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Abstract

Decentralized Stochastic Gradient Descent (D-SGD) repre-
sents an efficient communication approach tailored for mas-
tering insights from vast, distributed datasets. Inspired by par-
allel optimization paradigms, the incorporation of minibatch
serves to diminish variance, consequently expediting the op-
timization process. Nevertheless, as per our current under-
standing, the existing literature has not thoroughly explored
the learning theory foundation of Decentralized Minibatch
Stochastic Gradient Descent (DM-SGD). In this paper, we try
to address this theoretical gap by investigating the general-
ization properties of DM-SGD. We establish the sharper gen-
eralization bounds for the DM-SGD algorithm with replace-
ment (without replacement) on (non)convex and (non)smooth
cases. Moreover, our results consistently recover to the results
of Centralized Stochastic Gradient Descent (C-SGD). In ad-
dition, we derive generalization analysis for Zero-Order (ZO)
version of DM-SGD.

Introduction
Decentralized Stochastic Gradient Descent (D-SGD) is a
distributed optimization algorithm used to train machine
learning models across multiple devices or nodes while
minimizing communication overhead (Nedic and Ozdaglar
2009; Sundhar Ram, Nedić, and Veeravalli 2010; Lian et al.
2017). It is particularly useful when dealing with large
datasets or complex models that cannot be trained on a sin-
gle machine due to memory or computational limitations.

In traditional (centralized) SGD, each iteration of training
involves computing gradients using a random subset (mini-
batch) of the training data and updating the model parame-
ters based on these gradients. Decentralized SGD takes this
concept and extends it to a distributed setting (Predd, Kulka-
rni, and Poor 2006; Agarwal and Duchi 2011), where each
node has access to its local subset of data and computes gra-
dients independently.

As far as we know, utilizing a minibatch aids in decreas-
ing variance and expediting the optimization process. There-
fore, it is natural to consider the Decentralized Minibatch
Stochastic Gradient Descent (DM-SGD) which combines
the principles of decentralized optimization and Minibatch
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stochastic gradient descent (Gower et al. 2019; Cotter et al.
2011; Dekel et al. 2012; Shamir and Srebro 2014; Li et al.
2014; Ghadimi, Lan, and Zhang 2016; Yin et al. 2018) to en-
able efficient distributed training of machine learning mod-
els (Lian et al. 2017; Zinkevich et al. 2010).

While the studies on the convergence analysis of CM-
SGD/DM-SGD are increasing (Cotter et al. 2011; Dekel
et al. 2012; Shamir and Srebro 2014; Woodworth, Patel, and
Srebro 2020; Lian et al. 2017), there are far fewer results to
investigate the generalization ability of DM-SGD in learning
theory (also see Table 1).

Within the realm of learning theory analysis, algorith-
mic stability tools stand out as a crucial factor. Notably,
they bring forth advantages such as independence from di-
mensionality and adaptability to a wide array of learning
paradigms (Bousquet and Elisseeff 2002; Shalev-Shwartz
et al. 2010; Hardt, Recht, and Singer 2016; Feldman and
Vondrak 2018, 2019). Specially, the stability and generaliza-
tion of D-SGD has recently studied by (Sun, Li, and Wang
2021; Zhu et al. 2022; Taheri and Thrampoulidis 2023; Bars,
Bellet, and Tommasi 2023). However, they did not take into
account the stability analysis work and outcomes of DM-
SGD. Thus, the following questions are raised:

Questions

What are the results of the stability and general-
ization analysis of DM-SGD? Is the generalization
bound of DM-SGD consistent with D-SGD?

This paper focuses on answering the above questions, and
gets the satisfactory generalization bounds compared with
D-SGD (Sun, Li, and Wang 2021; Bars, Bellet, and Tommasi
2023).

Contributions
As we all know, this paper is the first work to study the
generalization behavior of DM-SGD, where both the gen-
eralization error and optimization error are considered. We
state comprehensive theoretical results of DM-SGD under
the convex, strongly convex and non-convex settings. We
elaborate on our contributions as below.
• Stability and generalization bounds of DM-SGD. We

conduct a comprehensive analysis of the algorithmic sta-
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bility inherent in DM-SGD and proceed to deduce its
associated generalization error bounds accordingly. Our
stability bounds are constructed to account for the phe-
nomenon of low training errors, a common characteristic
found in over-parameterized models. We also derive the
excess generalization error under ℓ2 on-average stabil-
ity, which extends the related work for C-SGD (Lei and
Ying 2020) to the DM-SGD setting. As far as our current
knowledge goes, this marks the initial stability analysis
for DM-SGD.

