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Abstract

Multivariate Time-Series (MTS) data is crucial in various ap-
plication fields. With its sequential and multi-source (multi-
ple sensors) properties, MTS data inherently exhibits Spatial-
Temporal (ST) dependencies, involving temporal correlations
between timestamps and spatial correlations between sen-
sors in each timestamp. To effectively leverage this infor-
mation, Graph Neural Network-based methods (GNNs) have
been widely adopted. However, existing approaches sepa-
rately capture spatial dependency and temporal dependency
and fail to capture the correlations between Different sEnsors
at Different Timestamps (DEDT). Overlooking such correla-
tions hinders the comprehensive modelling of ST dependen-
cies within MTS data, thus restricting existing GNNs from
learning effective representations. To address this limitation,
we propose a novel method called Fully-Connected Spatial-
Temporal Graph Neural Network (FC-STGNN), including
two key components namely FC graph construction and FC
graph convolution. For graph construction, we design a de-
cay graph to connect sensors across all timestamps based on
their temporal distances, enabling us to fully model the ST
dependencies by considering the correlations between DEDT.
Further, we devise FC graph convolution with a moving-
pooling GNN layer to effectively capture the ST dependen-
cies for learning effective representations. Extensive exper-
iments show the effectiveness of FC-STGNN on multiple
MTS datasets compared to SOTA methods. The code is avail-
able at https://github.com/Frank-Wang-oss/FCSTGNN.

Introduction
Multivariate Time-Series (MTS) data has gained popular-
ity owing to their extensive utilization in various real-world
applications such as predictive maintenance and healthcare
(Gupta et al. 2020; Yang et al. 2022). Considering its sequen-
tial property together with multiple data sources, e.g., sen-
sors, MTS data exhibits Spatial-Temporal (ST) dependen-
cies, including temporal correlations between timestamps
and spatial correlations between sensors in each times-
tamp. Traditional approaches mainly focus on capturing
temporal dependencies by employing temporal encoders,
disregarding spatial dependencies and thus limiting their
ability to learn effective representations (Tan et al. 2020;
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Khushaba et al. 2020). To address this limitation, Graph
Neural Network-based methods (GNNs) have emerged as
popular solutions to exploit ST dependencies within MTS
data (Wang et al. 2023b; Jia et al. 2020).
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Figure 1: ST graphs are constructed from MTS data, creat-
ing separate graphs for each timestamp, to capture ST de-
pendencies. In step 1, GNN captures the spatial dependency
within each graph, e.g., [x1

T−1, x2
T−1, x3

T−1]. In step 2, tem-
poral encoders capture temporal dependencies for the corre-
sponding sensors across different timestamps, e.g., [x2

T−1,
x2
T , x2

T+1]. However, this method overlooks the correlations
between different sensors at different timestamps, e.g., x3

T−1

and x2
T , failing to model comprehensive ST dependencies.

GNNs are always combined with temporal encoders to
capture ST dependencies. The process begins with the con-
struction of ST graphs, where separate graphs are con-
structed for each timestamp, representing the relationships
between sensors over both time and space. To capture the
ST dependencies, existing methods (Deng and Hooi 2021;
Wang et al. 2023b) primarily adopt a two-step approach,
incorporating GNNs and temporal encoders to capture the
spatial dependency and temporal dependency separately. As
shown in Fig. 1, GNNs are initially employed to capture spa-
tial dependencies between sensors at each timestamp, and
then temporal encoders capture temporal dependencies for
corresponding sensors across different timestamps (The or-
der might be reversed).

These works have shown improved performance com-
pared to conventional methods using temporal encoders
alone. However, they process each graph independently,
overlooking the correlations between Different sEnsors at
Different Timestamps (DEDT), e.g., the correlation between
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x2
T and x3

T−1 in Fig. 1. These correlations are crucial in
modelling comprehensive ST dependencies within MTS
data. For instance, we consider a machine health detection
scenario where a temperature sensor is highly correlated
with a fan speed sensor. In this case, not only are the two
sensors at the same timestamp highly correlated, but the past
temperature would also influence the future fan speed, re-
sulting in the correlations between DEDT. Due to limita-
tions in graph construction and graph convolution, existing
methods fail to effectively capture the correlations between
DEDT, restricting their ability to model the comprehensive
ST dependencies within MTS data.

