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Abstract

Modeling dynamical systems is crucial for a wide range of
tasks, but it remains challenging due to complex nonlinear
dynamics, limited observations, or lack of prior knowledge.
Recently, data-driven approaches such as Neural Ordinary
Differential Equations (NODE) have shown promising re-
sults by leveraging the expressive power of neural networks
to model unknown dynamics. However, these approaches of-
ten suffer from limited labeled training data, leading to poor
generalization and suboptimal predictions. On the other hand,
semi-supervised algorithms can utilize abundant unlabeled
data and have demonstrated good performance in classifica-
tion and regression tasks. We propose TS-NODE, the first
semi-supervised approach to modeling dynamical systems
with NODE. TS-NODE explores cheaply generated synthetic
pseudo rollouts to broaden exploration in the state space and
to tackle the challenges brought by lack of ground-truth sys-
tem data under a teacher-student model. TS-NODE employs
a unified optimization framework that corrects the teacher
model based on the student’s feedback while mitigating the
potential false system dynamics present in pseudo rollouts.
TS-NODE demonstrates significant performance improve-
ments over a baseline Neural ODE model on multiple dy-
namical system modeling tasks.

Introduction
Precise modeling of system dynamics plays a pivotal
role across multiple domains, including system identifi-
cation, model predictive control, and reinforcement learn-
ing. Nonetheless, real-world systems frequently exhibit a
high degree of non-linearity within a high-dimensional state
space, posing considerable challenges in modeling dynam-
ics without adequate prior knowledge.

Recent advancements in machine learning enable the use
of data-driven methods to directly model system dynam-
ics from observations (Greydanus, Dzamba, and Yosinski
2019; Deisenroth, Fox, and Rasmussen 2015; Lusch, Kutz,
and Brunton 2018; Chen et al. 2018), effectively circum-
venting the challenges associated with making appropriate
prior model assumptions. For instance, (Deisenroth, Fox,
and Rasmussen 2015) employs a Gaussian Process to model
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dynamical systems, providing a data-efficient and proba-
bilistic method for learning in the presence of uncertainty
and noise. Other studies, such as (Lusch, Kutz, and Brunton
2018; Peitz and Klus 2019), utilize deep neural networks
to learn the Koopman operator, which represents a linear
embedding of non-linear dynamical systems. Furthermore,
Neural Ordinary Differential Equations (NODE)(Chen et al.
2018) leverages a black-box neural network to model dy-
namics as an ordinary differential equation (ODE), demon-
strating significant potential in modeling unknown dynami-
cal systems.

However, one significant obstacle for data-driven meth-
ods stems from the practical difficulty in acquiring suffi-
cient data for modeling dynamical systems. The data col-
lection process can be expensive, time-consuming, and in
some cases, even infeasible due to physical constraints or
safety considerations. The shortage of data results in limited
coverage of the state space, leading to gaps in the model’s
understanding and poor prediction ability.

Semi-supervised learning methods have emerged as a
promising solution to the problem of limited labeled data
in classification and regression tasks. These approaches ef-
fectively leverage a large amount of unlabeled data along
with some labeled data. Unlabeled data can be either ob-
tained directly from observations with unknown or uncol-
lected labels or generated through various data augmenta-
tion techniques (Chen et al. 2020; Cubuk et al. 2019, 2020).
Semi-supervised methods typically assume that unlabeled
data share the same structural information as labeled data
and often utilize them in different ways, such as self-training
(Pham et al. 2021), multi-view training (Chen et al. 2020;
Wang and Isola 2020), or based on graph methods (Kipf and
Welling 2016; Iscen et al. 2019). These approaches promote
the model to produce similar outputs for similar instances or
preserve the structure of the data in the learned representa-
tion.