• Stability bounds of Zeroth-Order DM-SGD (ZO DM-
SGD). Under the assumption of Lipschitz and smooth
loss functions, we further establish the stability bounds
for DM-SGD in scenarios involving the intricate gradient
information.

Related Work
In this section, we review the related works: Decentralized
and distributed learning, and Stability and Generalization.

Decentralized and Distributed Learning
Decentralized algorithms are designed to operate in dis-
tributed systems without a central coordinating entity (Tsit-
siklis 1984; Tsitsiklis, Bertsekas, and Athans 1986; Nedic
and Ozdaglar 2009).

Emerging as a quintessential decentralized optimization
technique, D-SGD has found its way into various dimen-
sions of deep learning, undergoing extensions that encom-
pass an array of contexts, such as: minibatch setting (Lian
et al. 2017), local D-SGD (Li et al. 2019; Nadiradze et al.
2020), gradient tracking (Zhang and You 2019; Xin, Khan,
and Kar 2021), asynchronous settings (Sirb and Ye 2016;
Lian et al. 2018; Xu, Zhang, and Wang 2021; Nadiradze
et al. 2021) , data-heterogeneous (Tang et al. 2018; Vogels
et al. 2021), and markov chain sampling scenarios (Sun, Li,
and Wang 2023).

Stability and Generalization
In the realm of statistical learning theory (SLT), algorith-
mic stability stands as a cornerstone (Bousquet and Elisse-
eff 2002; Elisseeff et al. 2005; Shalev-Shwartz et al. 2010).
It serves as a vital gauge for measuring the sensitivity of
an algorithm to fluctuations caused by perturbations in the
training data (Hardt, Recht, and Singer 2016; Bousquet,
Klochkov, and Zhivotovskiy 2020).

Algorithmic stability has demonstrated remarkable effi-
cacy in establishing dimension-independent generalization
bounds for a broad range of learning frameworks. A foun-
dational framework for analyzing stability was formulated
by Bousquet and Elisseeff (2002), introducing the concepts
of uniform stability and hypothesis stability. This frame-
work paved the way for subsequent advancements, includ-
ing the extension of uniform stability measurements to an-
alyze stochastic algorithms (Elisseeff et al. 2005; Hardt,
Recht, and Singer 2016). It also served as inspiration for
various stability concepts such as uniform argument stabil-
ity (Liu et al. 2017), locally elastic stability (Deng, He, and
Su 2021), on-average loss stability (Lei, Ledent, and Kloft

2020; Lei, Liu, and Ying 2021), and on-average argument
stability (Shalev-Shwartz et al. 2010; Lei and Ying 2020;
Lei, Liu, and Ying 2021).

While the above studies do not consider the decentral-
ized and distributed settings, Sun, Li, and Wang (2021) pro-
posed stability and generalization bounds for D-SGD (AWC
version (5)) based on uniform stability. Zhu et al. (2022)
also studied the impact of communication topology on AWC
version with the on-average stability tool under the Hölder
smooth (Lei and Ying 2020) and convex condition. On the
other hand, Richards et al. (2020) introduces a generaliza-
tion bound of D-SGD (CAU version (4)) using the concepts
of algorithmic stability and Rademacher complexity in both
smooth and nonsmooth scenarios. Bars, Bellet, and Tom-
masi (2023) considers that the CAU version establishes the
same generalization bounds as the classical C-SGD (Hardt,
Recht, and Singer 2016).

It is worth noting that the difficulty in solving the stabil-
ity analysis of the decentralization problem lies in how to
deal with the mixing matrix. Sun, Li, and Wang (2021) used
the convergence relationship between the mixing matrix and
the identity matrix to solve the difficulty, Zhu et al. (2022)
trained the ResNet-18 model in the MINIST dataset, and
then obtained the assumption that the weight update differ-
ence satisfies the Gaussian distribution, and finally obtained
the result of ℓ2 stability bounds. Recently, inspired by the
work of Bars, Bellet, and Tommasi (2023), due to the differ-
ent update methods of D-SGD (CAU version), the problem
is relatively simple and there are more angles for analysis. To
better understand the difference of the above related work,
we summarize the main results in Table 2. In the final stage
of the current paper, we noticed relevant work (Lei, Sun,
and Liu 2023) on the generalization analysis of M-SGD and
Local-SGD, achieving linear acceleration to both bath size
and machine quantity.