To solve the above limitation, we propose a novel
method called Fully-Connected Spatial-Temporal Graph
Neural Network (FC-STGNN), which consists of two key
components: FC graph construction and FC graph convolu-
tion, together to capture the comprehensive ST dependen-
cies within MTS data. For graph construction, we introduce
an FC graph to establish full connections between all sen-
sors across all timestamps, enabling us to fully model the
ST dependencies within MTS data by additionally consider-
ing the correlations between DEDT. The process begins by
segmenting each MTS sample into multiple patches, each
corresponding to a timestamp, and then encoding the sig-
nals of each sensor as sensor features. The sensors across all
patches are fully connected through dot-product computa-
tions. To improve the FC graph, we design a decay matrix by
considering the temporal distances between these patches,
assigning larger correlations to closer patches. This design
ensures that the temporally close sensors exhibit stronger
correlations compared to those that are temporally distant.

We then design FC graph convolution to effectively cap-
ture the ST dependencies within the FC graph. While a naive
approach would directly perform graph convolution across
the entire graph by considering all sensors across all patches,
we recognize that this may fail to capture local temporal pat-
terns within MTS data, similar to how Convolutional Neural
Networks (CNNs) adopt local convolution to capture local
patterns within images instead of directly stacking all pix-
els. Additionally, using all sensors across all patches intro-
duces unnecessary computational costs. To address this, we
propose a moving-pooling GNN layer, which adopts mov-
ing windows with a specific size to slide along patches.
Within each window, graph convolution is performed to up-
date node features through edge propagation. Subsequently,
a temporal pooling operation is applied to obtain high-level
sensor features. After multiple parallel layers of moving-
pooling GNN, we acquire the updated sensor features, which
are then stacked and mapped to obtain final representations.

In summary, our contributions are three folds. First, we
propose a fully-connected ST graph to explicitly model the
correlations between sensors across all timestamps. By de-
signing a temporal distance-based decay matrix, we improve
the constructed graph, effectively modelling the comprehen-
sive ST dependencies within MTS data. Second, we propose
a moving-pooling GNN layer to effectively capture the ST
dependencies from the constructed graph for learning effec-
tive representations. It introduces a moving window to con-
sider local ST dependencies, followed by a temporal pool-

ing operation to extract high-level features. Third, we con-
duct extensive experiments to show the effectiveness of our
method for effectively modelling and capturing the complex
ST dependencies within MTS data.

Related Work
Conventional methods for MTS data Due to the in-
herent sequential nature of MTS data, traditional methods
primarily focused on capturing temporal correlations be-
tween timestamps. This is often achieved through lever-
aging temporal encoders such as CNNs, Long Short-Term
Memory (LSTM), and Transformers. Initially, due to the
popularity in computer vision, 1D-CNN was first applied
(Franceschi, Dieuleveut, and Jaggi 2019; Liu, Hsaio, and
Tu 2019; Wang et al. 2019, 2023a; Zhang et al. 2020; El-
dele et al. 2021). These models employed 1D-CNN as en-
coders to extract temporal features, which were then em-
ployed for downstream tasks. Additionally, some investiga-
tions explored 2D-CNN models, treating MTS data as two-
dimensional images (Yang et al. 2019). LSTM-based model
is another branch to capture the temporal dependency from
MTS data due to its ability to capture long-term dependency
(Du et al. 2020; Liu et al. 2020; Lu et al. 2021). More
recently, due to its powerful attention mechanism, Trans-
formers (Vaswani et al. 2017) become popular, and exten-
sive transformer-based works are developed to maximize its
potential to capture temporal correlations within MTS data
(Zerveas et al. 2021; Wu et al. 2021; Zhou et al. 2021).

While these methodologies have greatly advanced MTS
analysis, they overlooked the spatial dependency within
MTS data which originates from its multi-source nature, i.e.,
signals are collected from multiple sensors. The dependency
represents the spatial correlations between these sensors,
which play important roles in fully modelling MTS data. For
instance, in a scenario involving machine status detection, a
temperature sensor’s readings would correlate with those of
a fan speed sensor. Overlooking the spatial dependency re-
stricts the ability to fully model MTS data, resulting in lim-
ited performance when learning effective representations.

