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Abstract

Generative Adversarial Imitation Learning (GAIL) stands
as a cornerstone approach in imitation learning. This paper
investigates the gradient explosion in two types of GAIL:
GAIL with deterministic policy (DE-GAIL) and GAIL with
stochastic policy (ST-GAIL). We begin with the observation
that the training can be highly unstable for DE-GAIL at the
beginning of the training phase and end up divergence. Con-
versely, the ST-GAIL training trajectory remains consistent,
reliably converging. To shed light on these disparities, we
provide an explanation from a theoretical perspective. By es-
tablishing a probabilistic lower bound for GAIL, we demon-
strate that gradient explosion is an inevitable outcome for
DE-GAIL due to occasionally large expert-imitator policy
disparity, whereas ST-GAIL does not have the issue with it.
To substantiate our assertion, we illustrate how modifications
in the reward function can mitigate the gradient explosion
challenge. Finally, we propose CREDO, a simple yet effec-
tive strategy that clips the reward function during the training
phase, allowing the GAIL to enjoy high data efficiency and
stable trainability.

Introduction
Imitation learning trains a policy directly from expert
demonstrations without reward signals (Ng, Russell et al.
2000; Syed and Schapire 2007; Ho and Ermon 2016). It
has been broadly studied under the twin umbrellas of behav-
ioral cloning (Pomerleau 1991) and inverse reinforcement
learning (IRL) (Ziebart et al. 2008). Generative adversar-
ial imitation learning (GAIL) (Ho and Ermon 2016), estab-
lished by the policy training of trust region policy optimiza-
tion (Schulman et al. 2015), plugs the inspiration of gen-
erative adversarial networks (Goodfellow et al. 2014) into
the maximum entropy IRL. The discriminator in GAIL aims
to distinguish whether a state-action pair comes from the
expert demonstration or is generated by the agent. Mean-
while, the learned policy generates interaction data to con-
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fuse the discriminator. GAIL is promising for many real-
world scenarios where designing reward functions to learn
the optimal control policies requires significant effort. It has
made remarkable achievements in physical-world tasks, i.e.,
robot manipulation (Jabri 2021), mobile robot navigating
(Tai et al. 2018), commodities search (Shi et al. 2019) and
endovascular catheterization (Chi et al. 2020).

The GAIL can be bifurcated into two genres: stochas-
tic policy algorithms and deterministic policy algorithms,
namely DE-GAIL (Kostrikov et al. 2019; Zuo et al. 2020)
and ST-GAIL (Ho and Ermon 2016; Zhou et al. 2022).
The ST-GAIL with stochastic policy guarantees global con-
vergence in high-dimensional environments, outperform-
ing traditional Inverse Reinforcement Learning (IRL) meth-
ods (Ng, Russell et al. 2000; Ziebart et al. 2008; Boular-
ias, Kober, and Peters 2011). Nevertheless, its application in
real-world scenarios is limited due to low sample efficiency
and excessive training times (Zuo et al. 2020). On the con-
trary, DE-GAIL has become a preferred approach due to its
exceptional data efficiency. Typically, it outpaces GAIL with
stochastic policy by a factor of more than ten, significantly
accelerating the learning process.

However, while the DE-GAIL is much more data-efficient
than ST-GAIL, it is not flawless: we observe a significant
likelihood of generating near-zero rewards from the very
beginning of the training stage. To elucidate this, we car-
ried out experiments on three environments in Mujuco with
multiple DE-GAIL and ST-GAIL algorithms. Among 11 ex-
periments under uniform training settings, we observed DE-
GAIL method frequently failed during the training phase.
The average divergence rate is over 36% (Details can be
found in Fig. 2).