Thus, it is logical to consider the integration of semi-
supervised learning into the modeling of dynamical sys-
tems with neural ODEs, a concept yet to be explored by
the research community. However, the adaptation of semi-
supervised learning strategies to the problem is not straight-
forward and presents several challenges: the definition, gen-
eration and utilization of unlabeled data in dynamical sys-
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Figure 1: Phase portraits and rollouts on a test initial condition of different learned models in the phase space of a Lotka-Volterra
system(Lotka 1909). Left: The ground truth. Middle: the baseline neural ODE. Right: the proposed teacher model with student
feedback. All models are trained with a single train trajectory (blue line in the left).

tem modeling significantly differ from their counterparts in
other semi-supervised learning contexts such as classifica-
tion and regression. For instance, generating additional dy-
namical training data by directly applying popular data aug-
mentation and multi-view learning techniques may be detri-
mental, as alternating truthfully observed system data can
inject false system dynamics.

To address these challenges, we introduce TS-NODE, a
semi-supervised learning approach designed specifically for
modeling dynamical systems with neural ODEs. Our contri-
butions are:

• We present the first teacher-student model based ap-
proach to enabling semi-supervised modeling of dynam-
ical systems;

• We explore synthetic pseudo rollouts generated by the
teacher model to broaden exploration in the state space
and to tackle the challenges brought by lack of ground-
truth system data;

• We employ an unified teacher-student optimization
framework that corrects the teacher model based on the
student’s feedback while mitigating the potential false
system dynamics present in pseudo trajectories;

• We evaluate TS-NODE on multiple dynamical system
modeling tasks, demonstrating significant performance
improvements over a baseline Neural ODE model.

Preliminaries
Neural ODE for Modeling Dynamical Systems
A neural ODE parameterized by θ models the dynamics of
the evolution of the state y(t) of an unknown system with a
neural network(Chen et al. 2018):

ẏ(t) = NN(y(t), t; θ). (1)

Let y = {y(t0),y(t1) · · ·y(tn)} be an observed system
trajectory in the state space over a period of time and de-

note its initial condition1 by y0. A neural ODE is trained
to learn the system dynamics by matching its predicted tra-
jectory (rollout) with the true trajectory. The neural ODE’s
predicted trajectory is obtained by solving an initial value
problem (IVP) for each ti, i = [0, 1 · · ·n]:

ŷ(ti) = y(t0) +

∫ ti

t0

NN(ŷ(τ), τ ; θ)dτ (2)

The parameters θ are optimized by minimizing the mean
squared error (MSE) between ŷ and y:

θ∗ = argmin
θ

L(y;θ) = argmin
θ

MSE(y, ŷ(θ)). (3)

Challenges in Semi-supervised Modeling of
Dynamical Systems with Neural ODEs
Training neural ODEs requires a substantial amount of data
for optimal generalization. On the other hand, data for cer-
tain systems like a complex control system can be costly
to collect and the observed trajectories often have lim-
ited coverage of the state space. Scarcity of data results
in poor generalization and suboptimal long-horizon roll-
outs of the trained neural ODE models. The ability of mak-
ing use of large amounts of cheap unlabeled data makes
semi-supervised learning particularly appealing for dynam-
ical system modeling. Nevertheless, semi-supervised learn-
ing has not been attempted for neural ODE based dynamical
system modeling before. It is not immediately evident how
to pursue semi-supervised learning under this new context,
raising several crucial questions we outline below:

Q1: What does unlabeled data mean for dynamical
system modeling? The concept of unlabeled data in clas-
sical semi-supervised learning(Ouali, Hudelot, and Tami
2020a,b), e.g. for classification and regression tasks is well
defined: unlabeled data are input examples for which there

1In later sections, y refers to a time series and y0 represents its
value at the first time point unless stated otherwise.
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exist no ground-truth output label. However, when it comes
to modeling dynamics with Neural ODEs, this definition be-
comes less clear as the system model is trained on observed
system trajectories rather than a set of input/output pairs
with or without the output label.

Q2: How to generate useful unlabeled data for dynam-
ical system modeling? Data augmentation has been popular
for introducing new training experiences without added data
labeling effort in many learning tasks. In most of cases, it
works on the premise that subtle input perturbations do not
change or substantially alter the output labels. A brute-force
application of existing data augmentation techniques such as
crop-and-resize(Chen et al. 2020) or random erasing(Zhong
et al. 2017) to dynamic system modeling may not be com-
pletely appropriate: these augmentation transformations ei-
ther cannot directly operate on data that are dynamical in
nature, or fail to introduce meaningful new experiences that
are consistent with the underlying dynamics to be modeled,
leading to degraded learning performance.

