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Abstract

Contrastive learning, as a self-supervised learning paradigm,
becomes popular for Multivariate Time-Series (MTS) clas-
sification. It ensures the consistency across different views
of unlabeled samples and then learns effective representa-
tions for these samples. Existing contrastive learning meth-
ods mainly focus on achieving temporal consistency with
temporal augmentation and contrasting techniques, aiming
to preserve temporal patterns against perturbations for MTS
data. However, they overlook spatial consistency that requires
the stability of individual sensors and their correlations. As
MTS data typically originate from multiple sensors, ensuring
spatial consistency becomes essential for the overall perfor-
mance of contrastive learning on MTS data. Thus, we propose
Graph-Aware Contrasting for spatial consistency across MTS
data. Specifically, we propose graph augmentations includ-
ing node and edge augmentations to preserve the stability of
sensors and their correlations, followed by graph contrasting
with both node- and graph-level contrasting to extract robust
sensor- and global-level features. We further introduce multi-
window temporal contrasting to ensure temporal consistency
in the data for each sensor. Extensive experiments demon-
strate that our proposed method achieves state-of-the-art per-
formance on various MTS classification tasks. The code is
available at https://github.com/Frank-Wang-oss/TS-GAC.

Introduction
Multivariate Time-Series (MTS) data are widely used in
areas such as healthcare and industrial manufacturing for
classification tasks, attracting significant research interests.
To improve the performance of MTS classification, deep
learning has gained popularity for learning effective rep-
resentations (Craik, He, and Contreras-Vidal 2019; Chen
et al. 2021; Deng and Hooi 2021; Chen et al. 2020c; Zhao
et al. 2019). However, the need for substantial labeled sam-
ples poses challenges as large-scale manual labeling is im-
practical, limiting their applicability to real-world scenarios.
To address this challenge, Contrastive Learning (CL) has
emerged as a promising approach (Zhang et al. 2023a; El-
dele et al. 2023). By contrasting the different views of un-
labeled samples that are commonly generated by augmen-
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tations, CL enhances encoder’s robustness to perturbations
and learns robust and effective representations.

Researchers have recently begun exploring CL for MTS
data (Eldele et al. 2021; Tonekaboni, Eytan, and Goldenberg
2021), with a primary focus on achieving temporal consis-
tency by preserving temporal patterns robustly against per-
turbations. Specifically, temporal augmentations such as jit-
tering or permutation are commonly used to create different
views for MTS data. Encoders are then employed to extract
temporal features, based on which CL is performed to make
the encoders robust to temporal disturbances, thus preserv-
ing temporal patterns within MTS data. To further enhance
temporal consistency, temporal contrasting is often achieved
with a predictive contrastive loss when predicting the future
timestamps with the past information (Choi and Kang 2023;
Eldele et al. 2021).

While the current methods have made progress with CL
for MTS data, they mainly focused on temporal consistency
while ignoring spatial consistency during the CL process.
Here, the spatial consistency refers to maintaining the stabil-
ity of both the individual sensors and the correlations across
the different sensors. Specifically, the robustness of MTS
data relies on the stability of each individual sensor, i.e., any
disturbance in a sensor could have a significant impact on the
classification performance of an MTS sample. We take Fig.
1 for illustration. Amplitude disturbances, such as insensi-
tivity, in foot signals can lead to the similar foot amplitude
in walking and running actions, potentially causing a classi-
fier to misclassify running as walking. Thus, a robust algo-
rithm should be able to identify disturbances within individ-
ual sensors. Moreover, correlations exist between sensors,
with certain sensors exhibiting stronger correlations across
each other than with others. For example, due to the physical
connection between the foot and knee, a foot sensor is more
correlated with a knee sensor than a hand sensor. Preserv-
ing the robustness of these relative sensor relationships can
further help learn robust sensor features (Yu, Yin, and Zhu
2017; Jia et al. 2020). As MTS data typically originate from
multiple sensors, it is crucial to ensure the spatial consis-
tency to enhance the overall CL performance on MTS data.