Why does DE-GAIL have such a high probability of di-
verging? To shed light on this question, we prove a proba-
bilistic lower bound that describes the gradient explosion in
DE-GAIL. Our proof is built upon the policy disparity be-
tween expert demonstration and imitative action. In short,
if the agent fails to mimic the expert’s action, the expert
has a large reward; then, the gradient could explode dur-
ing training. We verify our conclusion by showing a sim-
ple manipulation of the reward function, i.e., switching to
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Figure 1: The overview of our analysis. Theorem 1 and Corollary 1 develop the probabilistic lower bound of DE-GAIL to
quantify the gradient explosion. Proposition 1 connects the gradient explosion with the reward function. We further present a
reward clipping technique to relieve the gradient explosion issue in DE-GAIL.

adversarial inverse reinforcement learning (AIRL) (Fu, Luo,
and Levine 2018), which can alleviate the gradient explosion
issue in GAIL. Nevertheless, since the DE-GAIL is much
more data-efficient than ST-GAIL, we seek to resolve this
issue by proposing CREDO. This reward clipping technique
is both empirically effective and theoretically sound.

Our overall framework for analyzing gradient explosion
in GAIL is shown in Fig. 1. In summary, our contributions
are the follows:

• We conduct a comprehensive empirical study to show the
fact that DE-GAIL is training unstable yet converges fast.
On the other hand, the ST-GAIL is data inefficient yet
ensures convergence.

• We develop a series of theoretical proofs to support our
observation and conclude that reward function is the
cause of the gradient explosion in DE-GAIL.

• We present a simple technique called CREDO which
clips the reward function during training to relieve the
gradient explosion problem in DE-GAIL.

Evidence of Gradient Explosion in GAIL
In this section, we perform a comprehensive study to ex-
amine the gradient explosion issue in GAIL. We repro-
duced three environments in Mujoco (Todorov, Erez, and
Tassa 2012), Hopper-v2, HalfCheetah-v2, and Walker2d-
v2, following the setup in two-stage stochastic gradient
(TSSG) (Zhou et al. 2022). The expert trajectories were gen-
erated via the soft actor-critic (SAC) agent (Haarnoja et al.
2018). The expert demonstration has one million data points
with a standard deviation of 0.01. We repeat our experiments

11 times across all environments, maintaining a consistent
training setting, except for the number of random seeds.

Regarding the network architecture, we employ two-
layer networks designed to approximate the kernel func-
tion (Arora et al. 2019) to train GAIL. The reward function
is defined as r(s, a) = − log(1−D(s, a)), which is referred
to as Probability Logarithm Reward (PLR). Our evaluations
encompass three variants of the DE-GAIL and two ST-GAIL
methods. The DE-GAIL methods include deep determin-
istic policy gradient (Lillicrap et al. 2015) (DDPG-GAIL),
twin delayed deep deterministic policy gradient (Fujimoto,
Hoof, and Meger 2018) (TD3-GAIL), and softmax deep
double deterministic policy gradients (Pan, Cai, and Huang
2020) (SD3-GAIL). The first two are recognized and widely
adopted DE-GAIL algorithms, whereas SD3-GAIL repre-
sents a more recent and refined approach. For ST-GAIL, we
utilize proximal policy optimization (Schulman et al. 2017)
(PPO)-GAIL (Chen et al. 2020) and TSSG (Zhou et al.
2022), a method that integrate SAC into GAIL.

As shown in Fig. 2, we observed that all three DE-GAIL
algorithms could potentially fail during training, irrespec-
tive of how advanced they are. This pattern is consistently
seen across all three tasks. It illustrates that the training of
DE-GAIL methods can be particularly unstable at the initial
stages, reaching a point from which recovery becomes im-
possible as training progresses. This behavior sharply con-
trasts with the training curve of successful experiments,
which, on the other hand, converge quickly and yield high
returns, thus highlighting the solid data-efficiency charac-
teristic of the DE-GAIL approach. Turning our attention to
ST-GAIL, we noted that even though its convergence speed
lags behind DE-GAIL, all experiments exhibited consistent
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and successful convergence.
In summary, our observations reveal the following in-

sights:

• The initial phase of DE-GAIL training can be remarkably
unstable. However, once convergence is attained, it is of-
ten swift and results in higher return values, potentially
leading to an elevated success rate.

• Conversely, ST-GAIL exhibits stability during the initial
training process, yet its convergence is approximately ten
times slower and it tends to achieve lower return values
compared to advanced DE-GAIL algorithms.

These phenomena prompt us to delve into the root causes
underpinning their differences. In the subsequent section, we
offer a theoretical framework to support and deepen our un-
derstanding of these observations.