Q3: How to mitigate misinformation in the unlabeled
data? Any generated unlabeled data are inevitable to ex-
hibit dynamical behavior that deviates from the system un-
der modeling. It is imperative to prevent the false dynamical
information from such data to leak into the system model.

TS-NODE Framework Overview
We argue that the proposed teacher-student model based TS-
NODE approach is well positioned to address the issues
raised in aforementioned the three questions.

First, under our context data that are useful must exhibit
dynamical behavior relevant to the task of dynamical system
learning. As such, meaningful “unlabeled data” can be con-
sidered to be state trajectories that do not necessarily fully
reflect but bear resemblance to the underlying true system
dynamics. We call such trajectories pseudo rollouts.

Second, to best aid dynamical system modeling, the em-
ployed pseudo rollouts shall comply with the typical physi-
cal constraints of the family of systems to which the targeted
system belongs. In other words, augmenting known system
trajectories via unconstrained non-physical transformations
provides little value if it does not hamper system modeling.
To this end, it is most straightforward to generate pseudo
rollouts, a.k.a. unlabeled data, by a dynamical system model
that is similar to the system under modeling.

TS-NODE achieves this by making use of a teacher neu-
ral ODE model, which is trained with (limited) true system
trajectories, to generate pseudo rollouts, potentially cover-
ing part of the state space with little or no true system dy-
namical data. The generated trajectories, or pseudo rollouts,
encapsulate the teacher’s present belief about the underly-
ing dynamics and provide contextual awareness of the target
problem. Once generated, they can be readily used to train
the student, another neural ODE.

Lastly, directly utilizing the pseudo rollouts in the final
system model building can lead to undesired amplification
of inaccurate knowledge. Instead, TS-NODE utilizes these
trajectories to train the student model whose performance
on a validation dataset acts as a feedback to the teacher to
correct the teacher’s belief.

Figure 2: An illustrated overview of the learning mechanism
of TS-NODE. The teacher model generates pseudo rollouts
(green lines) with more coverage of the state space. The stu-
dent model learns from those trajectories and then predict
rollout (blue line) with the initial condition of the true trajec-
tory (red line). The MSE between student’s prediction and
the ground truth serves as the feedback signal to refine the
teacher’s prediction.

Basic Design of TS-NODE Model With the same high-
level spirit of the semi-supervised learning technique for im-
age classification (Pham et al. 2021), TS-NODE jointly op-
timizes the teacher and student model at each training step.
First, pseudo rollouts starting from a set of initial conditions
in the state space are generated by the teacher, which are
used to train the student neural ODE whose performance is
evaluated on the true system trajectories. The evaluation loss
of the student, called the student feedback loss, is considered
as a feedback to the teacher as it depends on the teacher’s
pseudo rollouts. The teacher is then updated by minimizing
the student feedback loss and its direct fitting loss over the
limited true system trajectories, a.k.a. the labeled dataset.

Basic Learning Flow of TS-NODE
Following the standard definitions in semi-supervised learn-
ing, we denote the labeled data, i.e. true system dynamical
trajectories by: Dl :=

{
yl
}

. We denote the unlabeled data
by the pseudo rollouts predicted from the teacher: Du :=
{yu}, with their initial conditions denoted by yu

0 . Two
NODEs are introduced in TS-NODE, namely the teacher:
T (·;θT ) and the student: S(·;θS).