The above discussion motivates us to propose a novel ap-
proach called Graph-Aware Contrasting for MTS data (TS-
GAC). To achieve spatial consistency, specific augmenta-
tion and contrasting methods tailored for MTS data are de-
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Figure 1: Signals from knee and foot for walking and run-
ning. The foot sensor is more important for classification
than the knee sensor due to its large amplitude. (a) During
walking, both knee and foot have low frequency and ampli-
tude. (b) During running, both sensors show increased fre-
quency and amplitude. Disturbances in the foot sensor, like
insensitivity, may cause running signals to have a similar
amplitude to walking signals, which may mislead a classi-
fier and mis-classify running as walking.

signed. We first design graph augmentations, involving node
and edge augmentations, to augment MTS data. For node
augmentations, we apply temporal and frequency augmenta-
tions (Zhang et al. 2022; Yang and Hong 2022) to fully aug-
ment each sensor, while edge augmentations are designed to
augment sensor correlations, ensuring robustness in the rela-
tionships between sensors. By capturing the augmented sen-
sor correlations, Graph Neural Network (GNN) (Wang et al.
2023; Jia et al. 2020) is utilized to update sensor features.

With updated sensor features, we then design graph con-
trasting which incorporates both node- and graph-level con-
trasting to learn robust sensor- and global-level features. For
node-level contrasting, we create two views using the pro-
posed augmentations and contrast the sensors in different
views within each MTS sample to ensure the robustness of
each sensor against perturbations. Additionally, we map the
sensor features to global features and introduce graph-level
contrasting by contrasting MTS samples in different views
within each training batch. Furthermore, we achieve tempo-
ral consistency for each sensor through temporal contrasting
by following prior works (Choi and Kang 2023; Eldele et al.
2021). Due to the dynamic nature of sensor correlations in
MTS data (Wang et al. 2023), we propose segmenting a sam-
ple into multiple windows, enabling us to incorporate multi-
window temporal contrasting which ensures the consistency
of temporal patterns within each sensor.

In summary, our contributions are three folds. First, to
promote spatial consistency, we propose novel graph aug-
mentations to enhance the quality of augmented views for
MTS data. The graph augmentations involve node and edge
augmentations, aiming to augment sensors and their correla-
tions respectively. Second, we design graph contrasting that
includes node- and graph-level contrasting, facilitating the
learning of robust sensor- and global-level features. We also
introduce a multi-window temporal contrasting to achieve
temporal consistency for each sensor. Third, we conduct ex-
tensive experiments on ten public MTS datasets, showing
that our TS-GAC achieves state-of-the-art performance.

Related Work
Contrastive Learning (CL) As a self-supervised learn-
ing paradigm, CL has gained popularity due to its ability
to learn effective features from unlabeled samples by bring-
ing positive pairs closer while pushing negative pairs far-
ther (Zhang et al. 2023a; Eldele et al. 2023). Augmentations
are commonly used to create positive pairs, generating aug-
mented samples from different perspectives. Negative pairs,
on the other hand, are created using the remaining samples
in the same batch (Chen et al. 2020a) or stored in a memory
bank (He et al. 2020). Contrasting these positive and neg-
ative pairs helps encoders become robust to perturbations,
ensuring consistency in the learned features, and thus learn-
ing robust and effective features from unlabeled data.

Researchers have proven the effectiveness of CL in image
tasks (Hjelm et al. 2018; He et al. 2020; Caron et al. 2020;
Chen et al. 2020a). MoCo (He et al. 2020) designed a mo-
mentum encoder with a memory bank to store negative sam-
ples, achieving desirable performance with limited computa-
tional resources. SimCLR (Chen et al. 2020a) adopted larger
batches of negative pairs and achieved comparable results to
supervised learning. Inspired by SimCLR, MoCo-v2 (Chen
et al. 2020b) improved performance with powerful augmen-
tations without requiring large batches. Besides, negative
pairs may occupy computation resources, so BYOL (Grill
et al. 2020) and SimSiam (Chen and He 2021) learned repre-
sentations with only positive pairs. Although these methods
have achieved decent performance, they are proposed for
images. Different from images, MTS data contain both tem-
poral and spatial information from multiple sensors, making
traditional image-based augmentation and contrasting meth-
ods unsuitable for MTS data.

CL for MTS Data Pioneering works have successfully
utilized CL techniques to learn decent representations from
unlabeled MTS data, primarily focusing on achieving tem-
poral consistency (Pöppelbaum, Chadha, and Schwung
2022; Khaertdinov, Ghaleb, and Asteriadis 2021; Hao et al.
2023; Yue et al. 2022; Eldele et al. 2021). Specifically, they
augmented MTS data with temporal augmentations such as
jittering, cropping, and sub-series, and then conducted CL to
ensure encoders robustness to temporal disturbances. Mean-
while, some works (Choi and Kang 2023; Eldele et al. 2021)
also introduced temporal contrasting by summarizing past
information for contrasting with future timestamps, further
enforcing robustness to perturbations within timestamps.