Gradients Explosion in GAIL: A Probability
View

In this section, we will first introduce the necessary back-
ground information and notation for the forthcoming proof.
Then, we provide a detailed analysis from a theoretical
standpoint along with empirical evidence to unveil the mys-
tery of gradient explosion in GAIL.

Background and Annotation

Markov Decision Process A discounted Markov Decision
Process (MDP) in the conventional Reinforcement Learn-
ing (RL) context is defined by a quintuple (S,A, r, pM , γ).
Here, S and A represent the finite state space and action
space respectively. The reward function, r(s, a) : S × A →
R, denotes the reward obtained from executing action a ∈ A
in state s ∈ S . The transition distribution is represented by
pM (s′|s, a) : S × A × S → [0, 1], and γ is the discount
factor.

A stochastic policy, denoted as π(a|s), can be charac-
terized as a probability function mapping a state s ∈ S
to a distribution of action a ∈ A, expressed formally as
S × A → [0, 1]. In contrast, a deterministic policy, π(s),
is defined as a direct mapping from a state s ∈ S to a corre-
sponding action a ∈ A, formally written as S → A.

The primary objective of Reinforcement Learning (RL)
is to maximize the expected reward-to-go, represented as
η(π) = Eπ [

∑∞
t=0 γ

tr (st, at) |s0, a0]. Induced by a pol-
icy π, the discounted stationary state distribution is defined
as dπ(s) = (1 − γ)

∑∞
t=0 γ

tPr(st = s;π). Similarly, the
discounted stationary state-action distribution is given by
ρπ(s, a) = (1− γ)

∑∞
t=0 γ

tPr(st = s, at = a;π). This dis-
tribution measures the cumulative “frequency” with which a
state-action pair is visited under the policy π.

Let P ∈ R|S||A|×|S|
+ denote the transition matrix where

Psa,s′ = pM (s′ | s, a), π ∈ R|S||A|×1
+ denote the policy

matrix where (π)sa = π(a|s), and πsi ∈ R|A|×1
+ the policy

for the state si. Define the expanded matrix of π as

Π =

 π⊤
s1 0

. . .
0 π⊤

s|S|

 ∈ R|S|×|S||A|
+ . (1)

We use πh to denote a parameterized policy matrix with pa-
rameters h, then the policy Jacobian matrix Hh ∈ R1×|S||A|

is (Hh)sa = ∇h (πh)sa = ∇hπh(a|s). The state-action dis-
tribution matrix and the state distribution matrix are ρh ∈
R|S∥A|×1

+ and dh ∈ R|S|×1
+ , respectively, where (ρh)sa =

ρπh(s, a) and (dh)s = dπh(s). More precisely, dh = Tρh,
here T is the marginalization matrix

T =

 1⊤
|A| 0

. . .
0 1⊤

|A|

 ∈ R|S|×|S||A|, (2)

where 1 is the vector of all ones and the subscript represents
its dimensionality.

Generative Adversarial Imitation Learning (GAIL)
The description of GAIL can be found in Supplementary
Material D. Here, we define the discriminator D(s, a), the
imitative policy π, and the expert policy πE. Given a state,
the discriminator quantifies the distributional disparity be-
tween the expert’s and imitative policies. This disparity can
be interpreted as a reward for the agent. Consequently, the
optimization problem for GAIL can be formulated as fol-
lows:

min
π

max
D∈(0,1)S×A

E(s,a)∼ρπE [log(D(s, a))]

+ E(s,a)∼ρπ [log(1−D(s, a))], (3)

where the policy π mimics the expert policy via the reward
function r(s, a) = − log(1 −D(s, a)). When the discrimi-
nator reaches its optimum,

D∗(s, a) = ρπE(s, a)/(ρπE(s, a) + ρπ(s, a)), (4)

the optimization objective for the learned policy is formal-
ized as minimizing the discrepancy in the state-action dis-
tribution between the imitated policy and the expert pol-
icy. This discrepancy is quantified using the Jensen-Shannon
(JS) divergence,

min
π

DJS(ρ
π(s, a), ρπE(s, a)) :=

1

2
DKL

(
ρπ,

ρπ + ρπE

2

)
+

1

2
DKL

(
ρπE ,

ρπ + ρπE

2

)
. (5)