Preliminaries
This section introduces the problem formulation of DM-
SGD and the definitions of algorithmic stability.

Distributed Learning
Consider a distributed system with m computing work-
ers to train a ML model under data parallelism. Denote
the training dataset as S := {S1, · · · , Sm}, where Sj =
{Zj1, · · · , Zjn} is the agent j’s training data that each sam-
ple is independently drawn from a probability measure D de-
fined over a sample space Z = X×Y . Suppose that X ⊂ Rd

represents an input space of dimension d and Y ⊂ R is an
output space.

Consider W as the designated parameter space for learn-
ing models. The objective of distributed learning is to seek a
model parameterized by w in such a way that the population
risk (or expected risk), denoted as

R(w) = Ez∼D[ℓ(w; z)], (1)

is minimized to the greatest extent possible. Here, ℓ : W ×
Z → [0,∞) represents a loss function.

Due to the unknown intrinsic distribution D , we can’t get
the minimizer of R(w) directly. As a practical substitute for
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Type Reference Algorithm CA GA

Centralized

Cotter et al. (2011) M-SGD ✓ ×
Dekel et al. (2012) M-SGD ✓ ×

Shamir and Srebro (2014) M-SGD ✓ ×
Woodworth, Patel, and Srebro (2020) M-SGD/Local-SGD ✓ ×

Decentralized Lian et al. (2017) SGD/M-SGD ✓ ×

Table 1: Summary of anlysis for Minibacth SGD and DM-SGD.(CA:Convergence Analysis; GA: Generalization Analysis; M-
SGD: Minibatch SGD; “✓”: YES; “×”: NO)

Type Reference Analysis Tool Algorithm L S C SC NC

AWC (5)

Sun, Li, and Wang (2021) Consensus Distance D-SGD ✓ ✓ ✓ ✓ ✓

Zhu et al. (2022) Gaussian Weight D-SGD × ✓[H] ✓ × ×
Deng et al. (2023) Consensus Distance AD-SGD ✓ ✓ ✓ ✓ ✓

Taheri and Thrampoulidis (2023) Consensus Distance D-GD × ✓ ✓ × ✓

CAU (4)
Bars, Bellet, and Tommasi (2023) Stripped Wij D-SGD ✓ ✓ ✓ ✓ ✓

Ours Stripped Wij DM-SGD ✓ ✓/× ✓ ✓ ✓

Table 2: Summary of related work.(“L” and “S” denote Lipschitz and smoothness properties respectively. “H” denotes to the
Hölder continuous smooth. “C,” “SC,” and “NC” correspond to convex, strongly convex, and nonconvex, respectively.)

algorithmic development, we frequently examine the associ-
ated empirical risk, which is defined as

RS(w) :=
1

m

m∑
j=1

RSj
(w) =

1

mn

m∑
j=1

n∑
i=1

ℓ(w; zji) (2)

For conciseness, let A(S) represent the model derived from
applying algorithm A (e.g., SGD or D-SGD) to dataset S.
While A(S) may show a small empirical risk during train-
ing by fitting examples perfectly, its empirical effectiveness
does not assure a similarly small population risk. So it is nat-
ural to study the difference between the population risk and
empirical risk

R(A(S))−RS(A(S)). (3)

We are also interested in studying the excess generalization
error R(A(S))−R(w⋆), where w⋆ ∈ argminR(w) is the
theoretically optimal solution. It can be decomposed as

E [R(A(S))−R(w⋆)]

=E [R(A(S))−RS(A(S))]︸ ︷︷ ︸
Generalization Error

+E [RS(A(S))−RS(w
⋆)]︸ ︷︷ ︸

Optimization Error

.

DM-SGD was proposed in Lian et al. (2017), which use
m machines to optimize problem (2) in batches according
to a decentralized communication graph G = (V,W ). The
vertex set V = {1, · · · ,m} denotes the set of m workers
and W = [wij ] ∈ Rm×m represents the communication
link between each nodes. It is important to note that matrix
W is a doubly stochastic matrix (Sinkhorn 1964; Sinkhorn

and Knopp 1967), and for a given graph, the mixing matrix
lacks uniqueness. We will also introduce the four conditions
of mixing matrix below.