While these works advanced CL for MTS data by en-
suring temporal consistency, they overlook spatial consis-
tency for MTS data. Some recent works proposed to incor-
porate spatial information, e.g., sensor correlations, into CL
frameworks. For example, TAGCN (Zhang et al. 2023d) uti-
lized GNN to extract features from sub-series of MTS data
and then performed CL. Additionally, TSGCC (Zhang et al.
2023b) designed a graph-based method to compute weights
between samples for clustering by instance- and clustering-
contrasting. However, these methods only utilized GNN to
extract spatial information within MTS data, while still over-
looking spatial consistency to achieve better CL for MTS
data. Although a few recent studies (Chen et al. 2022; Li
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et al. 2022) explored channel-wise signal augmentations,
graph-level augmentations and contrasting are still under-
explored, limiting their ability to achieve robust spatial con-
sistency for MTS data.

To overcome the limitations, we propose TS-GAC which
incorporates both the graph augmentation and graph con-
trasting techniques to ensure spatial consistency during the
CL process for MTS classification.

Methodology
Problem Formulation
Given a dataset with n unlabeled MTS samples X =
{Xj}nj=1, each sample Xj ∈ RN×L is collected from N
sensors with T timestamps. Our objective is to perform con-
trastive learning scheme that can achieve spatial consistency
for MTS data, enabling the training of an encoder F with-
out relying on labels. This approach allows us to achieve
enhanced CL performance and thus extract effective repre-
sentations hj = F(Xj) ∈ Rd. With hj , we employ a simple
classifier, e.g., a multi-layer perceptron, to obtain class prob-
abilities yj ∈ Rc, where c represents the number of classes
in the classification task. For simplicity, the subscript j is
removed, and we denote an MTS sample as X .

Overall Structure
Fig. 2 shows the overall structure of TS-GAC, which aims
to achieve spatial consistency in CL for MTS classification.
Specific augmentation and contrasting techniques are tai-
lored for MTS data. For augmentation, we consider node
and edge augmentations to augment individual sensors and
their correlations, generating weak and strong views for each
sample. Node frequency augmentations are applied first,
followed by segmenting augmented samples into multiple
windows considering the dynamic local patterns in MTS
data. Node temporal augmentations are utilized within each
window, followed by a 1-Dimensional Convolutional Neu-
ral Network (1D-CNN) to process these windows. Subse-
quently, graphs are constructed with each sensor as a node
and sensor correlations are edges. The constructed graphs
are further augmented by edge augmentations, and then pro-
cessed by a GNN-based encoder to learn representations.
Next, to achieve spatial consistency, we design graph con-
trasting including Node-level Contrasting (NC) and Graph-
level Contrasting (GC). NC enables the contrasting of sen-
sors within each sample to learn robust sensor-level fea-
tures while GC allows the contrasting of samples within
each training batch, promoting the learning of robust global-
level features. We further introduce Multi-Window Tempo-
ral Contrasting (MWTC) to ensure temporal consistency for
each sensor, by utilizing past windows in one view to predict
the future windows in another view.

Augmentation
CL learns robust representations by contrasting different
views of unlabeled data, which are commonly generated by
augmentations. Then, the augmented views from the same
data are pulled closer and the views from different data

are simultaneously pushed farther for representation learn-
ing. Thus, augmentations are critical for CL to learn robust
and generalizable representations. To enhance augmentation
quality for MTS data, we consider its multi-source nature,
i.e., collected from multiple sensors (Zhao et al. 2019). We
argue that augmentations for MTS data should be able to en-
sure the learning of robust sensor features and sensor corre-
lations. For this purpose, we design node and edge augmen-
tations that augment individual sensors and their correlations
respectively. Further, following (Eldele et al. 2021), we gen-
erate weak and strong views, i.e., weakly and strongly aug-
mented, for each sample with the augmentations for subse-
quent contrasting.

Node Augmentations We perform both frequency and
temporal augmentations for the nodes (i.e., sensors).

Frequency augmentations: We utilize frequency aug-
mentations to augment individual sensors, as the augmenta-
tions are widely recognized as effective in augmenting time-
series data (Zhang et al. 2022, 2023c). This involves trans-
forming the signals of each sensor into the frequency domain
and augmenting the extracted frequency features. The aug-
mented frequency features are then transformed back into
the temporal domain to obtain augmented signals.