GNN for MTS data In recent years, a growing number
of researchers have recognized the significance of incorpo-
rating spatial dependencies into the learning of MTS data
representations (Jin et al. 2023). To achieve that, a common
approach is to leverage GNN, generally involving the com-
bination of GNN with other temporal encoders, such as 1D-
CNN, to capture the spatial dependency and temporal depen-
dency respectively (Jia et al. 2020; Li et al. 2021b; Deng and
Hooi 2021; Wang et al. 2023a; Wu et al. 2020; Shao et al.
2022; Yu, Yin, and Zhu 2018). For example, HierCorrPool
(Wang et al. 2023a) designed sequential graphs and adopted
CNN to capture temporal dependency within these graphs.
Subsequently, GNNs were utilized to capture the spatial de-
pendencies between sensors within each graph. GraphSleep-
Net (Jia et al. 2020) also introduced sequential graphs and
designed a CNN-GNN encoder to capture ST dependencies
within MTS data for sleep stage classification. HAGCN (Li
et al. 2021a) employed LSTM to extract temporal features,
which were then used to construct graphs that were further
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Figure 2: Overall structure of. Beginning with an MTS sample, each sensor’s signals are segmented into multiple patches.
Sensor-level features are learned through an encoder within each patch. The features from different patches are further encoded
with positional encoding, followed by FC graph construction and convolution. (1) FC graph construction: involves fully con-
necting the sensors across patches by calculating their dot products, enabling the additional connections of DEDT. To refine
the full connections of sensors across patches, a decay matrix is introduced by considering their temporal distances. (Note:
Only one sensor exhibits fully-connected weights in this example). (2) FC graph convolution: Moving windows with specific
sizes traverse along patches (e.g., two in this example). Graph convolution is then applied to the FC graph within each win-
dow. Following the update of each sensor’s features by capturing the comprehensive ST dependencies within each window, a
temporal pooling operation is employed to learn high-level sensor features for each window. After multiple parallel layers, we
concatenate the features, followed by an output layer to obtain final representations for downstream tasks.

processed by GNN. These researchers have made significant
contributions by leveraging GNN to capture spatial depen-
dencies within MTS data. However, as previously discussed,
their approaches suffer from limitations in graph construc-
tion and graph convolution, preventing them from explic-
itly considering the correlations between DEDT. This lim-
itation hinders their ability to comprehensively model ST
dependencies within MTS data, ultimately impacting their
performance in learning effective representations. Similar
challenges have been addressed in domains with available
graph data, such as traffic and human skeleton graphs (Tan,
Zhu, and Liu 2023; Song et al. 2020). However, these works
typically deal with graph data containing attributed nodes.
In contrast, our focus is on MTS data, where each sensor
corresponds to an unattributed node, featuring only time-
series signals. This distinction poses challenges when at-
tempting to directly apply existing works designed for at-
tributed graphs.

To address the limitation in existing approaches and com-
prehensively model ST dependencies within MTS data, we
introduce FC-STGNN, a novel framework designed to en-
hance representation learning for MTS data.

Methodology
Problem Formulation
Given a dataset D consisting of n labelled MTS samples
{Xj , yj}nj=1, each sample Xj ∈ RN×L is collected from
N sensors with T timestamps. Our objective is to learn an
effective encoder F capable of fully capturing the under-

lying spatial-temporal dependencies within MTS data. This
approach can help extract effective representations hj =
F(Xj) ∈ Rd from Xj , enabling us to perform well in di-
verse downstream tasks, such as machine remaining useful
life prediction, human activity recognition, and so on. For
simplicity, the subscript j is removed, and we denote an
MTS sample as X .

Overall Structure
Fig. 2 shows the overall structure of FC-STGNN, which
aims to fully capture the ST dependencies within MTS data.
Given an MTS sample, we first segment the signals of each
sensor into multiple patches, each corresponding to a times-
tamp. Each patch is then processed by an encoder to learn
sensor-level features. Subsequently, we employ positional
encoding to integrate positional information into the sen-
sor features across different patches. Next, we propose FC
graph construction to achieve comprehensive interconnec-
tions between sensors across patches, realized by calculat-
ing the dot product of sensors. To enhance these connec-
tions, we introduce a decay matrix by considering temporal
distances between patches. Next, a moving-pooling GNN is
then proposed to fully capture the ST dependencies within
the FC graph. We design moving windows which traverse
along patches and then apply GNN within each window. Af-
ter updating sensor features by capturing the comprehensive
ST dependencies within each window, a temporal pooling
operation is employed to learn high-level sensor features. By
using multiple parallel layers of FC graph construction and
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convolution to capture ST dependencies from different per-
spectives, we concatenate the features, followed by an out-
put layer to obtain the final representations for downstream
tasks. Further details are provided in subsequent sections.

FC Graph Construction
Graph Construction Given an MTS sample X ∈ RN×L,
we segment the signals of each sensor into multiple patches
by considering the local temporal patterns within MTS data
(Wang et al. 2023a). Using patch size f , we create {Xt}L̂t=1
from X , where t is the patch index representing a timestamp,
and each Xt ∈ RN×f . L̂ denotes the number of segmented
patches, calculated as L̂ = [Lf ], where [·] represents the trun-
cation operation. Each Xt contains segmented signals from
n sensors, i.e., Xt = {xt,i}Ni=1, where xt,i ∈ Rf .