The training of TS-NODE involves four major steps:

1. Generate pseudo rollouts from the teacher:
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yu
T (θT ) = T (yu

0 ;θT ) (4)

2. Train the student2 with an unlabeled loss (Lu
S) defined

on pseudo rollouts:

Lu
S = MSE (yu

T (θT ), S(y
u
0 ,θS)) (5)

θ
′

S = θS − ηS · ∇θS
· Lu

S (6)

3. Calculate the error of the updated student model on Dl

as the feedback loss Ll
F :

Ll
F := Ll

S′ = MSE(Dl, S
′
(yl

0;θ
′

S(θT )))) (7)

4. Train the teacher with both the labeled loss Ll
T and the

feedback loss Ll
F :

Ll
T = MSE(Dl, T (yl

0;θT )) (8)

θ
′

T = θT − ηT · ∇θT
· (Ll

T + Ll
F ) (9)

Gradient for Updating the Teacher and Its Scalable
Computation
To update the teacher with the feedback loss involves com-
puting a Jacobian matrix or calculating per-sample gradi-
ents, which can result in a large computational graph and
computational inefficiency (More details in Appendix A).
Instead, we make a modification to the framework by em-
ploying a noisy teacher to generate the pseudo rollouts.
Utilizing a noisy teacher enables the derivation of scalable
gradients using the REINFORCE rule(Williams 1992) and
more interpretable, alternative feedback loss.

Noisy Teacher: We design a simple noisy teacher Tϵ by
adding independent constant noise to each step of the rollout
of the standard teacher. The rollouts of Tϵ are thus samples
from a Gaussian distribution:

yn×d
Tϵ

∼ N (yn×d
T ;σ · I(n×d)×(n×d);θT ) (10)

where n is the number of observed time steps, d is the di-
mension of the state space.

Derivation of the Feedback Gradient: For a noisy
teacher, since the pseudo rollouts are samples from a dis-
tribution, Eq. (6) needs to be rewritten as:

θ
′

S = θS − ηS · Eyu
Tϵ

∼p(yu
Tϵ

) [∇θS
· Lu

S ] (11)

For convenience, we write the gradient to update the stu-
dent as gS := ∇θS

· Lu
S , the gradient of Ll

F with respect to
θT as gF := ∇θT

· Ll
F . By the chain rule , we have:

[gF ]
T
=

∂Ll
F

∂θT
=

∂Ll
F

∂θ
′

S

· ∂θ
′

S

∂θT
(12)

By substituting the θ
′

S in Eq. (11), we have:

[gF ]
T
= −ηS · ∂L

l
F

∂θ
′

S

· ∂

∂θT

(
Eyu

Tϵ
∼p(yu

Tϵ
) [gS ]

)
︸ ︷︷ ︸

jacobian

(13)

2We follow the suggestion in (Pham et al. 2021) to update the
student with one-step gradient descent.

By REINFORCE rule(Williams 1992), we rewrite the Ja-
cobian as :

∂

∂θT

(
Eyu

Tϵ
∼p(yu

Tϵ
) [gS ]

)
= gS ·

∂ log p(yu
Tϵ
)

∂θT
(14)

Finally, the feedback gradient is derived as:

[gF ]
T
= −ηS · ∂L

l
F

∂θ
′

S︸ ︷︷ ︸
a

· gS︸︷︷︸
b

·
∂ log p(yu

Tϵ
)

∂θT︸ ︷︷ ︸
c

(15)

In Eq. (15), all three parts can be calculated efficiently
with one step of automatic differentiation.

Approximated Alternative Feedback Loss: We show
that Eq. (15) can be further simplified by utilizing Taylor
expansion. An approximated alternate feedback loss can be
derived which can give us a direct interpretation of how the
feedback loss helps to refine teacher’s pseudo rollouts.

First, we rewrite gF by applying Taylor expansion to
Ll
F (θ

′

S) and ignoring higher order terms:

Ll
F (θ

′

S) ≈ Ll
F (θS) +

∂Ll
F (θ

′

S)

∂θ
′

S

· (θ
′

S − θS) (16)

Combining Eq. (16) and Eq. (6) we have:

Ll
F (θ

′

S)− Ll
F (θS) ≈

∂Ll
F (θ

′

S)

∂θ
′

S

· (θ
′

S − θS)

=
∂Ll

F (θ
′

S)

∂θ
′

S

· (−ηS · gS)
(17)

Thus, the feedback gradient can be approximated as:

[gF ]
T ≈

(
Ll
F (θ

′

S)− Ll
F (θS)

)
·
∂ log p(yu

Tϵ
)

∂θT

=
(
Ll
S′ − Ll

S

)
·
∂ log p(yu

Tϵ
)

∂θT

(18)

Note that the feedback gradient in Eq. (18) corresponds to
the gradient of a scaled negative log-likelihood (NLL) loss
and we can rewrite the original feedback loss as:

Ll
F ≈

(
Ll
S − Ll

S′
)︸ ︷︷ ︸

h:student’s improvement

· NLL(yu
Tϵ
;θT ) (19)

The alternate feedback loss refines the noisy teacher by
modulating the likelihood of generating particular pseudo
rollouts based on the student’s improvement. After trained
with given a rollout, if the student’s performance sees an
enhancement (i.e., h ≥ 0), minimizing Ll

F effectively maxi-
mizes the log-likelihood of that rollout, thereby augmenting
the probability that the teacher will generate similar rollouts
in future iterations. Conversely, if the student’s performance
deteriorates, the feedback mechanism will work to diminish
the likelihood of generating such rollouts.

In our experiments, optimization of TS-NODE follows
the procedure from Eq. (4) to Eq. (9). The original feedback
loss in Eq. (7) is replaced with the one defined in Eq. (19)
for efficient computation. We summarize the pseudo code
for TS-NODE in Appendix B for further reference.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15701



Experiments
We evaluate TS-NODE on several aspects: 1) We compare
TS-NODE with the baseline NODE to validate its overall
efficacy; 2) We show TS-NODE provides a better way of
generating and utilizing unlabeled data by compared with
NODE trained with basic data augmentations. 3) We com-
pare TS-NODE with a variant that disables the student’s
feedback to underscore the necessity of the feedback loop.

Datasets and Model Configuration
We adopt three dynamical systems, the converging cubic
system (Chen et al. 2018), Lotka-volterra system (Lotka
1909) and a simple pendulum, which are commonly in the
literature, as the test cases. We simulate each ground-truth
system to generate a single state trajectory from a predeter-
mined initial condition as the only labeled training data, to
evaluate the baseline (Chen et al. 2018) and proposed TS-
NODE under limited observation. To evaluate the general-
ization of each learned model, we randomly select a set of 20
initial conditions in the state space, and simulate the ground-
truth model to obtain 20 state trajectories as the testing data,
as detailed next.

Converging Cubic System: The converging cubic sys-
tem we employed is a 2-dimensional system, adapted from
(Chen et al. 2018). The system dynamics is described as be-
low:

ẋ = a · x3 + b · y3

ẏ = c · x3 + d · y3
(20)

We set [a, b, c, d] = [0.1, 2,−2,−0.1]. The training trajec-
tory is a rollout from [x0, y0] = [3,−1]. The testing ini-
tial conditions are sampled from N ([x0, y0]; 0.3·I2×2). The
simulation time is 10s.

Lotka-Volterra System : The Lotka-Volterra sys-
tem(Lotka 1909), or the predator-prey system, is dictated by
the dynamics as:

ẋ = α · x− β · xy
ẏ = δ · xy − γ · y (21)

We set [α, β, δ, γ] = [ 23 ,
4
3 , 1, 1] . The training trajectory is a

rollout from [x0, y0] = [1.4, 1.4] and the testing initial con-
ditions are sampled from N ([x0, y0]; 0.3 · I2×2). The simu-
lation time is 10s.

Simple Pendulum: A simple Pendulum is modeled as:

θ̈ = −a · θ̇ − b · sin θ (22)
Simple pendulumn can be fully described by the angular po-
sition θ and the angular speed θ̇ := ω. In our experiments,
we set [a, b] = [0, 1], (i.e., simulating an ideal pendulum).
The training trajectory is a rollout from[θ0, ω0] = [2, 0]. The
initial conditions for generating the testing data are sampled
from N ([θ0, ω0]; 0.3 · I2×2). The simulation time is 10s.