Definition 1. (Mixing matrix/Gossip matrix) For any given
graph G = (V,W ), the mixing matrix W is defined on the
edge set E that satisfies: (1) If i ̸= j and (i, j) /∈ E , then
Wij = 0 (disconnected); otherwise, Wij > 0 (connected);
(2) W = WT (symmetry); (3) Wij ∈ [0, 1] ∀i, j ∈ m; (4)
1T
mW = W1m (Standard additivity);

Let λi represent the i-th largest eigenvalue of W , and in-
troduce a significant constant λ := max{|λ2|, |λm(W )|}.
The significance of the mixing matrix’s definition lies in the
fact that it results in 0 ≤ λ < 1. In the context of a connected
graph, if λ = 0, this indicates a fully-connected communi-
cation topology, where all elements of W are 1

m .

Decentralized Minibatch SGD
In this section, we first introduce the Decetralized Stochastic
Gradient Descent (D-SGD) algorithm (Lian et al. 2017). It
is broken down into the following steps:

1. Initialization: Each node initializes its model parameters
randomly or based on some initial configuration.

2. Gradient Computation: Nodes compute gradients us-
ing their local data (mini-batches) and the current model
parameters. These gradients represent the direction in
which the model should be adjusted to minimize the loss
function.
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3. Communication and Aggregation: Nodes communi-
cate their gradients directly with each other.

4. Parameter Update: After aggregation, each node up-
dates its local model parameters using the aggregated
gradient information. This step is similar to the update
step in traditional SGD.

5. Output: The average of the last updated parameters of
each machine.

Remark 1. In Lian et al. (2017) mentions that, the Step
3 and Step 4 can be exchanged. The above updated strat-
egy is shown to compute local stochastic gradients and ma-
chine communication in parallel (communication time can
be completely hidden if communication time is less than
computation time). The replacement version can ensure the
interaction of more gradient information. We will show the
specific two update formulas as follows.
• Type I (Communicate After Update [CAU])

wt+1
j =

m∑
k=1

Wjk

(
wt

k − ηt∇ℓ(wt
k;Zk,it,k)

)
(4)

• Type II (Adapt while Communicate [AWC])

wt+1
j =

m∑
k=1

Wjkw
t
k − ηt∇ℓ(wt

j ;Zj,it,j ) (5)

Inspiring work by Lian et al. (2017) points out that the
computed stochastic gradients can be replaced by mini-batch
stochastic gradients without compromising their theoretical
results.

At the t-th iteration, minibatch SGD randomly draws
(with replacement) b numbers it,1, . . . , it,b independently
from the uniform distribution over [n], where b ∈ [n] is the
batch size. Then it updates {wt} by

w
t+ 1

2
j = wt

j −
ηt
b

b∑
r=1

∇ℓ(wt
j ;Zj,it,r ), (6)

where {ηt} is a positive step size sequence. If b = 1, equa-
tion (6) returns to the SGD. However, when b = n, the afore-
mentioned approach remains distinct from Gradient Descent
due to the incorporation of selection with replacement. We
will show the DM-SGD with replacement (WR) algorithm
flow chart in Algorithm 1.

Algorithm 1: Decentralized Minibatch Stochastic Gradient
Descent (DM-SGD)

Require: Initialize w1
j = w1, stepsizes {ηt}Tt=1,weight

matrix W , batch size b and iterations T .
1: for t = 1, 2, · · · , T do
2: for j = 1, 2, · · · ,m do
3: draw(with replacement) b numbers it,1, · · · , it,b

uniformly over local data of the j-th worker
4: w

t+ 1
2

j = wt
j −

ηt

b

∑b
r=1 ∇ℓ(wt

j ;Zj,it,r )

5: wt+1
j =

∑m
k=1 Wjkw

t+ 1
2

j

6: end for
7: end for

Output:
∑m

j=1 w
T+1
j

Algorithmic Stability
Algorithmic stability is a pivotal concept in statistical learn-
ing, quantifying how algorithms respond to changes in train-
ing data. This paper focuses on analyzing on-average ar-
gument stability techniques (Shalev-Shwartz et al. 2010;
Kuzborskij and Lampert 2018; Lei and Ying 2020; Lei, Liu,
and Ying 2021).

Unlike uniform stability (Bousquet and Elisseeff 2002;
Hardt, Recht, and Singer 2016; Bousquet, Klochkov, and
Zhivotovskiy 2020), which hinges on loss function shifts,
on-average argument evaluates stability by observing model
A(S) changes.
Definition 2. (On-average argument/model stability) Let
S = (S1, · · · , Sm) with Sj = {Zj1, · · · , Zjn} and S̃ =

(S̃1, · · · , S̃m) with S̃j = {Z̃j1, · · · , Z̃jn} be two indepen-
dent copies drawn from the same distribution D. Assume
that Ski is the i-th sample in the k-th worker’s training set
becomes Z̃ki for any i ∈ [n], k ∈ [m]. Let wk and w̃k rep-
resent the weights assigned to the k-th worker through the
stochastic algorithm A based on S and Ski respectively.