Subsequently, we employ an encoder fc(·|Wc) to process
the segmented signals within each window. Notably, the en-
coder operates at the sensor-level to learn sensor-level fea-
tures, i.e., x′

t,i = fc(xt,i|Wc). Moreover, to maintain the di-
rectionality across patches, i.e., the relative positional infor-
mation of patches, we adopt positional encoding as inspired
by (Vaswani et al. 2017). Specifically, for the i-th sensor
{x′

t,i}L̂t=1, positional encoding, as shown in Eq. (1), is in-
troduced into sensor features, e.g., zt,i = fp(t) + x′

t,i repre-
senting the sensor features enhanced by positional encoding.
Here, m represents the m-th feature of sensor features.

p⃗t
(m) = fp(t)

(m) :=

{
sin(ωk · t) if m = 2k,

cos(ωk · t) if m = 2k + 1.
(1)

With the learned sensor features across multiple patches,
we can then proceed to construct an FC graph that intercon-
nects all sensors across these patches by additionally consid-
ering the correlations between DEDT. For graph construc-
tion, we have the assumption that correlated sensors should
exhibit similar properties, making their features close within
the feature space. This enables us to adopt similarity to rep-
resent the correlation between sensors, with greater simi-
larity reflecting a higher correlation. In this case, we em-
ploy a simple yet effective metric, the dot product, to quan-
tify the similarity between two sensors, defined as etr,ij =

gs(zt,i)(gs(zr,j))
T , where t, r ∈ [1, L̂] and i, j ∈ [1, N ].

Here, the function gs(z) = zWs is employed to enhance
the expressive capacity, drawing inspiration from the at-
tention computation in (Vaswani et al. 2017), where Ws

is the learnable weights. Further, the softmax function re-
stricts the correlations within [0,1]. Finally, we derive the
FC graph G = (Z,E), where Z = {{zt,i}Ni=1}L̂t=1, and E =

{{etr,ij}Ni,j=1}L̂t,r=1. E is denoted as the adjacent matrix of
the FC graph, whose elements represent the correlations be-
tween sensors among all patches. The graph G encompasses
not only temporal correlations between timestamps and spa-
tial correlations in each timestamp, but also additionally in-
cludes the correlations between DEDT, enabling us to model
the comprehensive ST dependencies within MTS data.

Decay Matrix The FC graph G is constructed based on
sensor similarity across patches only, without accounting for

temporal distances between sensors across these patches.
However, it is intuitive that sensors at more distant times-
tamps should show weaker correlations compared to those at
closer timestamps. Motivated by this, we devise a decay ma-
trix that incorporates temporal distances between sensors,
aiming to enhance the precision of the FC graph G.

We provide Fig. 3 for visual clarification. The left rep-
resents the adjacency matrix of a graph involving three
patches, each containing four sensors. The dimension of
this adjacent matrix is E ∈ R(3×4)×(3×4). In this matrix,
each row presents a sensor’s connections with other sen-
sors across all patches. We take the first row as an exam-
ple, which represents the connectivity of the first sensor
zT−1,1 of the (T − 1)-th patch. The first four columns rep-
resent its connections with sensors within the same patch.
As these sensors occur simultaneously, they should exhibit
stronger correlations than those in other patches. The sub-
sequent four columns represent the connections of zT−1,1

with sensors from the T -th patch. As these sensors are in
different patches, their correlations with zT−1,1 should be
decayed, measured by a decay rate δ. The final four columns
represent the connections of zT−1,1 with sensors from the
(T + 1)-th patch. As the temporal gap expands, correla-
tions naturally decline further, measured by δ2. Drawing
from these discussions, we formulate the decay matrix C =

{{ctr,ij}Ni,j=1}L̂t,r=1, where each element ctr,ij = δt−r. This
matrix is employed to enhance the correlations between sen-
sors across patches, yielding etr,ij = etr,ij · ctr,ij . This ap-
proach ensures that temporally close sensors exhibit stronger
correlations than those temporally distant sensors.

⊙ =

⊙
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Figure 3: Decay matrix to improve the adjacent matrix.

FC Graph Convolution
Utilizing the constructed FC graph, the next step is to cap-
ture the ST dependencies within MTS data for representa-
tion learning. A straightforward approach would involve ap-
plying graph convolution across the entire graph. Neverthe-
less, this approach might fail to effectively capture the local
ST dependencies within MTS data. This is similar to the ra-
tionale behind CNNs employing local convolution to capture
local information from images. Furthermore, directly utiliz-
ing the entire graph could lead to extra computation costs. To
solve these limitations, we propose a moving-pooling GNN,
including a moving window to capture local ST dependen-
cies and temporal pooling to extract high-level features.

We begin by utilizing a moving window with a specific
size M that traverses along patches. The window moves by
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s slides in each movement. In Fig. 2, a size-two window
moves with stride one, leading to two windows obtained.
Here, each window contains two patches, each containing
four sensors. Then, GNN is adopted within each window.