Exploding Gradients in GAIL
We employ multivariate Gaussian policy to approximate de-
terministic policy (Paternain et al. 2020; Lever and Stafford
2015), where the learned policy πh is defined as follow:

πh(a|s) =
1√

det(2πΣ)
exp

−(a− h(s))⊤Σ−1(a− h(s))

2
,

(6)
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Figure 2: We conduct 11 experiments spread across three environments, with three DE-GAIL and ST-GAIL methods. We
observe a clear tendency for DE-GAIL algorithms to struggle to reach convergence during the training phase in multiple
experiments. In comparison, the training procedure utilizing the ST-GAIL method showcased significantly higher stability.

The above equation is parameterized by deterministic func-
tions h : S → A and covariance matrix Σ. The function
h(·) is an element of reproducing kernel Hilbert space Hκ,
h(·) =

∑
i κ(si, ·)ai ∈ Hκ, where κ(si, sj) is the kernel

function, si ∈ S and ai ∈ A. Note that πh(a|s) can be
regarded as an approximation to the Dirac’s impulse via co-
variance matrix approaching zero, for instance,

lim
Σ→0

πh(a|s) = δ(a− h(s)). (7)

Eq. (7) means that when the covariance Σ → 0, the stochas-
tic policy πh(a|s) approaches the deterministic policy h(s).
Therefore, we can substitute π with πh and rewrite the opti-
mization problem of GAIL under πh is

min
πh

max
D

E(s,a)∼ρπE [log(D(s, a))]

+ E(s,a)∼ρπh [log(1−D(s, a))], (8)

the optimal discriminator is

D∗(s, a) = ρπE(s, a)/(ρπE(s, a) + ρπh(s, a)), (9)

and the policy optimization objective is

min
πh

DJS(ρ
πh(s, a), ρπE(s, a)). (10)

Before jumping into our main result, we need the following
definition.

Definition 1 (Expert-Imitator Policy Disparity) Given
the state st at time t, at and h(st) are the actions induced
by the expert policy and the imitated policy, respectively. If
∥h(st) − at∥2 ≥ C∥Σ∥2 for any C > 0, we say that there
exist policy disparity between the expert and the imitator.
Otherwise, the (st, h(st)) perfectly matches the (st, at).

Here, we utilize an event

Ξ = {(st, h(st)) : ∥h(st)− at∥2 ≥ C∥Σ∥2 for any C > 0}
(11)

to characterize the expert-imitator policy disparity. For con-
venience, we will use policy disparity to denote such behav-
ior. Now we present the following theorem on the probabil-
ity of exploding gradients in DE-GAIL.
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Theorem 1 Let πh(·|s) be the Gaussian stochastic policy
with mean h(s) and covariance Σ. When the discriminator
achieves its optimum D∗(s, a) in Eq. (9), the gradient esti-
mator of the policy loss with respect to the policy’s parame-
ter h satisfies ∥∇̂hDJS(ρ

πh , ρπE)∥2 → ∞ with a probabil-
ity of at least Pr(∥Σ−1(at − h(st))∥2 ≥ C for any C > 0)
as Σ → 0, where

∇̂hDJS(ρ
πh , ρπE) =

Hh∆
(
T⊤dh

)
(I− γPΠh)

−1est,at

2ρπE(st, at)
·

log
2ρπh(st, at)

ρπh(st, at) + ρπE(st, at)
,

and (Hh)sa = πh(a|s)κ(s, ·)Σ−1(a − h(s)), ∆(·) maps a
vector to a diagonal matrix with its elements on the main
diagonal, est,at

= [0, · · · , 1st,at
, · · · , 0]⊤ ∈ R|S||A|×1.

Proof See Supplementary Material A.1 in our arxiv version
(Wang et al. 2023).

