; Song
et al. 2020). It includes a forward process where Gaussian
noises are gradually added to the target audio embedding
Ea

i,0 until it approaches to a standard Gaussian distribution
Ea

i,T (i.e., completely random) for T timesteps and a re-
verse process where the target is gradually recovered from
the noisy distribution by canceling the added noises with a
network in a recursive manner. Following DALLE2, instead
of predicting the intermediate noises added at each step (Ho,
Jain, and Abbeel 2020), we directly predict the target audio
embedding. Therefore, we train the mapper network fθ to
predict audio embedding Ea

i,0 based on the timestep t, the
noisy audio embedding Ea

i,t at timestep t, and the condition
visual embedding Ev

i . Hence, the training objective in Eq. 1
can be formulated as:

L = Ei∼[1,K],t∼[1,T ]

[
∥ Ea

i,0 − fθ
(
t, Ea

i,t, E
v
i

)
∥2
]
. (2)

We experiment with two different architectures for the
mapper network fθ - simple MLPs and Transformer. For
the Transformer variant, we craft a learnable token of 512-
d whose output from the Transformer is considered as the
recovered audio embedding. We then take the time embed-
ding, noisy audio embedding, as well as the visual condition
as three other tokens of the same shape (i.e., 512-d) to the
Transformer encoder to obtain the recovered audio embed-
ding. For the simple MLP variant, we concatenate all the
three tokens as input and output the final 512-d vector as the
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Method
VGGSound ImageHear Infer. Time (s) ↓ #Trainable Param. (M) ↓

FD ↓ FAD ↓ CS ↑ CS ↑
Reference 0 0 8.925 - - -

Im2Wav 51.500 6.005 7.827 9.843 864.12 360.40
CLIPSonic-IQ 27.124 3.495 7.251 11.392 53.94 142.58
Ours 24.168 0.841 9.720 11.950 35.45 48.83

Table 1: Objective comparison with SOTA methods on VGGSound (video-to-sound generation) and ImageHear (image-to-
sound generation). The inference time is measured as the average time spent for 100 samples through the whole pipeline from
input visual prompts to output waveforms on one NVIDIA RTX A6000 GPU. Our method achieves the best on all the objective
metrics.

Method
VGGSound ImageHear

Fidelity ↑ Relevance ↑ Fidelity ↑ Relevance ↑
Reference 3.580±0.455 4.178±0.533 - -

Im2Wav 1.838±0.511 2.415±0.645 1.840±0.502 2.705±0.398
CLIPSonic-IQ 2.533±0.522 2.140±0.551 2.888±0.502 3.215±0.291
Ours 2.845±0.491 2.808±0.651 3.425±0.459 3.310±0.295

Table 2: Subjective comparison with SOTA methods on VGGSound (video-to-sound generation) and ImageHear (image-to-
sound generation). Our lightweight solution outperforms previous methods in both sound quality and the relevance to visual
prompt from a human perception perspective.

predicted audio embedding via fully-connected network. We
find the Transformer is a better way to incorporate the con-
dition compared to simple concatenation in MLPs.

Experiments
Experimental Setup
Datasets. We train our V2A-Mapper and all the vari-
ants on VGGSound video dataset (Chen et al. 2020a). VG-
GSound contains 199,176 10-second video clips extracted
from videos uploaded to YouTube with audio-visual corre-
spondence. Note that VGGSound has never been used as
training data for the foundation models we adapt. Following
the original train/test splits, we train on 183,730 videos and
evaluate on 15,446 videos. To testify the generalization abil-
ity of our V2A-Mapper, we also test on out-of-distribution
dataset ImageHear (Sheffer and Adi 2023) which contains
101 images from 30 visual classes (2-8 images per class).
We generate 10-second audio samples for all the evaluations.

Metrics. We measure the performance on two aspects, fi-
delity and the relevance to the visual prompt. Specifically,
we use Fréchet Distance (FD) to measure the overall qual-
ity and variability of generated audio clips. FD computes the
distance of embedding distributions between the synthesized
and the real samples. To compare with previous methods, we
also compute the Fréchet Audio Distance (FAD) (Kilgour
et al. 2019). FD and FAD differ at the embedding extractor -
FD uses PANNs (Kong et al. 2020) while FAD adopts VG-
Gish (Hershey et al. 2017). Similar to (Liu et al. 2023a),
we choose FD as our main evaluation metric regarding the
sound quality since PANNs is superior to VGGish by con-

sidering long distance temporal change. For the relevance
evaluation, we use CLIP-Score (CS) (Sheffer and Adi 2023)
to get the cosine similarity between the CLIP embedding of
the visual input and the Wav2CLIP (Wu et al. 2022) embed-
ding of the generated sound. As Wav2CLIP learns an audio
encoder via contrastive loss on VGGSound with the guid-
ance of frozen CLIP image encoder, if the generated sound
matches the visual input, the Wav2CLIP embedding is ex-
pected to be similar to its paired CLIP embedding.