Specifically, following previous works (Wang et al.
2023a; Deng and Hooi 2021), we employ a Message Pass-
ing Neural Network (MPNN), a variant of GNN, to capture
ST dependencies of the graph within each window. Specif-
ically, MPNN involves propagation and updating stages.
During the propagation stage, the information from neigh-
boring nodes is propagated into the central node. Given a
central node zlt,i of the w-th window in the l-th layer, it

has a set of neighboring nodes {{zlr,j}Nj=1}
w+M

2

r=w−M
2

across
M patches in the same window. The central node has cor-

relations with its neighbors as {{eltr,ij}Nj=1}
w+M

2

r=w−M
2

. Af-
ter the propagation stage, we obtain the propagated features

hl
t,i =

∑w+M
2

r=w−M
2

∑N
j=1 z

l
r,je

l
tr,ij . Then, the updating stage

adopts a non-linear function to update the propagated sensor
features, i.e., zl+1

t,i = fg(h
l
t,i|Wg). Overall, MPNN propa-

gates the information of sensors based on the correlations
between all sensors across M patches, enabling us to fully
capture the comprehensive ST dependencies within the win-
dow to update sensor features. The updating stage introduces
non-linear functions to update sensor features, further en-
hancing the ability to learn effective representations.

After updating sensor features by capturing ST depen-
dencies, a temporal pooling operation is employed to ex-
tract high-level features for each window, drawing inspira-
tion from the pooling operation in CNNs. Given the up-

dated sensor features {zl+1
t,i }w+M

2

t=w−M
2

for the i-the sensor
across M patches, we perform temporal pooling using an
average pooling strategy, yielding sensor features zl+1

w,i =∑w+M
2

t=w−M
2

zl+1
t,i /M for the w-th window. Subsequently, by

stacking the sensors across all windows as depicted in Fig.
2, we create a high-level FC graph serving as input for the
subsequent layer. Note that we only adopt one layer in this
study, thus directly utilizing the obtained sensor features
from each window for output purposes.

Inspired by the multi-branch concept introduced in previ-
ous research (Vaswani et al. 2017), we also integrate mul-
tiple parallel layers of graph construction and convolution.
This approach allows us to initialize the model with diverse
weights, enabling training to capture ST dependencies from
various comprehensive viewpoints and obtain the best possi-
ble solution. Stacking all sensor features from these multiple
layers, we employ a straightforward output layer, i.e., MLP,
to transform the stacked features into representations. These
representations can be leveraged for downstream tasks.

Experimental Results
Datasets We examine our method on three different down-
stream tasks: Remaining Useful Life (RUL) prediction, Hu-
man Activity Recognition (HAR), and Sleep Stage Classi-
fication (SSC). Specifically, we utilize C-MAPSS (Saxena

et al. 2008) for RUL prediction, UCI-HAR (Anguita et al.
2012) for HAR, and ISRUC-S3 (Khalighi et al. 2016) for
SSC, following the previous work (Wang et al. 2023a). For
C-MAPSS which includes four sub-datasets, we adopt the
pre-defined train-test splits. The training dataset is further
divided into 80% and 20% for training and validation. For
HAR and ISRUC, we randomly split them into 60%, 20%,
and 20% for training, validating, and testing. The details of
these datasets can be found in our appendix.

Evaluation To evaluate the performance of RUL predic-
tion, we adopt RMSE and the Score function, following pre-
vious works (Chen et al. 2020; Wang et al. 2023b). Lower
values of these indicators refer to better model performance.
For the evaluation of HAR and SSC, we adopt Accuracy
(Accu.) and Macro-averaged F1-Score (MF1) in accordance
with prior studies (Eldele et al. 2021; Meng et al. 2023).
Larger values of these indicators refer to better performance.
Besides, to reduce the effect of random initialization, we
conduct ten times for all experiments and take the average
results for comparisons.

Implementation Details All methods are conducted with
NVIDIA GeForce RTX 3080Ti and implemented by Py-
Torch 1.9. We set the batch size as 100, choose ADAM as the
optimizer with a learning rate of 1e-3, and train the model
40 epochs. More details can be found in our appendix.

Comparisons with State-of-the-Art
We compare our method with SOTA methods, encompass-
ing conventional methods like AConvLSTM (Xiao et al.
2021), DAGN (Li, Li, and He 2019), Transformer-based ap-
proaches such as InFormer (Zhou et al. 2021) and Auto-
Former (Wu et al. 2021), as well as GNN-based methods
including GCN (Kipf and Welling 2016), HAGCN (Li et al.
2021a), HierCorrPool (Wang et al. 2023a), and MAGNN
(Chen et al. 2023). All methods are re-implemented based
on their original configurations, with the exception of GNN-
based methods, where we replace their encoders with the
same encoders used in our approach for fair comparison.