Particularly, we adopt Discrete Wavelet Transform
(DWT) (Boggess et al. 2002) to decompose signals into de-
tail and approximation coefficients using high-pass and low-
pass filters, representing detailed and general trends within
the signals, respectively. To generate weak and strong views,
we add Gaussian noise to the detail and approximation coef-
ficients respectively. The augmented frequency features are
then transformed back into the temporal domain using in-
verse DWT (iDWT) to obtain the augmented signals. Mathe-
matically, frequency augmentations are achieved via Eq. (1),
where ηA,i and ηD,i denote the approximation and detail co-
efficients for the i-th sensor, and ξ represents the noise added
to coefficients. We denote {Xw, Xs} as the augmented sig-
nals in weak and strong views.

ηA,i, ηD,i = DWT (xi),

ηsA,i = ηA,i + ξ, ηwD,i = ηD,i + ξ, (1)

xs
i = iDWT (ηsA,i, ηD,i), x

w
i = iDWT (ηA,i, η

w
D,i).

Temporal augmentations: We further introduce tempo-
ral augmentations to augment each sensor due to its impor-
tance in augmenting time-series data (Pöppelbaum, Chadha,
and Schwung 2022; Khaertdinov, Ghaleb, and Asteriadis
2021). Before temporal augmentations, we note that MTS
data show dynamic properties, i.e., local patterns of MTS
data are dynamically changing (Wang et al. 2023). To cap-
ture such properties, we segment each MTS sample into
mini windows. As displayed in Fig. 3, given the window
with length f , we segment an MTS sample into L̄ = [L/f ]
windows, where [ ] represents truncation. Thus, we obtain
Xw = {X̄w

t }L̄t=1 for the weak view, where t is the index
of the window, and X̄w

t = {x̄w
t,i}Ni=1 ∈ RN×f contains the

local patterns, including local sensor features and correla-
tions. The windows in the strong view {X̄s

t }L̄t=1 are obtained
in the same way. In this case, if we conduct temporal aug-
mentations before segmentation, it is hard to augment each
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Figure 2: Overall structure of TS-GAC. (1) Graph augmentations to augment MTS data effectively, generating weak and strong
views. The graph augmentations involve node and edge augmentations, where node augmentations include both frequency and
temporal augmentations to fully augment sensors. Node frequency augmentations are first applied, followed by segmenting
augmented samples into multiple windows by considering the dynamic local patterns in MTS data. Node temporal augmenta-
tions are utilized within each window, followed by 1D-CNN to process these windows. Subsequently, graphs are constructed
and augmented through edge augmentations, and then processed by GNN. (2) Graph contrasting includes NC and GC to achieve
spatial consistency. NC ensures robust sensors by pulling closer corresponding sensors in different views and pushing father
different sensors in those views within each sample. GC ensures robust global features by pulling closer corresponding samples
in different views and pushing father different samples in those views within each batch. MWTC further achieves temporal
consistency for each sensor by summarizing past windows to contrast with future windows in another view.

One MTS sample 𝑿

𝒙𝟏
𝒙𝟐

𝒙𝑵

Window ഥ𝑿𝟏 Window ഥ𝑿𝒕 Window ഥ𝑿ഥ𝑳
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Length f

Figure 3: The multi-window segmentation to generate mul-
tiple windows for one MTS sample.

window averagely, so we propose augmenting each window
after segmentation.

We adopt permutation for temporal augmentations due
to its wide application (Eldele et al. 2021; Pöppelbaum,
Chadha, and Schwung 2022) and augment each sensor of
each window. After augmentation, we obtain the augmented
windows, e.g., {X̄a,w

t }L̄t=1 in the weak view, where X̄a,w
t =

{x̄a,w
t,i }Ni=1. 1D-CNN is then utilized as an encoder to capture

the temporal information between windows (Jin et al. 2022),
whose details are attached in our supplementary materials.
With the encoder, we learn updated windows, e.g., {Zw

t }kt=1
for the weak view, where Zw

t = {zwt,i}Ni=1. Similar notations
such as X̄a,s

t and Zs
t apply to the strong view.

Edge Augmentations The correlations between sensors
should remain robust due to their importance for learning

sensor features (Jia et al. 2020; Zhang, Zhang, and Tsung
2022). To ensure robust sensor relationships, we begin by
constructing graphs whose nodes and edges represent sen-
sors and the correlations between these sensors respectively.
Augmenting the edges allows us to augment the relations
effectively. For graph construction, we note that correlated
sensors should follow similar properties and their features
should be similar in the feature space, so we leverage the
features similarities to define the sensor correlations. Given
the features Zt = {zt,i}Ni=1 ∈ RN×f , we compute the cor-
relation between sensors i and j using the dot product of
their features, i.e., et,ij = zt,i(zt,j)

T . Then, the softmax
function is used to restrict the correlations within the range
[0,1]. Multiple graphs are built based on the windows for
two views. For the weak view, the graph for tth window is
denoted as Gw

t = (Zw
t , Ew

t ), where Ew
t = {ewt,ij}Ni,j . Simi-

lar graphs Gs
t are obtained for the strong view.