The result establishes the probability of exploding gradi-
ents in DE-GAIL. Due to the compatibility of norms, we
have

Pr(∥Σ−1(at − h(st))∥2 ≥ C for any C > 0)

≥ Pr(∥at − h(st)∥2 ≥ C∥Σ∥2 for any C > 0)

= Pr(Ξ). (12)

Therefore, the probability of policy disparity Pr(Ξ) consti-
tutes a probabilistic lower bound of exploding gradients in
DE-GAIL. Note that Pr(Ξ) is nontrivial as Σ → 0.

Remark 1 Theorem 1 implies that when the discriminator
achieves its optimal state, DE-GAIL will suffer from explod-
ing gradients with the probabilistic lower bound Pr(Ξ) > 0.

In contrast, for a Gaussian stochastic policy (fixed Σ), we
have that ∥∇̂hDJS(ρ

πh , ρπE)∥2 is bounded referring to the
proof strategy of Theorem 1. Thus, when the discriminator
achieves its optimal state, the Gaussian stochastic policy in
GAIL will not suffer from exploding gradients.

Theorem 1 indicates that when the discriminator attains
its optimal state, the policy loss can encounter a gradient
explosion issue. However, this represents an idealized sce-
nario. In practical applications, the discriminator seldom
reaches this optimum. Hence, we adapt our findings to a
broader context using a “non-optimum” discriminator de-
rived from data. Here, we name such “non-optimum” dis-
criminators as imperfect discriminators and define them by
the following:

D̃(st, at) =
(1 + ϵ1)ρ

πE(st, at)

(1 + ϵ1)ρπE(st, at) + (1− ϵ2)ρπ(st, at)
,

where
{

ϵ1 > −1, ϵ2 < 1
ϵ1 < −1, ϵ2 > 1

(13)

The explanation of the imperfect discriminator D̃(st, at)
and its properties are as follows:

• ϵ1 and ϵ2 can be regarded as fluctuations in the optimal
discriminator.

• The imperfect discriminator generalize the fixed
D∗(st, at) to a ranges within (0, 1) stemmed from Eq.
(3).

• D̃(st, at) degenerates to 0 when ϵ1 = −1 and degener-
ates to 1 when ϵ2 = 1.

• D̃(st, at) reaches its optimum when ϵ1 and ϵ2 are 0.

We next state the exploding gradients on the imperfect
discriminator D̃(st, at).

Corollary 1 Let πh(·|s) be the Gaussian stochastic policy
with mean h(s) and covariance Σ. When the discrimina-
tor is in the format of Eq. (13), i.e., D̃(s, a) ∈ (0, 1), the
gradient estimator of the policy loss concerning the policy’s
parameter h satisfies∥∥∥∇̂h

(
ED⋆ [log D̃(s, a)] + ED[log(1− D̃(s, a))]

)∥∥∥
2
→ ∞

with a probability of at least

Pr(∥Σ−1(at − h(st))∥2 ≥ C for any C > 0)

as Σ → 0, where D⋆ and D denote the expert demonstration
and the replay buffer of πh respectively,

∇̂h

(
ED⋆ [log(D̃(s, a))] + ED[log(1− D̃(s, a))]

)
=

Hh∆
(
T⊤dh

)
(I− γPΠh)

−1est,at

ρπE(st, at)
·

log
(1− ϵ2)ρ

πh(st, at)

(1 + ϵ1)ρπE(st, at) + (1− ϵ2)ρπh(st, at)

+
(ϵ1 + ϵ2)∇hρ

πh(st, at)

(1 + ϵ1)ρπE(st, at) + (1− ϵ2)ρπh(st, at)
,

and (Hh)sa = πh(a|s)κ(s, ·)Σ−1(a − h(s)), ∆(·) maps a
vector to a diagonal matrix with its elements on the main
diagonal, est,at = [0, · · · , 1st,at , · · · , 0]⊤ ∈ R|S||A|×1.

Proof See Supplementary Material A.2.

Analogous to Theorem 1, Corollary 1 suggests that when
the discriminator adopts the perturbation form given by Eq.
(13), DE-GAIL is susceptible to gradient explosions. Con-
versely, ST-GAIL remains unaffected by such explosions as
long as the discriminator values lie within the interval (0, 1).