The length of training or testing trajectories is 1,000 time
steps. We split the training trajectory as batches of short ob-
servations (10 steps) for efficiency as in (Chen et al. 2018).
The initial conditions used by the teacher to generate pseudo
rollouts are sampled around the training trajectory in each it-
eration.

Baseline and Evaluation Metrics:
We compare TS-NODE with the standard neural ODE in
(Chen et al. 2018), as the baseline. Neural networks in the
baseline and TS-NODE share the identical architecture.

We randomly select 20 initial conditions and simulate
each ground-truth system to generate 20 1000-step full test
trajectories.

We adopt two evaluation metrics for our study. The first,
referred to as local error, assesses the quality of local dy-
namic modeling around the testing regions. We randomly
sample parts of the 20 full-length testing trajectories to cre-
ate a set of 1,000 short testing rollouts of 10 steps. The local
error is defined as the sum of the MSE between these testing
rollouts and the corresponding rollouts from each learned
model starting from the same initial condition.

The rollouts error metric, measures the models’ ability
to forecast over different lengths of time horizon. We let
learned models generate rollouts from the initial condition
of each pre-generated full testing trajectory for 5%, 10%,
20%, 50%, and 100%, respectively of the full length (1,000
steps). The rollouts error of a particular length is computed
as the average MSE between the ground truth model and
each learned model over the 20 rollouts of that length.

1) Comparing TS-NODE with baseline NODE: We
train TS-NODE and the baseline neural ODE with Adam
optimizer for 10,000 iterations. We record the error metrics
of the two models once every 100 iterations. Table 1 reports
the performances of two models based on the averages of the
last five recorded errors.

For all systems, TS-NODE consistently surpasses the
baseline model across all metrics, particularly when making
long-horizon predictions. The baseline model exhibits a sig-
nificant error in generating extended rollouts for the LK sys-
tem and the pendulum, suggesting its inability to accurately
generalize the precise dynamics of these systems, leading to
accumulation and subsequent explosion of error over time.

To further illustrate this point, we provide visual repre-
sentations of the rollouts of varying lengths, as predicted by
both the final trained baseline model and the teacher model
of TS-NODE, originating from a single test initial condition
(see Fig. 3). It is evident that even in scenarios where the
baseline model fails in producing accurate predictions, TS-
NODE remains capable of accurately capturing and replicat-
ing the inherent dynamics over an extended duration.

We also plot the rollouts error during the training process
for the baseline and the teacher in Fig. 4. We take the log-
arithm of the rollouts error and apply a moving average to
smooth the curve. The scarcity of the data results in a large
rollout error of the baseline, which cannot be reduced or can
even increase with extended training. In contrast, TS-NODE
consistently shows better test performance across varying
rollout lengths as the training proceeds, clearly demonstrat-
ing the overall effectiveness of TS-NODE framework.

2) Comparing TS-NODE with NODEs trained by ba-
sic data augmentations: We investigated the effects of
two common data augmentation techniques: the addition of
white noise (σ = 0.01) and rescaling by 0.95X. We ap-
ply them to the labeled dataset to generate an unlabeled
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Dataset Models Local Error↓
Rollouts Error↓

5% 10% 20% 50% 100%

Cubic Baseline 39.84 0.95 1.35 1.21 1.42 1.08
TS-NODE 32.77 0.87 1.21 1.07 1.12 0.96

LK Baseline 20.93 0.10 2.54 64.79 1200.50 7346.09
TS-NODE 12.84 0.02 0.14 0.55 20.58 244.88

Pendulum Baseline 40.49 0.06 0.20 0.51 5.77 507.17
TS-NODE 5.65 0.01 0.05 0.25 0.95 1.89

Table 1: Local error and rollouts error (both lower the better) of the baseline NODE and the TS-NODE on three systems.

Figure 3: Rollouts from the trained baseline model and teacher model of TS-NODE in the phase space for three different sys-
tems. The rollouts are simulated from the initial condition of one pre-generated full testing trajectory for 5%, 10%, 20%, 50%,
and 100%, of the full length (1,000 steps). Top: converging cubic system. Middle: Lotka-Volterra system. Bottom: pendulum.

dataset and combine both datasets to train the standard neu-
ral ODEs. We denote the models trained with different aug-
mentations by ”White Noise” and ”Re-scale”, respectively.
Experiment results on the LK dataset are shown in Table 2.