We then introduce edge augmentations to augment the
correlations between sensors. A naive approach would be
randomly adding noise, replacing, or dropping certain edges
for graph augmentation (You et al. 2020). However, this
method may introduce excessive bias and significantly al-
ter the topological structure within MTS data. Note that
GNN updates sensor features based on their correlations
with other sensors. Thus, strong correlations ensure more in-
formation propagation, making them more crucial than weak
correlations. Randomly disturbing these strong correlations
can introduce excessive bias. To address this issue, it is nec-
essary to add constraints for the edge augmentation. Thus,
we propose retaining the s strongest correlations (i.e., top-s
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correlations) for each sensor and augmenting the remaining
correlations by replacing them with random values within
the range [0, 1]. This approach allows us to fully augment
sensor correlations while preserving the topological infor-
mation within MTS data as much as possible. Specifically,
we retain more strong correlations for graphs in the weak
view and fewer strong correlations for graphs in the strong
view. The resulting augmented graph for the tth window in
the weak view is denoted as Ga,w

t = (Zw
t , Ea,w

t ), and Ea,w
t

are augmented sensor correlations. Similarly, Ga,s
t denotes

the augmented graph for the strong view.
With the augmented graphs, we adopt GNN to update

sensor features by leveraging the augmented correlations
as conventional works did (Jia et al. 2020; Wang et al.
2023). Particularly, the features for sensor i in the weak
view are updated by a nonlinear function, i.e., zwt,i =

σ(
∑N

j zwt,je
a,w
t,ijWg), where Wg are learnable weights. The

updated sensor features zwt,i and zst,i in weak and strong
views are then used for subsequent contrasting.

Contrasting
With the augmentations to generate weak and strong views,
we design graph contrasting to achieve spatial consistency
and further design MWTC to achieve temporal consistency
for each sensor. We begin by presenting MWTC in this sec-
tion, as it learns high-level sensor features within multi-
window for subsequent graph contrasting.

Multi-Window Temporal Contrasting MWTC operates
at the sensor-level, ensuring temporal consistency for each
sensor. It is noted that the multi-window of each sensor show
temporal dependencies where future windows are normally
affected and dependent on past windows, which can be in-
corporated to keep the multi-window robust. Inspired by the
idea of predictive coding (Oord, Li, and Vinyals 2018) and
temporal contrasting (Choi and Kang 2023; Eldele et al.
2021), we propose to summarize past windows in one view
to contrast with the future windows in another view. By do-
ing so, we aim to maintain the temporal dependency robust-
ness against perturbations to the windows, enabling that the
temporal patterns within MTS data are preserved.

Specifically, we introduce an auto-regressive model fa to
summarize the sensor features in past k̄ windows, i.e., cwi =
fa(z

w
1,i, ..., z

w
k̄,i

|Wa), representing the summarized vectors
for the i-th sensor in the weak view. cwi is then to predict
future windows, i.e., z̄w

k̄+1,i
= fk̄+1(c

w
i ), ..., z̄

w
k,i = fk(c

w
i ),

where fk̄+1(·), ..., fk(·) are nonlinear functions to predict
the (k̄+1)-th, ..., k-th windows. Similar operations are con-
ducted for the strong view. Here, we adopt a transformer
model for fa following (Eldele et al. 2021), the detail of
which is attached in our supplementary materials. Ls→w

MWTC
in Eq. (2) is the loss using the past windows in the strong
view to predict the future windows in the weak view. Here,
the predicted window z̄st,i should exhibit similarity with its
positive pair zwt,i, while being dissimilar with its negative
pairs zwv,i, v ∈ V̂t,i, where V̂t,i denotes the set of windows
excluding the t-th window for sensor i.

Ls→w
MWTC =

−1

N(k − k̄)

N∑
i

k∑
t=k̄

log
exp((z̄st,i)

T zwt,i)∑
v∈V̂t,i

exp((z̄st,i)
T zwv,i)

.

(2)
Similarly, we can obtain Lw→s

MWTC and thus obtain
LMWTC = Ls→w

MWTC + Lw→s
MWTC for sample X .