Subjective Testing. To complement the objective metrics,
we also conduct a listening test to measure the fidelity of the
generated audio clips and their relevance to visual prompts
from a human perception perspective. We ask 20 listeners to
rate audio clips of 20 randomly selected visual samples on a
discrete 5-point scale in terms of fidelity and relevance, re-
spectively. The average rating across all listeners for each al-
gorithm is computed as Mean Opinion Score (MOS) (Inter-
national Telecommunication Union 1996). We also re-code
the responses into paired comparisons and infer the relative
standings via indirect scaling (Agresti 1992). We calculate
the degree by which other approaches exceed our method as
the Just Meaningful Difference (JMD) score (e.g. a negative
value indicates inferiority of other algorithms compared to
ours). More details of our human evaluation are provided in
the supplementary.

Implementation Details. We use “ViT-B/32” version for
CLIP model1. For CLAP model and audio generator, we
use pretrained models from AudioLDM2. For the diffusion-

1https://github.com/openai/CLIP
2https://github.com/haoheliu/AudioLDM
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Figure 4: Our method achieves better results on both metrics
and contains fewer trainable parameters (smaller circle size).

based V2A-Mapper, we use a cosine noise schedule with
1000 diffusion steps during training and 200 steps at infer-
ence time. We use AdamW with a learning rate of 1.1e-
4, a batch size of 448 visual-audio embedding pairs, and
a dropout rate of 0.1 in classifier-free guidance. We pro-
vide more implementation details including datasets used in
adopted FMs, the full experiments of architecture hyperpa-
rameter tuning, and the guidance scale tuning in the supple-
mentary.

Compare with SOTA
Im2Wav (Sheffer and Adi 2023) is the current state-of-the-
art method in open-domain vision-to-audio generation. It
involves training of two Transformer decoders of differ-
ent scales for latent code generation, a VQ-VAE for au-
dio mel-spectrogram encoding and decoding, and a vocoder
for waveform conversion. CLIPSonic-IQ (Dong et al. 2023)
is a concurrent work to ours and they train a diffusion
model to directly generate mel-spectrogram conditioned on
visual representation. They also require the training of a
BigVGAN (Lee et al. 2022) to convert the generated mel-
spectrogram into audio waveform. Compared to these meth-
ods, our approach only requires the training of a single V2A-
Mapper. Trained with the same modestly sized VGGSound
data, our method achieves better performance as a result of
the knowledge transfer from foundation models.

Objective Results. Tab. 1 shows that the proposed method
achieves superior performance in all objective metrics. We
also plot the comparison on VGGSound in Fig. 4 to show-
case our method achieves better results on both relevance
and fidelity and contains fewer trainable parameters. Com-
pared to Im2Wav, our method trains with 86% fewer param-
eters but achieves 53% and 19% improvement in FD and
CS, respectively. It is also noticeable that our method is sig-
nificantly faster than Im2Wav (x24 faster) during inference.
Our method also outperforms CLIPSonic-IQ in all the met-
rics with fewer parameters and faster inference speed. Note
that our method exceeds even the reference for the relevance
metric (CS). We conjecture that this is because VGGSound
contains noisy data whose audio and visual streams might
not be highly-relevant, which could suggest the proposed
method is robust to noisy training data. We recommend read-
ers to watch the sports live video in our demo website to
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Figure 5: The Just Meaningful Difference steps of current
methods relative to our algorithm with 95% bootstrap confi-
dence intervals.

observe this phenomenon.

Subjective Results. As shown in Tab. 2 and Fig. 5, our
method exceeds previous works in both fidelity and rele-
vance. We notice that the usage of diffusion model could
especially boost the audio quality as indicated by the im-
provement achieved by both CLIPSonic-IQ and our method.
While CLIPSonic-IQ fails at the relevance aspect when tak-
ing videos as input, our method consistently outperforms the
SOTA method on both videos and images. However, we note
that there is still a gap between our performance and the
ground truth. Empirically, we find temporal alignment to be
a major issue that leads to unsatisfactory relevance rating,
which we will attempt to address in our future work.