Table 1, 2, and 3 present the comparison results, showing
the remarkable effectiveness of FC-STGNN. As shown in
the tables, our method exhibits large improvements across
a majority of cases in comparison to both conventional
temporal encoder-based and GNN-based methods. For in-
stance, our method shows improvements of 7.6% and 3.4%
in FD001 and FD003 of C-MAPSS, respectively, over the
second-best results regarding RMSE. Similar improvements
can be observed in UCI-HAR and ISRUC-S3, where our
method outperforms second-best methods by 1.02% and
1.56% regarding accuracy, respectively. These advance-
ments underline the necessity of fully capturing spatial-
temporal dependencies within MTS data, thus enabling su-
perior performance compared to SOTA methods.

Ablation Study
We conducted an ablation study to assess the effectiveness
of our proposed modules. In the first variant ’w/o FC GC2’,
we excluded the usage of our FC Graph Construction and
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Models
FD001 FD002 FD003 FD004

RMSE Score RMSE Score RMSE Score RMSE Score

AConvLSTM 13.10±0.37 286±45 13.11±0.21 737±65 12.13±0.53 276±75 14.64±0.31 1011±107
DAGN 16.11±0.21 595±131 16.43±0.05 1242±116 18.05±0.25 1216±177 19.04±0.10 2321±105
InFormer 13.13±0.22 263±19 13.20±0.15 715±71 12.58±0.24 228±15 14.16±0.49 1023±201
AutoFormer 23.04±0.28 1063±73 16.51±0.47 1248±112 25.40±0.26 2034±163 20.31±0.14 2291±122
GCN 12.58±0.22 237±24 13.78±0.22 849±62 11.92±0.15 218±33 14.44±0.32 967±66
HAGCN 13.10±0.63 263±30 14.92±0.12 1086±87 13.46±0.30 327±52 14.66±0.25 880±150
HierCorrPool 12.64±0.23 227±21 13.23±0.31 709±61 12.30±0.15 220±16 13.86±0.32 854±68
MAGNN 12.63±0.32 246±25 13.09±0.13 714±57 12.15±0.16 253±32 14.30±0.26 978±137

Ours 11.62±0.19 203±16 13.04±0.13 738±49 11.52±0.19 198±12 13.62±0.25 816±63

Table 1: Comparisons with SOTAs in C-MAPSS

Models
UCI-HAR

Accu MF1

AConvLSTM 86.06±1.01 85.75±1.01
DAGN 89.02±0.49 88.94±0.48
InFormer 90.23±0.48 90.23±0.47
AutoFormer 56.70±0.81 54.41±1.74
GCN 94.79±0.33 94.82±0.33
HAGCN 80.79±0.77 81.08±0.75
HierCorrPool 93.81±0.26 93.79±0.28
MAGNN 90.91±0.99 90.79±1.08

Ours 95.81±0.24 95.82±0.24

Table 2: Comparisons with SOTAs in UCI-HAR

Models
ISRUC-S3

Accu MF1

AConvLSTM 72.93±0.62 69.52±1.00
DAGN 55.35±0.35 50.51±2.78
InFormer 72.15±2.41 68.67±3.42
AutoFormer 43.75±0.95 37.88±2.43
GCN 79.62±0.38 77.57±0.94
HAGCN 66.59±0.29 60.20±2.24
HierCorrPool 79.31±0.60 76.25±0.72
MAGNN 68.13±2.54 64.31±5.25

Ours 80.87±0.21 78.79±0.55

Table 3: Comparisons with SOTAs in ISRUC-S3

Graph Convolution approach. Instead, we followed the con-
ventional methods (Jia et al. 2020; Wang et al. 2023a) to
separately construct and convolve graphs for each patch. The
second variant ’w/o M&P’ involved incorporating FC graph
construction but omitted the moving window and temporal
pooling, so local ST dependencies cannot be captured. Fur-
thermore, we obtained the third variant ’w/o pooling’ by in-
troducing the moving window while excluding the temporal
pooling operation that is designed for high-level features.
Lastly, the ’w/o decay’ variant refrained from using the de-
signed decay matrix to enhance the constructed FC graph.
These variants are compared with the complete version.

Table 4 and 5 present the ablation study across three
datasets. We take the RMSE results on FD001 of C-MAPSS
as examples. Comparing against the ’w/o FC GC2’ variant,
we observe that our complete method achieves a 7.6% im-
provement, highlighting the necessity of the FC graph for
effective feature learning through comprehensive modelling
of ST dependencies within MTS data. With the introduction
of FC graph construction, there is a noticeable performance
boost of the ’w/o M&P’ variant, and the gap with the com-
plete version narrows, i.e., the gap is reduced to 4.5%. This
outcome suggests that the FC graph contributes to represen-
tation learning, even without accounting for local ST depen-
dencies within MTS data. Furthermore, by incorporating the
moving window approach, we witness further performance
improvements of the ’w/o pooling’ variant due to its effec-
tiveness in capturing local ST dependencies, narrowing the
gap to 3.4%. With the inclusion of the temporal pooling op-
eration, high-level sensor features are obtained, which helps
to eliminate redundant features and thus further enhance the
performance. Finally, when the decay matrix is excluded,
there is a 4.3% decrease in performance, emphasising the
necessity of employing the decay matrix to refine the con-
structed FC graph.