Graph Contrasting We propose graph contrasting to
achieve spatial consistency, including Node-level Contrast-
ing (NC) and Graph-level Contrasting (GC) to learn robust
sensor- and global-level features. NC is achieved by con-
trasting sensors in different views within each MTS sample
while GC is achieved by contrasting the samples within each
training batch. Notably, we leverage the vectors {ci}Ni=1 for
graph contrasting, as the vectors represent the high-level fea-
tures by summarizing the sensor-level features within multi-
window. By utilizing the high-level features, we can achieve
more effective graph contrasting.

Node-level Contrasting: NC is designed to learn robust
sensor-level features. Specifically, it aims to maximize the
similarity between the corresponding sensors in two views
while minimizing the similarity between different sensors
in those views. By doing so, NC encourages the encoder to
learn features against perturbations to each sensor. Eq. (3)
presents the node-level contrastive loss, where V̂i denotes
the set of sensors excluding sensor i. The visualization pro-
cess is shown in NC of Fig. 2.

Ls→w
NC = − 1

N

N∑
i

log
exp(fsim(csi , c

w
i )/τ)∑

v∈V̂i
exp(fsim(csi , c

w
v )/τ)

. (3)

Here fsim(a, b) is a function to measure the similarity of
samples implemented as the dot product aT b, and τ is a
temperature parameter. Ls→w

NC denotes that the sensors in
the strong view are contrasted with the positive and nega-
tive pairs in the weak view. Similarly, we can obtain Lw→s

NC
and thus obtain LNC = Ls→w

NC + Lw→s
NC for sample X .

Graph-level Contrasting: GC aims to learn robust global-
level features by contrasting samples within each training
batch. For subsequent contrasting, we here obtain the global-
level features by stacking all sensor features. For the weak
view, gw = [cw1 |...|cwN ], where [ ] denotes concatenation.
Similar operations are conducted for the strong view.

To learn robust global-level features, GC is achieved by
maximizing the similarity between the corresponding sam-
ples in two views and simultaneously minimizing the sim-
ilarity between the different samples in those views. Given
a batch of B MTS samples, we have 2B augmented sam-
ples from two augmented views. The corresponding samples
in two views are treated as positive pairs, and each view of
the sample can form 2B-2 negative pairs with the remaining
augmented samples. We denote the global-level features of
the p-th augmented samples in weak and strong views within
the batch as g{w,s}

p . Accordingly, the graph-level contrasting
is demonstrated as Eq. (4), which denotes that the samples in
the strong view are contrasted with the remaining augmented
samples in the batch. Here, V̂p denotes the set of samples in
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the batch excluding the p-th sample.

Ls
GC = − 1

B

B∑
p=1

log
exp(fsim(gsp, g

w
p )/τ)∑

v∈V̂p
exp(fsim(gsp, g

{w,s}
v )/τ

. (4)

Similarly, we can obtain Lw
GC for the weak view and thus

obtain LGC = Ls
GC + Lw

GC .
Finally, we combine MWTC, NC, and GC to form the

final self-supervised loss as Eq. (5), where λMWTC , λNC ,
and λGC are hyperparameters that denote relative weights
of the losses. Notably, MWTC and NC are both achieved
for each MTS sample, so they are denoted as Lp,MWTC and
Lp,NC for the p-th sample.

L = λMWTC

B∑
p

Lp,MWTC+λNC

B∑
p

Lp,NC+λGCLGC .

(5)

Experimental Results
Datasets We examine our method on ten public MTS
datasets for classification, including Human Activity Recog-
nition (HAR) (Anguita et al. 2012), ISRUC (Khalighi et al.
2016), and eight large datasets from UEA archive, i.e., Ar-
ticularyWordRecognition (AWR), FingerMovements (FM),
SpokenArabicDigitsEq (SAD), CharacterTrajectories (CT),
FaceDetection (FD), InsectWingbeat (IW), MotorImagery
(MI), and SelfRegulationSCP1 (SRSCP1). For HAR and IS-
RUC, we randomly split them into 80% and 20% for training
and testing, while for those from UEA archive, we directly
adopt their pre-defined train-test splits. The statistics of the
datasets are in the Appendix.

Evaluation For evaluation, we follow the standard linear
classification scheme as current methods did (Eldele et al.
2021; Yue et al. 2022), i.e., train an encoder with only train-
ing data in a self-supervised manner and then train a linear
classifier on top of the pre-trained encoder. To evaluate per-
formance, we adopt two metrics, i.e., Accuracy (Accu.) and
Macro-averaged F1-Score (MF1) (Eldele et al. 2021; Meng
et al. 2022). Besides, to reduce the effect of random initial-
ization, we conduct ten times for all experiments and take
the average results for comparisons. The standard variations
are reported to show the robustness of the results.