TS-NODE surpasses all models trained using basic
data augmentations, which can potentially compromise the
dataset’s intrinsic physical properties. This performance un-
derscores that TS-NODE offers a superior approach to gen-
erating and utilizing unlabeled data through its pseudo roll-
outs and the feedback loop.

3) The necessity of the feedback loop: We disable the
feedback loop by training the teacher only with labeled
loss and maintaining the student’s learning from teacher-
generated pseudo rollouts. The performance of the final stu-
dent is tabulated as ”No Feedback” in Table 2.

Without the feedback signal, the misinformation in the
pseudo rollouts cannot get exposed via students evalua-
tion, and the teacher cannot refine itself to generate better
pseudo rollouts, resulting a bad-behaved final student. With
the feedback signal, TS-NODE attains substantially superior
results, highlighting the critical role of the feedback loop.
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Figure 4: The rollouts errors of different length (5%, 10%, 20%, 50%, and 100% of the full length (1000 steps)) of the baseline
model and the teacher model. Top: converging cubic system. Middle: Lotka-Volterra system. Bottom: simple pendulum.

Models Local Error↓
Rollouts Error↓

5% 10% 20% 50% 100%

Baseline 20.93 0.10 2.54 64.79 1200.50 7346.09

TS-NODE 12.84 0.02 0.14 0.55 20.58 244.88

White Noise 23.78 0.05 0.19 1.02 42.06 306.50

Re-scale 106.97 0.01 1.09 158.53 4398.57 31925.17

No Feedback 23.60 0.06 0.23 2.00 192.03 2057.37

Table 2: Result on LK dataset of the Baseline, TS-NODE,
standard NODE trained with different augmentations, and
the student in a TS-NODE without feedback.

Related Works
Neural ODEs (Chen et al. 2018) (NODEs) show great
potential in modeling complex, unknown dynamical sys-
tems. However, they can be challenging to train effec-
tively, particularly when data is limited. Subsequent research
works(Dupont, Doucet, and Teh 2019; Finlay et al. 2020;
Ghosh et al. 2020) attempt to enhance the generalization of
NODEs by introducing augmented dimensions, kinetic regu-
larization, or temporal perturbations. These approaches aim
to refine the structure of NODEs without directly address-
ing the issue of data scarcity. Parallel line of works (Raissi
et al. 2018; Greydanus, Dzamba, and Yosinski 2019) tackle
the problem by incorporating prior physics knowledge, e.g.,
symmetry, into modeling of dynamical systems with neural

networks.
Overall, semi-supervised learning has not been thor-

oughly explored for dynamical system modeling. Data aug-
mentation (Chen et al. 2020; Cubuk et al. 2019, 2020) are
not fully appropriate in this context as they can disrupt the
underlying dynamical information. Among all recent works,
(Pham et al. 2021) most closely resembles TS-NODE. How-
ever, (Pham et al. 2021) focuses on classification tasks where
unlabeled data are readily available, while TS-NODE mean-
ingfully generates and utilizes unlabeled data for dynamical
systems. This contextual awareness is crucial for effective
use of unlabeled data for system modeling tasks.

Limitations and Future Work
Currently, the pseudo rollouts are simply generated around
the training trajectory in a suboptimal manner, i.e., we do
not optimize the locations to generate pseudo rollouts during
training. An intriguing future direction is to incorporate un-
certainty quantification into the framework. This could allow
the model to prioritize exploration and evaluation of highly
uncertain regions within the state space. By actively generat-
ing pseudo rollouts in these areas of uncertainty, TS-NODE
could effectively streamline its exploration process, enhanc-
ing its understanding of the state space. Uncertainty-guided
exploration may prove particularly beneficial when dealing
with high-dimensional problems, where efficiently covering
the state space with pseudo rollouts poses significant chal-
lenges. We leave this open problem to future exploration.
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