Remark 2 In the implementation of deterministic policy, it
requires exploration that adds noise Σ′ to the output action.
Concurrently, as the deterministic policy h progressively up-
dated, the covariance of Gaussian stochastic policy Σ → 0.
Notably, the stochastic factors are taken into consideration
by using

Ξ1 ={(st, h(st)) : ∥h(st) +N (0,Σ′)− at∥2 ≥ C∥Σ∥2
for any C > 0} (14)

to characterize policy disparity in practice. During Σ → 0,
the proofs of Theorem 1 and Corollary 1 only depend on
Σ → 0, Theorem 1 and Corollary 1 both hold for Ξ and Ξ1

regardless of Σ′.
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Figure 3: The absolute gradients of SD3-GAIL and PPO-GAIL policy networks in Walker2d-v2. Each algorithm is repeatedly
run 11 times. We observe that four experiments in SD3-GAIL display exploding gradients. Note that we use log(x + 1) to
rescale the y-axis in the left figure.
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Figure 4: The y-axis denotes the probability of the imitator’s
policy being classified as the expert’s policy, recorded as
P (expert). We observe that DE-GAIL can have P (expert) ≈
1, which leads to gradient explosion during training.

In brief, our Theorem 1 and Corollary 1 hold in the practical
setting.

Empirical evidence. Our experimental results support our
theoretical analysis. Specifically, in Fig 3, we record the ab-
solute gradient in the training phase. Notably, four experi-
ments in SD3-GAIL have gradient explosions. The total per-
cent of failure cases is over 36%.

In Fig.4, we document the probability P (expert) of the
expert’s demonstration being classified to expert policy
by the discriminator. It’s crucial to understand that when
P (expert) ≈ 1, there’s potential for gradient explosion. Our
observations indicate that the P (expert) of ST-GAIL never
attains a value of one. On the contrary, in several experi-
ments in DE-GAIL, P (expert) gravitates exceedingly close
to one.

Meanwhile, degenerated discriminator behaviors in SD3-
GAIL (left of Fig. 4) are consistent with the cases where re-
turns are zero (r → 0) in Fig. 2. In comparison, the gradients
of PPO-GAIL maintain their training stability.

Relieving Exploding Gradients with Reward
Modification
The AIRL (Kostrikov et al. 2019) modified the reward func-
tion r2(st, at) = log(D(st, at)) − log(1 − D(st, at)) into
DE-GAIL. This reward function can empirically mitigate the
training instability of DE-GAIL. Here we give a theory that
supports their experiments and corroborate our analysis.

The reward function of AIRL is defined as a combina-
tion reward function (CR) (Wang and Li 2021). For conve-
nience, DE-GAIL with PLR and CR are called PLR-DE-
GAIL and CR-DE-GAIL, respectively. We study whether
CR-DE-GAIL can have a lower probability of gradient ex-
plosion compared to PLR-DE-GAIL. Note that Theorem 1
shows that the policy disparity causes the gradient explo-
sion. Unlike the discriminator, which can be defined within
a finite interval of (0, 1), the expert-imitator policy dispar-
ity is vaguely defined. Therefore, the following proposition
provides a concrete understanding of policy disparity.

Proposition 1 When the discriminator achieves its optimum
D∗(s, a) in Eq. (9), we have

D∗(st, at) ≈ 1 ⇔
h(st) unequaled at under the event Ξ in Eq. (11).

Proof See Supplementary Material B.1.

Proposition 1 indicates that exploding gradients can either
depend on the distance between the discriminator’s value
and value 1, or the degree of ri(st, at),where i = 1, 2
that goes to infinity. This is due to the monotonicity of both
r1(st, at) and r2(st, at). As D(st, at) ≈ 1, we obtain

r1(st, at) ≈ ∞ and r2(st, at) ≈ ∞.

Intuitively, we want to prevent exploding gradients. As
such, we make the constraints that ri(st, at) ≤ c, i = 1, 2,
for some appropriate constant c. In contrast, the outliers of
the discriminator can also be characterized as ri(st, at) >
c for i = 1, 2, which represents the situation of gradient
explosion. We define such a state as follows:
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Figure 5: Box-plot of PPO-GAIL, SD3-GAIL, and SD3-GAIL with CREDO in three environments. The clipping technique
significantly enhances the training stability of SD3-GAIL, resulting in a high successful rate in terms of convergence.