A is ℓ1 on-average argument ϵ-stability for all training
sets S and Ski if

1

mn

m∑
k=1

n∑
i=1

E [∥wk − w̃k∥2] ≤ ϵ, (7)

and ℓ2 on-average argument ϵ-stability if

1

mn

m∑
k=1

n∑
i=1

E
[
∥wk − w̃k∥22

]
≤ ϵ2. (8)

Lemma 1. (Generalization error via on-average stability.
(Lei and Ying 2020) [Theorem 2]). Let S and Ski be con-
structed as the definition of on-average argument stability.
Let γ > 0.
• Let A be ℓ1 on-average argument ϵ-stable and Assump-

tion 1 hold. Then
|ES,A [R(A(S))−RS(A(S))] | ≤ Lϵ.

• Let A be ℓ2 on-average argument ϵ-stable and suppose
that ℓ(w; z) is non-negative and β-smooth. Then

ES,A [R(A(S))−RS(A(S))] ≤ β

γ
ES,A [RS(A(S))]

+
β + γ

2mn

m∑
k=1

n∑
i=1

ES,S̃,A

[
∥A(Ski)−A(S)∥22

]
.

(9)

Main Results
This section presents our main results on the generalization
bounds of DM-SGD algorithms based on on-average stabil-
ity. In order to constrain the gradient update process of DM-
SGD, it becomes essential to make some assumptions about
the characteristics of the loss functions.
Definition 3. ℓ is µ-strongly convex if for any z and u, v ∈
W ,

ℓ(u; z) ≥ ℓ(v; z) + ⟨∇ℓ(v; z), u− v⟩+ µ

2
∥u− v∥22.

Specially, ℓ(·; z) is convex if µ = 0.
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Indeed, it’s evident that a strongly convex loss function
must possess convexity, but the reverse might not hold true.
And convexity plays a pivotal role in various optimization
analyses of learning algorithms (Hardt, Recht, and Singer
2016; Harvey et al. 2019).
Assumption 1. For any z and u, v ∈ W , ℓ is L-Lipschitz if

∥ℓ(u; z)− ℓ(v; z)∥2 ≤ L∥u− v∥2.

The mentioned inequality is synonymous with the con-
straint on the gradient of ℓ, denoted as |∇ℓ(·; z)|2 ≤ L.
Assumption 2. For any z and u, v ∈ W , ℓ is β-smooth if

∥∇ℓ(u; z)−∇ℓ(v; z)∥2 ≤ β∥u− v∥2.

Remark 2. Assumptions 1 and 2 are common stability anal-
ysis assumptions, where Assumption 1 can be relaxed to
avoid (Lei and Ying 2020; Nikolakakis et al. 2022b), and
more methods are to use the self-bounding property of the
“non-negative+smooth” function to scale to the function
value itself (Srebro, Sridharan, and Tewari 2010). Follow-
ing the steps in (Hardt, Recht, and Singer 2016; Lei, Ledent,
and Kloft 2020), we can verify that the gradient update is
non-expansive when ℓ is convex and β-smooth.

Now we are ready to present the generalization bounds of
DM-SGD. Due to the space limitations, please refer to the
supplementary material B for detailed theoretical proofs of
the convex case.

Convex Case
Theorem 1. (Stability bounds) Suppose for any z ∈ Z ,
ℓ (w; z) is non-negative, convex and β-smooth with respect
to (w.r.t) w ∈ W . Without loss of generality, let S and Ski be
constructed in Definition 2. Let wT+1

k and w̃T+1
k be the T -

th iteration on the k-th worker produced by DM-SGD (WR)
based S and Ski, respectively. If ηt ≤ 2/β and p > 0, then
with T iterations we have

1

mn

m∑
k=1

n∑
i=1

E
[∥∥wT+1

k − w̃T+1
k

∥∥
2

]
≤ 2

√
2β

mn

T∑
t=1

ηt
√
E [RS(wt)]

and

1

mn

m∑
k=1

n∑
i=1

E
[∥∥wT+1

k − w̃T+1
k

∥∥2
2

]
≤(1 +

1

p
)
8βλ2(n+ b− 1)

n2b

T∑
t=1

η2t (1 + p)T−tE
[
RS(w

t)
]
.