Implementation Details All methods are conducted with
NVIDIA GeForce RTX 3080Ti and implemented by Py-
Torch (Paszke et al. 2019). We set the batch size as 128 and
choose ADAM as the optimizer with a learning rate of 3e-
4. We pre-train the model and train the linear classifier 40
epochs. More implementation details are in the Appendix.

Comparisons with State-of-the-Arts
We compare our method with SOTA methods, includ-
ing TNC (Tonekaboni, Eytan, and Goldenberg 2021), TS-
TCC (Eldele et al. 2021), TS2Vec (Yue et al. 2022),
MHCCL (Meng et al. 2022), CaSS (Chen et al. 2022),
and TAGCN (Zhang et al. 2023d). All methods are re-
implemented based on their original settings except for the

encoders, which are replaced by the same encoder as ours
for fair comparisons.

Table 1 shows the comparisons with SOTA methods.
From the table, we observe that TS-GAC achieves the best
performance on eight out of ten datasets. Particularly, TS-
GAC gains great improvements on HAR and ISRUC, im-
proving by 1.44% and 3.13% respectively regarding accu-
racy. In the remaining cases where TS-GAC achieves the
second best, the gaps of TS-GAC with the best result are
marginal, e.g., only 0.4% lower than the best accuracy for
FM. Meanwhile, TS-GAC has smaller variances, indicating
that our TS-GAC is more robust and stable.

Sensor 1
Sensor 2
Sensor 3

Sensor 4
Sensor 5
Sensor 6

Sensor 7
Sensor 8
Sensor 9

TS2Vec TAGCN Ours

Figure 4: Visualization for sensor features.

Sensor 1 Weak Sensor 1 Strong
Sensor 2 Weak Sensor 2 Strong
Sensor 3 Weak Sensor 3 Strong
Sensor 4 Weak Sensor 4 Strong
Sensor 5 Weak Sensor 5 Strong

TAGCN OursTS2Vec

Figure 5: Visualization for spatial consistency.

The superior performance can be attributed to the spa-
tial consistency achieved by TS-GAC. To intuitively demon-
strate this spatial consistency, we visualized sensor features
from different views, comparing TS-GAC with two compet-
itive methods, TS2Vec and TAGCN. We first visualized the
individual sensor features. As shown in Fig. 4, TS-GAC ex-
hibits clearer sensor clusters than TS2Vec and TAGCN, em-
phasizing its ability to learn robust sensor features. Based on
the clear sensor features, the features extracted from weak
and strong views are aligned. Specifically, TS-GAC obtains
closer feature clusters for the same sensors in weak and
strong views, demonstrating its capability to learn consistent
sensor features across different perspectives.

Ablation Study
We evaluate designed augmentation and contrasting tech-
niques within TS-GAC, which fall into two categories of
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Datasets Metrics TNC TS-TCC TS2Vec MHCCL CaSS TAGCN TS-GAC (Ours)

HAR
Accu 81.10±1.88 91.66±0.42 92.78±0.32 82.95±0.55 82.64±0.31 92.83±0.28 94.27±0.12
MF1 78.24±2.91 91.86±0.40 92.78±0.33 82.70±0.62 82.34±0.31 92.66±0.29 94.07±0.14

ISRUC
Accu 77.69±1.28 80.50±0.42 76.32±0.48 74.71±0.98 81.09±0.19 77.21±0.21 84.22±0.17
MF1 64.08±1.60 79.12±0.40 74.44±0.59 72.09±1.23 79.73±0.29 76.23±0.27 83.45±0.23

AWR
Accu 82.60±4.21 89.44±0.68 98.30±0.09 93.00±0.56 97.47±0.16 97.87±0.27 98.33±0.08
MF1 77.42±5.34 89.51±0.73 98.29±0.10 93.14±0.75 97.46±0.16 97.86±0.27 98.33±0.07

FM
Accu 48.90±2.42 47.40±1.63 47.10±4.22 52.40±2.28 50.00±1.79 51.50±1.91 52.00±1.54
MF1 43.02±5.25 47.36±1.64 47.03±4.18 49.82±3.06 35.10±2.01 49.52±2.04 48.78±0.71

SAD
Accu 90.30±1.36 95.20±0.15 97.31±0.19 95.91±0.56 97.44±0.07 97.50±0.03 97.99±0.05
MF1 88.83±1.42 95.24±0.15 97.31±0.19 95.92±0.45 97.45±0.07 97.52±0.03 97.99±0.05