The above observations hold true across other sub-
datasets of C-MAPSS, UCI-HAR, and ISRUC-S3 as well.
These results underline the importance of modelling the
comprehensive ST dependencies within MTS data, which
in turn allows for the learning of more effective representa-
tions. This comprehensive modelling leads to superior over-
all performance in various downstream tasks.

Sensitivity Analysis
In this section, we conduct sensitivity analysis for No. of
parallel layers, patch size, moving window size, and decay
rate. Typical results are reported, and additional results can
be found in our appendix.

No. of Parallel Layers In our approach, we employ mul-
tiple parallel layers of FC graph construction and graph con-
volution, allowing us to capture the spatial-temporal depen-
dencies within MTS data from diverse perspectives. To as-
sess the impact of varying the number of layers, we obtain
the results in Fig. 4. It can be observed that incorporating
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Variants
FD001 FD002 FD003 FD004

RMSE Score RMSE Score RMSE Score RMSE Score

w/o FC GC2 12.58±0.22 237±24 13.78±0.22 849±62 11.92±0.15 218±33 14.44±0.32 967±66
w/o M&P 12.17±0.16 217±23 13.29±0.13 769±69 11.75±0.19 219±31 14.03±0.25 837±64
w/o Pooling 12.03±0.22 231±24 13.13±0.22 720±61 11.68±0.15 220±33 13.74±0.24 849±58
w/o decay 12.15±0.17 233±21 13.20±0.21 750±58 11.74±0.17 205±25 13.86±0.26 853±71

Complete 11.62±0.19 203±16 13.04±0.13 738±49 11.52±0.19 198±12 13.62±0.25 816±63

Table 4: Ablation study in C-MAPSS

Var. w/o
UCI-HAR ISRUC-S3

Accu MF1 Accu MF1

FC GC2 94.79±0.33 94.82±0.33 79.62±0.38 77.57±0.94
M&P 95.06±0.26 95.10±0.26 79.85±0.27 77.60±0.74
Pooling 95.53±0.30 95.57±0.30 80.16±0.32 77.42±0.80
decay 95.20±0.27 95.28±0.28 80.13±0.32 78.33±0.72

Comp. 95.81±0.24 95.82±0.24 80.87±0.21 78.79±0.55

Table 5: Ablation study in UCI-HAR and ISRUC-S3
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Figure 4: Sensitivity analysis for No. of parallel layers.

additional parallel layers leads to enhanced performance, af-
firming the efficacy of employing multiple layers to model
ST dependencies. For instance, in all cases, the model with
2 layers outperforms the single-layer counterpart. Addition-
ally, in specific cases of ISRUC-S3, introducing 3 layers
contributes to better performance compared to using fewer
layers. However, the performance gains start diminishing or
even reversing when many layers are introduced due to over-
fitting. Thus, too many layers are unnecessary.
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Figure 5: Sensitivity analysis for patch sizes.

Patch Size Analysis We segment each MTS sample as
multiple patches for FC graph construction, which makes

the patch size a parameter f influencing the constructed FC
graph. To evaluate its impact, we conducted the patch size
analysis. Notably, since C-MAPSS samples have relatively
short time lengths, e.g., 30 timestamps for FD001, we opted
for smaller patch sizes within [2, 4, 6, 8, 10] for sample seg-
mentation. While for those in ISRUC-S3 which have larger
time lengths, i.e., 300, we explored patch sizes within [10,
15, 30, 60, 75, 100, 150].

Fig. 5 presents the results. For C-MAPSS where sample
sizes are small, we find that relatively smaller patch sizes
would be good to obtain better performance. For instance,
considering the RMSE of FD001, the optimal performance
is achieved when the patch size is set to 6. Similar trends can
be found across various sub-datasets, where the best perfor-
mance can be generally found when the patch sizes are set
to 4 or 6. Conversely, for datasets characterized by larger
time lengths, employing relatively larger patch sizes leads
to improved performance. For example, ISRUC-S3 samples
exhibit enhanced performance with patch sizes around 75.
These observations emphasize the nuanced relationship be-
tween patch size and performance, which is influenced by
the characteristics of a specific dataset.