Remark 3. The key to solving the decentralized SGD prob-
lem is how to deal with the mixing matrix, and then trans-
form it into a common update iterative analysis. Motivate by
Bars, Bellet, and Tommasi (2023), we diversify its decom-
position technique to isolate the mixing matrix and further
transform it into the regular Minibacth SGD case.

The conventional SGD stability analysis process (Hardt,
Recht, and Singer 2016; Lei and Ying 2020; Bassily et al.

2020) considers whether to select abnormal samples or not,
and then considers the results according to the situation.
This argument does not apply to mini-batch SGD with re-
placement, since we can draw a specific example multiple
times. We solve this difficulty by introducing the concept of
binomial distribution, turning the original b samples of a
batch into counts of all sample traversals (Lei, Sun, and Liu
2023). Our ℓ1 results yield a similar generalization bound
for DM-SGD as the one derived by Lei and Ying (2020) for
C-SGD. We also elaborate the various stability bounds un-
der convex case in Table 3 for comparison.

Remark 4. Compared with Bars, Bellet, and Tommasi
(2023), we relax the Lipschitz assumptions instead of the
non-negative condition. We obtain that this stability bound
includes the empirical risk of wt, and then the empirical risk
(training error) can be minimized by the optimization algo-
rithm. It is inherent that E [RS(w

t)] can be guaranteed to
be much smaller than the Lipschitz constant (Assumption 1
holds) under certain instances (Lei and Ying 2020).

We also derive generalization results for DM-SGD with-
out replacement (WOR). Unlike replacement case, the non-
replacement framework ensures that anomalous samples are
selected only once rather than multiple times.

Proposition 1. Suppose ℓ(w; z) is convex and Assumption
1 holds.

• (Smooth case) If ℓ(w; z) is β-smooth and ηt ≤ 2/β, then,
for DM-SGD (WOR) with T iterations, we have

1

mn

m∑
k=1

n∑
i=1

E
[∥∥wT+1

k − w̃T+1
k

∥∥
2

]
≤ 2L

mn

T∑
t=1

ηt.

• (Non-smooth case) A is on-average ϵ-argument stable
with

1

mn

m∑
k=1

n∑
i=1

E
[∥∥wT+1

k − w̃T+1
k

∥∥
2

]

≤ 2L

m

√√√√ T∑
t=1

η2t +
4L

mn

T−1∑
t=1

ηt+1.

Remark 5. Extending the analysis framework of the work
(Wang et al. 2022), we divide the analysis process into two
cases i ∈ {it,r, r = 1, · · · , b} and i /∈ {it,r, r = 1, · · · , b},
and then get a similar boundary.

Remark 6. We briefly describe the development of stabil-
ity analysis for nonsmooth problems in SGD. Lei and Ying
(2020) put forward the assumption of Hölder continuity and
obtained the first non-smooth stability analysis. Then Bass-
ily et al. (2020) proposed sharper upper and lower bounds
for SGD under Lipschitz and nonsmooth convex case. Re-
cently, based on Bassily’s analysis framework, Wang et al.
(2022) added the recursive sequence lemma (Schmidt, Roux,
and Bach 2011) to get better results. Their works paved the
way to achieve more intricate and refined stability analysis
outcomes.
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Type Reference Algorithmic Stability Bounds

C-SGD

Hardt, Recht, and Singer (2016) Uniform Stability O
(∑T

t=1 ηt/n
)

Lei and Ying (2020)
ℓ1 On-average Stability O

(
1
n

∑T
t=1 ηtE

[√
RS(wt)

])
ℓ2 On-average Stability O

(
1
n

∑T
t=1 η

2
tE [RS(w

t)]
)

DM-SGD
(WR) Ours (Theorem 1)

ℓ1 On-average Stability O
(

1
mn

∑T
t=1 ηtE

[√
RS(wt)

])
ℓ2 On-average Stability O

(
1
nb

∑T
t=1 η

2
tE [RS(w

t)]
)

D-SGD
Sun, Li, and Wang (2021) Uniform Stability O

(
L2 ∑T

t=1 ηt

mn + ηT
1−λ

)
Bars, Bellet, and Tommasi (2023) ℓ1 On-average Stability O

(∑T
t=1 ηt/mn

)
Table 3: Summary of stability-based generalization bounds under convex case.