Definition 2 When the discriminator achieves its optimum
D∗(s, a) in Eq. (9), the outliers of the discriminator are de-
fined in [α, 1] such that r1(st, at) ≥ c. Similarly, under the
same upper bound c, the outliers of the discriminator are
defined in [β, 1] for r2(st, at).

We note that the training process will suffer from ex-
ploding gradients when the discriminator falls into the [α, 1]
range. The next proposition describes how to relieve the gra-
dient explosion in CR-DE-GAIL.

Proposition 2 When the discriminator achieves its optimum
D∗(s, a) in Eq. (9), we have β ≥ α.

Proof See Supplementary Material B.2.

Proposition 2 reveals that the discriminator in CR-DE-
GAIL exhibits a smaller interval of outliers than that in PLR-
DE-GAIL, which decreases the probability of gradient ex-
plosion.

Clipping Reward of Discriminator Outlier
The analysis from the preceding section demystified the phe-
nomenon of gradient explosion in GAIL. This examination
uncovered that the intrinsic limitations of DE-GAIL can oc-
casionally lead to inevitable divergence. Nonetheless, when
DE-GAIL does converge, its data efficiency notably sur-
passes that of ST-GAIL. As a result, we are driven to develop
a robust approach that identifies and alleviates the gradient
explosion issue in DE-GAIL while preserving its admirable
training efficiency.

Building on the insights from Proposition 1, we high-
lighted the pivotal role of the reward function in the gra-
dient explosion issue. Inspired by this understanding, we
aim to mitigate the likelihood of exploding gradients in DE-
GAIL. To achieve this, we apply a clipping mechanism to
the rewards that align with the discriminator’s outliers in
DE-GAIL, enforcing constraints such that r(s, a) ≤ c for
some appropriate constant c to reduce the outliers. We term
this clipping strategy CREDO, an acronym for Clipping RE-
ward of Discriminator Outlier.

It’s worth noting that our method is versatile and can be
applied across all DE-GAIL algorithms. We selected SD3-
GAIL as our baseline and integrated CREDO owing to its

standout performance. To maintain consistency and to show-
case the resilience of our approach, we performed 11 inde-
pendent experiments for each methodology, ensuring uni-
form training settings for all, except for the random seed.
We maintained identical hyperparameters across all experi-
ments. In particular, we set the update frequency at 64 and
established a threshold c = 5. Additional training details, in-
cluding pseudocode and hyperparameter settings, and addi-
tional experimental results in Humanoid-v2 and Ant-v2 are
shown in Supplementary Material F.

The experimental results are illustrated in Figure 5. We
employ box plots to showcase the returns at various train-
ing phases, gauged by the number of samples. Notably, the
blue box plot, symbolizing the vanilla SD3-GAIL, displays
outlier points with zero return values. These points corre-
spond to experiments that failed to converge, due to gradient
explosion. In contrast, the integration of CREDO into SD3-
GAIL (as represented by the green box plot) significantly
reduces the box plot’s span and reduces the outliers. Such
outcomes are consistently observed across all environments.
When juxtaposed with the ST-GAIL approach, our CREDO
method boasts data efficiency that is an order of magnitude
higher than that of PPO-GAIL.

Conclusion
This paper delves into the issue of gradient explosion in
Generative Adversarial Imitation Learning (GAIL). The
journey begins by examining the existence of divergence in
GAIL. Among the two types of GAIL, namely determinis-
tic policy and stochastic policy, we observe that the former
has a non-negligible probability of divergence, whereas the
latter exhibits successful convergence. To gain an in-depth
comprehension of this phenomenon, we analyze it from a
theoretical standpoint, explicitly considering the structure of
the reward function. Subsequently, we introduce an exam-
ple featuring a modified reward function, demonstrating that
such alterations can effectively mitigate the gradient explo-
sion issue. To further alleviate this problem in DE-GAIL, we
propose a novel technique, the efficacy of which is substan-
tiated through experimental evidence. Overall, our analysis
of exploding gradients fosters a new understanding of GAIL
in terms of training schemes.
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