(b) ISRUC-S3
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(a) RMSE of C-MAPSS
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Figure 6: Sensitivity analysis for moving window sizes.
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Indicators
FD001 of C-MAPSS ISRUC-S3

FLOPs # Weights Training /s Inference /ms FLOPs # Weights Training /s Inference /ms

GCN 1,793,288 38,625 73 2.34 17,194,912 111,662 242 2.78
HAGCN 1,843,336 22,436 78 2.09 17,150,632 197,828 213 4.04
HierCorr 2,717,034 1,071,906 89 2.34 24,998,334 7,929,590 194 2.65
MAGNN 2,181,150 30,464 453 5.61 19,280,332 155,923 215 10.31

Ours 856,072 20,225 68 2.03 15,422,112 51,822 210 2.23

Table 6: Comparisons of model complexity

Moving Window Size Analysis We utilize moving win-
dows with a designated size M , which traverse along the
patches with stride s, to capture the local ST dependencies
within MTS data. To evaluate their effects, we consider win-
dow sizes M of [1, 2, 3, 4], and stride sizes s of [1, 2].

Fig. 6 shows the analysis results. We consider the RMSE
on C-MAPSS as examples. We find that a larger M can help
to obtain better performance. For instance, the variant with
M = 2 outperforms those with M = 1 which represents the
variant without considering the correlations between DEDT.
The improvements highlight the importance of considering
these correlations through our FC graph. Additionally, fur-
ther increasing M does not consistently yield additional ben-
efits. In fact, performance may decrease when M becomes
too large, e.g., M = 4 for FD001. This is because larger
M includes more patches within each window for graph
convolution, potentially causing local ST dependencies to
be poorly captured. Meanwhile, similar trends can be found
when s = 2. Notably, the performance of s = 2 is generally
poorer when M is smaller, as small M and large s will lose
information when moving the windows. Overall, these find-
ings suggest that a window size of M = 2 and stride size
s = 1 are optimal for achieving the best performance.

(b) ISRUC-S3

FD001 FD002
FD003 FD004

(a) RMSE of C-MAPSS
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Figure 7: Sensitivity analysis for decay rates.

Decay Rate Analysis We employ the decay matrix to en-
hance our FC graph for accurately representing the corre-
lations between DEDT. The choice of decay rate δ is cru-
cial and thus necessitates evaluation. We consider δ values
within [0.1, 0.3, 0.5, 0.7, 0.9, 1], where δ = 1 represents the
variant without using the decay matrix. From the results in
Fig. 7, we find that the variants with relatively larger δ yield
better performance, such as δ = 0.7 and δ = 0.9. When δ
is exceedingly small, e.g., 0.1, the performance experiences
a significant drop, as the correlations between DEDT are
overly distorted. Thus, setting δ to 0.7 or 0.9 proves effective

in achieving good performance for our model.

Model Complexity
Model complexity is a critical factor in determining a
model’s applicability to real systems. Excessive complex-
ity, even if it yields good performance, may render a model
impractical. In this section, we conduct a comprehensive
comparison of our method with four highly competitive ap-
proaches. The evaluation includes Floating-point Operations
Per Second (FLOPs) and model weights, representing time
complexity and the number of trainable weights, respec-
tively. Additionally, we compare the training and inference
times to assess the real-time requirements during these pro-
cesses. The training time is measured by training a model
until convergence. For the inference time evaluation, we
simulate the process in real systems by recording the time
required to predict one sample at a time. To ensure a fair
comparison, all methods are executed on the same computa-
tion platform. The results of the comparisons are presented
in Table 6. We conducted the evaluations in two scenarios,
i.e., RUL prediction (C-MAPSS) and SSC (ISRUC-S3). The
findings suggest that our method exhibits reasonable model
complexity compared to SOTA approaches. Notably, our
method requires the fewest FLOPs and trainable weights, in-
dicating its suitability for deployment in real systems. Fur-
thermore, in terms of inference, our method demonstrates
the lowest inference time, emphasizing its practicality. Al-
though our method requires slightly more training time com-
pared to HierCorr (210 vs. 194), the difference is marginal.

Conclusion
To model the comprehensive Spatial-Temporal (ST) de-
pendencies within MTS data, we design a novel method
named as Fully-Connected Spatial-Temporal Graph Neu-
ral Network (FC-STGNN). The method includes two essen-
tial modules, FC graph construction and FC graph convo-
lution. For graph construction, we design an FC graph to
connect sensors among all timestamps by additionally con-
sidering the correlations between DEDT, enabling compre-
hensive ST dependencies modelling within MTS data. Next,
FC graph convolution is designed, with a moving-pooling
GNN by leveraging a moving window and temporal pooling
to capture the local ST dependencies and then learn high-
level features. Our method is evaluated through extensive
experiments, emphasizing its capacity to effectively model
the comprehensive ST dependencies within MTS data.
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