Theorem 2. (Excess generalization bounds) Assume that
for any z ∈ Z , ℓ (w; z) is non-negative, convex and β-
smooth w.r.t w ∈ W . Assuming wt = 1

m

∑m
k=1 w

t
k is gen-

erated through DM-SGD (WR) with step sizes that decrease
over time, and given ηt ≤ 1

2β and γ > 1, there holds

T∑
t=1

ηtES,A[R(wt)−R(w⋆)] ≤ β

γ

T∑
t=1

ηt[R(w⋆)]

+(1 +
β

γ
)

[
(1/2 + βη1)∥w∥22 + 2β

T∑
t=1

η2tR(w⋆)

]

+

{
4(β + γ)(1 + T )βλ2e

nb
(1 +

b− 1

n
)

}
×{

T∑
t=1

ηt(η1 ∥w⋆∥22 + 2

T∑
t=1

η2tR(w⋆))

}
.

Furthermore, if step size ηt = η = c/
√
T ≤ 1

2β and T ≍ n,
then

ES,A[R(w̄T )−R(w⋆)] = O
(
n+ b

n2b
+

R(w⋆)√
n

)
.

Remark 7. When R(w⋆) = 0 and T ≍ n, we can get

ES,A[R(w̄T )−R(w⋆)] = O
(
n+ b

n2b

)
.

The obtained rate of O(n−1) is commonly deemed suffi-
ciently tight in statistical learning theory (Shalev-Shwartz
et al. 2010; Lei and Ying 2020).

Strongly Convex Case
We now consider strongly convex functions. Supplementary
Material C provides the detailed proof of the following the-
orem.

Theorem 3. Assume that ℓ (w; z) is non-negative, µ-
strongly convex and β-smooth w.r.t w ∈ W . Then for DM-

SGD (WR) with T iterations, we have

1

mn

m∑
k=1

n∑
i=1

E
[∥∥wT+1

k − w̃T+1
k

∥∥
2

]
≤ 2

√
2β

mn

T∑
t=1

ηt
√

E [RS(wt)]
T∏

t̃=t+1

(
1− ηt̃µ

2

)
.

and

1

mn

m∑
k=1

n∑
i=1

E
[∥∥wT+1

k − w̃T+1
k

∥∥2
2

]
≤
{
(1 + 1/p)

8βλ2

nb

(
1 +

b− 1

n

)}
×

T∑
t=1

η2t [(1 + p)]T−tE
[
RS(w

t)
] T∏
t̃=t+1

(
1− ηt̃µ

2

) .

Remark 8. The difference between the update analysis pro-
cess under strongly convex and convex condition lies in the
expansion operator. Under η < 1/β, the expansion operator
under strongly convexity is 1− ηµ/2.

Proposition 2. Suppose that ℓ is is non-negative, µ-strongly
convex L-Lipschitz and β-smooth w.r.t w ∈ W . Then for
DM-SGD (WOR) with T iterations, we have

1

mn

m∑
k=1

n∑
i=1

E
[∥∥wT+1

k − w̃T+1
k

∥∥
2

]
≤ 2L

mn

T∑
t=1

ηt

T∏
t̃=t+1

(
1− ηt̃µ

2

)
.

Furthermore, with a fixed step size ηt = η ≤ 1/β, we can
obtain

1

mn

m∑
k=1

n∑
i=1

E
[∥∥wT+1

k − w̃T+1
k

∥∥
2

]
≤ 4L

µmn
.
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Nonconvex Case
In this subsection, we provide error bound for non-convex
case which is more challenging and important. The proof is
deferred to Supplementary Material D.
Theorem 4. (Stability bounds) Assume that ℓ (w; z) is non-
negative and β-smooth w.r.t w ∈ W . Then for DM-SGD
(WR) with T iterations, we have

1

mn

m∑
k=1

n∑
i=1

E
[∥∥wT+1

k − w̃T+1
k

∥∥
2

]
≤2

√
2β

mn

T∑
t=1

ηt
√
E [RS(wt)]

T∏
t̃=t+1

(1 +
ηt̃(n− 1)

n
β)

and

1

mn

m∑
k=1

n∑
i=1

E
[∥∥wT+1

k − w̃T+1
k

∥∥2
2

]
≤
{
(1 + 1/p)

8βλ2

nb

(
1 +

b− 1

n

)}
×

T∑
t=1

η2t [(1 + p)]T−tE
[
RS(w

t)
] T∏
t̃=t+1

(1 + ηt̃(β)
2

 .