Ablation Study
Different Ways of Utilizing FMs. Since AudioLDM is
proposed for text-to-audio generation, the naive way of uti-
lizing it for V2A synthesis is interleaving a captioning model
to generate text input as shown in Fig. 6(a). To verify this
vision-txt-audio idea, we adopt SOTA captioner BLIP (Li
et al. 2022) to generate descriptions for images. For video-
to-audio generation, we use the tag information provided in
VGGSound. As reported in Tab. 3, although using text as
bridge could mitigate the gap to some extent, it is still in-
ferior to our method with the V2A-Mapper in both fidelity
and relevance. This result indicates that the captioner is ac-
tually a bottleneck whose performance would directly affect
what audio is to be generated from AudioLDM. We provide
two examples where the captioner fails at predicting correct
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Figure 6: Different ways of using FMs. (a) adopts a cap-
tioner to generate text description as a bridge to use Audi-
oLDM while (b) directly puts the visual features from CLIP
image encoder as the condition to AudioLDM.

Method
VGGSound ImageHear

FD ↓ CS ↑ CS ↑
vision-txt-audio 56.397 6.672 7.310
w/o mapper 72.527 5.258 4.026
w/ mapper 24.168 9.720 11.950

Table 3: Ablation study with different ways of using FMs
for vision-to-audio synthesis.

object category in “Why Vision-Text-Audio is Bottlenecked
by the Captioner” section of our demo website. We suggest
readers to check the audio results to examine the bottleneck
challenge. Instead of decoding the visual condition into text
format, our V2A-Mapper keeps the visual information as its
latent code form and explicitly translates it from CLIP’s vi-
sual space to CLAP’s audio space, which could avoid infor-
mation loss occurred during vision-txt-audio conversion. If
the V2A-Mapper is skipped as illustrated in Fig. 6(b), the
domain gap between vision and audio space prevents Au-
dioLDM from generating high-fidelity and visually-relevant
sound. Audio examples showcasing the difference are pre-
sented in “Domain Gap Bridging Process” section of our
demo website. The recent text-to-audio generation work
Make-An-Audio (Huang et al. 2023) trained their audio gen-
erator with CLIP text embedding and adopted CLIP image
embedding as input to handle vision-to-audio generation.
Similar to the “w/o mapper” strategy, the domain gap be-
tween the visual condition and the target embedding space
which their audio generator works on is not addressed. We
refer readers to our demo website to observe the comparison
with Make-An-Audio.

Inside the Mapper: Generative vs. Regression. The
V2A-Mapper can be implemented in a generative or a re-
gression strategy. A generative V2A-Mapper learns a one-
to-many mapping while a regression one builds a one-to-
one projection. As displayed in Tab. 4, although regression
model could learn a slightly better relevance due to the one-
to-one mapping, the generated sound lacks diversity and fi-

Arch. of the V2A-Mapper
VGGSound ImageHear

FD ↓ CS ↑ CS ↑

Regression MLPs 35.059 9.927 12.048
Transformer 29.378 10.076 12.317

Generative diff. w/ MLPs 28.803 8.685 10.449
diff. w/ Transformer 24.168 9.720 11.950

Table 4: Ablation study with different V2A-Mapper strate-
gies (regression vs. generative) and architectures (MLPs vs.
Transformer).

Aggregation
VGGSound ImageHear

FD ↓ CS ↑ CS ↑
random 24.826 9.200 11.465
middle 25.569 9.192 11.901
average 24.168 9.720 11.950

Table 5: Ablation study with different ways of aggregation
for video feature representation during training.

Method
VGGSound ImageHear

FD ↓ CS ↑ CS ↑

w/o mapper BLIP 53.621 4.948 4.314
CLIP 72.527 5.258 4.026

w/ mapper BLIP 24.788 9.402 10.836
CLIP 24.168 9.720 11.950

Table 6: Ablation study with different vision-language mod-
els.

delity as suggested by much worse FD scores. A generative
mapper is critical to ensure the variability as also observed
in text-to-image synthesis (Ramesh et al. 2022). To show-
case the diversity of our method, we provide three samples
for each visual input in the “Variability of Our V2A Gen-
eration Model” section of our demo website. And compared
to linear projections, the attention mechanism used in Trans-
former could integrate the visual condition in a better way.

Different Aggregator Methods σ. We explore three dif-
ferent ways of aggregating visual information of videos: 1)
randomly select one frame as the key frame to represent the
video; 2) instead of using random frame, choose the middle
one; 3) average the CLIP features of all the frames along the
time axis. Tab. 5 shows the performance of models trained
with different aggregation methods. Since the task is to gen-
erate a large time-span (10 seconds) of a highly dynamic sig-
nal (audio), having time-related information in the condition
could help. The average of abstract frame embeddings with
rich semantic contents throughout the temporal dynamics is
a better summary of the video than a single frame.

Different Pretrained Vision FMs. Our V2A-Mapper can
be generalized to other vision-language models such as
BLIP (Li et al. 2022). As shown in Tab. 6, the proposed
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Method
VGGSound ImageHear Time (s) ↓ #Param. (M) ↓

FD ↓ CS ↑ CS ↑
audioldm-s 25.635 9.547 11.586 9.33 185.04
audioldm-s-v2 24.168 9.720 11.950 9.33 185.04
audioldm-l 25.130 9.531 12.016 11.58 739.14

Table 7: Ablation study with different pretrained Audi-
oLDM models.

(a) Guided by image.

“a woman is playing guitar in a 
rock-n-roll style” 

(b) Guided by text.

Figure 7: Our V2A-Mapper enables interpolation guided by
both image and text. Audios are provided in demo website.

V2A-Mapper can boost the performance of both CLIP-
and BLIP-based systems. We also note that no matter what
vision-language model is used and how big the domain gap
between the vision and audio spaces is, the proposed V2A-
Mapper can bridge the gap and translate visual information
into audio space - two systems achieve similar performance
with the proposed V2A-Mapper.

Different Pretrained Audio FMs. We ablate with dif-
ferent pretrained audio generators from AudioLDM: 1)
audioldm-s is the base model; 2) audioldm-s-v2 is the base
model but trained with more steps; 3) audioldm-l is the
model with larger architecture. As shown in Tab. 7, either
scaling the model up or optimizing its training for longer
steps can help enhance the performance to some extent.
Therefore, we hypothesize that a better audio generator FM
could further improve the quality and relevance in the future.

Latent Space Interpolation
As the visual condition is translated into the CLAP latent
space, we could interpolate audio embeddings by either vi-
sual or textual guidance. For simplicity, we perform linear
interpolation between two embeddings. As shown in Fig. 7,
the interpolation can happen from a frog sound to a sound
indicated by an image of a man playing flute, or to a target
specified by a description. It is noticeable that vision, text,
and audio are semantically gathered to the same space with-
out actual training with three modalities. We hear a relatively
smooth transition during the interpolation, which indicates
auditorily that the V2A-Mapper does learn the translation
from CLIP space to CLAP space. Examples are provided in
“Latent Space Interpolation” section of our demo website.

Limitation and Future Work
While our approach has achieved considerable success, it
is important to acknowledge several limitations. First, the
system can not achieve finer control. The generated sound
exhibits semantic relevance in a general sense, but it lacks

controllability over specific details. Second, the system fails
when the visual cues involve unclear subjects (e.g., multiple
objects, blurry/damaged images). Third, the system does not
explicitly handle the temporal alignment between audio and
visual signals. All of these could be interesting future di-
rections in this area. Enforcing text into the condition could
be a starting point for explicit controllability by consider-
ing both visual and textual features. To incorporate the lan-
guage information of high-level semantic meaning into the
system, recent multimodal foundation models such as Meta-
Transformer (Zhang et al. 2023) and VATLM (Zhu et al.
2023a) could be taken into consideration. They learn the rep-
resentation across vision, language, and audio which could
shape a common space for different modalities.

Conclusion

In this paper, we explore the feasibility and efficiency of
adapting foundation models (FMs) in the challenging open-
domain vision-to-audio generation task. We propose a sim-
ple yet effective mapper mechanism (V2A-Mapper) to con-
nect the representative visual FM CLIP and the generative
auditory FM AudioLDM. Learning to translate visual fea-
tures from CLIP space to the auditory CLAP space, the
V2A-Mapper successfully passes visual information to its
auditory counterpart from which the AudioLDM can synthe-
size high-fidelity and visually-aligned sound. Our method is
relatively lightweight to train because it only requires op-
timization of the V2A-Mapper. Despite this simplicity, it
achieves superior performance compared to current state-of-
the-art approaches with far more complex training regimes
as demonstrated by both subjective and objective evaluation.

Ethical Statement

Our method aims to leverage foundation models for effi-
cient vision-to-audio generation. It can be used to enhance
the immersion of human experience, such as video editing
and foley design. Nevertheless, the application of this tech-
nology poses a risk if being maliciously misused on social
platforms, potentially resulting in negative outcomes for so-
ciety. Although significant strides have been made in audio
deepfake detection research to mitigate such concerns (Yam-
agishi et al. 2021), the availability of ample datasets remains
pivotal for improving detection accuracy. In light of this, we
are committed to presenting our synthesized audio samples,
intending to contribute to the advancement and fine-tuning
of existing detection algorithms.
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