Remark 9. Without the convexity assumption, we can’t use
the lemma of the expansion factor, need to divide the gradi-
ent part into those with and without abnormal points, and
use the smooth condition for the part without. Notably, our
ℓ1 results match the stability error derived from Nikolakakis
et al. (2022b) for full-batch GD in the nonconvex case, as
we transform Minibatch SGD into a full-sample update that
incorporates binomial distributed variables.
Proposition 3. Suppose that ℓ(w; z) is an L-Lipschitz and
β-smooth loss function for any z. Then for DM-SGD (WOR)
with T iterations, we have

1

mn

m∑
k=1

n∑
i=1

E
[∥∥wT+1

k − w̃T+1
k

∥∥
2

]
≤ 2L

mn

T∑
t=1

ηt

T∏
t̃=t+1

(1 + ηt̃β) .

Extension to Zeroth-Order Oracle
In this section, we consider the Zeroth-Order (ZO) version
of DM-SGD (the gradient may not be available in this case).
The first-order information is usually obtained by using one
point (Bach and Perchet 2016)/two or coordinate points
(Nesterov and Spokoiny 2017; Duchi et al. 2015; Shamir
2017) feedback strategy. Zero-order optimization does not
require the gradient we usually seek, but it defines a “substi-
tute” based on sampling and difference, which we call “zero-
order gradient” for the time being.

We consider the two-points approximation method and
use the following formula to estimate ∇ℓ(w; z),

∆ℓ (w; z) :=
1

Q

Q∑
q=1

ℓ(w + δUqt; z)− ℓ(w; z)

δ
Uqt, (10)

where Uqt ∼ N (0, Id) is a standard normal random vector,
Q is the number of evaluations, and δ > 0 is a small pa-
rameter. Clearly, when Q → ∞ and δ → 0, the “substitute”
∆ℓ(w; z) becomes the ∇ℓ(w; z). We replace the fourth step
of Algorithm 1 with the following iterative method,

w
t+ 1

2
j = wt

j −
ηt
b

b∑
r=1

∆ℓ(wt
j ;Zj,it,r ), (11)

and then get ZO DM-SGD algorithm.
The stability bounds of ZO DM-SGD with convex and

non-convex setting are presented in the following proposi-
tions, which driven by the recent analysis in the black-box
learning (Nikolakakis et al. 2022a). Detailed proofs can be
found in Supplementary Material E.
Corollary 1. Assume that the loss function ℓ (w; z) is con-
vex, L-Lipschitz and β-smooth for any z ∈ Z . Consider
the ZO DM-SGD (WR) algorithm with T iterations and
ηt ≤ 2/β, we have

1

mn

m∑
k=1

n∑
i=1

E
[∥∥wT+1

k − w̃T+1
k

∥∥
2

]
≤ 2L

mn

(
1 + ζdQ

) T∑
t=1

ηt

T∏
t̃=t+1

(
1 + ηt̃βζ

d
Q

)
,

where ζdQ =
√

3d−1
Q .

Corollary 2. Suppose that the loss function ℓ (w; z) is L-
Lipschitz and β-smooth for any z ∈ Z . Consider the ZO
DM-SGD (WR) with T iterations, then

1

mn

m∑
k=1

n∑
i=1

E
[∥∥wT+1

k − w̃T+1
k

∥∥
2

]
≤ 2L

mn

(
1 + ζdQ

) T∑
t=1

ηt

T∏
t̃=t+1

(
1 +

ηt̃β(n− 1)

n

(
1 + ζdQ

))
.

Remark 10. Here only the first-order Taylor expansion is
considered for simplicity. Following the strategies in Niko-
lakakis et al. (2022a), similar results can also be obtained
for the second-order approximation.

Conclusion
This paper presented the analysis on the stability and gen-
eralization of the DM-SGD. By developing analysis tech-
niques associated with algorithmic stability, we established
on-average stability bounds for DM-SGD with convex,
strongly convex and nonconvex optimization objectives, re-
spectively. The derived convergence rates are comparable
with the existing results for D-SGD (Sun, Li, and Wang
2021; Bars, Bellet, and Tommasi 2023). Additionally, the
excess generalization error is bounded in terms of the ℓ2 on-
average stability.

In the future, delving deeper into stability-based general-
ization bounds for DM-SGD in the realm of non-i.i.d. sam-
pling, such as Markov chain sampling (Sun, Sun, and Yin
2018; Wang et al. 2022; Sun, Li, and Wang 2023), would be
an intriguing avenue for exploration.
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