CT
Accu 96.23±1.24 98.61±0.17 98.68±0.02 98.21±0.10 97.16±0.07 98.89±0.10 98.82±0.05
MF1 95.98±1.56 98.49±0.19 98.59±0.02 95.62±0.11 96.92±0.08 98.81±0.09 98.77±0.06

FD
Accu 50.15±0.61 58.00±1.71 59.60±0.61 55.26±1.12 54.38±0.47 58.21±0.74 60.53±0.31
MF1 41.59±1.03 57.83±2.24 59.20±0.67 53.10±1.92 54.29±0.48 57.68±1.02 60.47±0.51

IW
Accu 30.19±0.27 56.08±1.22 58.60±0.35 29.30±2.34 24.45±2.35 58.07±0.31 65.80±0.36
MF1 28.86±1.02 55.72±1.22 58.16±0.42 24.29±2.46 22.29±2.40 57.90±0.30 65.49±0.48

MI
Accu 52.40±3.12 51.70±4.63 53.00±0.49 52.45±0.78 51.00±1.67 50.00±2.42 56.00±0.46
MF1 52.59±3.85 46.53±5.88 48.87±0.58 38.64±1.12 17.54±2.45 46.94±3.21 50.25±0.36

SRSCP1
Accu 76.76±1.27 83.64±0.99 82.94±1.67 82.31±1.01 83.95±1.15 82.18±1.10 84.47±1.19
MF1 75.90±1.02 83.61±0.99 82.92±1.68 81.81±1.00 83.81±1.15 82.18±1.10 84.44±1.19

Table 1: Comparisons with State-of-the-Art methods for different tasks (%)

TS-GAC (Variants)
Augmentations Contrasting

Completew/o Aug. (N) w/o Aug. (E) w/o GC w/o NC w/o MWTC

HAR
Accu 92.97±0.23 93.67±0.11 92.10±0.09 92.29±0.27 93.60±0.19 94.27±0.12
MF1 92.69±0.27 93.41±0.12 91.76±0.11 92.03±0.30 93.38±0.21 94.07±0.14

ISRUC
Accu 83.86±0.20 83.87±0.18 81.70±0.14 81.29±0.12 81.29±0.34 84.22±0.17
MF1 82.88±0.28 82.80±0.15 80.62±0.13 80.11±0.11 80.11±0.87 83.45±0.23

Table 2: Ablation study for graph augmentation and graph contrasting (%)

variants. The first category tests augmentations, including
w/o Aug. (N) and w/o Aug. (E), representing variants with-
out node and edge augmentations, respectively. The sec-
ond category assesses the effectiveness of contrastive losses,
with variants w/o GC, w/o NC, and w/o MWTC indicating
the removal of graph-level contrasting, node-level contrast-
ing, and multi-window temporal contrasting, respectively.
Finally, we compare them with the complete TS-GAC.

Table 2 shows the results, where we only present the re-
sults on HAR and ISRUC due to limited space. More results
can be found in our supplementary materials. The experi-
mental results demonstrate the effectiveness of our proposed
graph augmentation and contrasting techniques in achiev-
ing spatial consistency for MTS data. Specifically, the graph
augmentations show significant improvements in learning
robust representations. Compared to the variant without
node augmentations, our complete TS-GAC achieves im-
provements of 1.30% and 0.36% on the two datasets. Sim-
ilarly, compared to the model without edge augmentations,
our complete TS-GAC achieves improvements of 0.60% and

0.35% on the two datasets. The improvements indicate the
necessity of using graph augmentations for better augment-
ing MTS data. Meanwhile, the designed contrasting tech-
niques play crucial roles in learning robust representations,
and our complete TS-GAC achieves the best performance
compared to the variants without any of the contrastive
losses. For instance, we see drops of 2.17% and 2.52% by
removing GC and drops of 1.98% and 2.93% by removing
NC on the two datasets, indicating the effectiveness of graph
contrasting in achieving spatial consistency. We further ob-
serve drops of 0.67% and 2.90% by removing MWTC on the
two datasets, showing the importance of achieving tempo-
ral consistency for each sensor. Additionally, we can derive
from the results that TS-GAC can still achieve good per-
formance even when only graph contrasting is used, further
highlighting the effectiveness of graph contrasting.

Overall, these findings validate the importance of our
proposed graph augmentation and contrasting techniques,
demonstrating the necessity of achieving spatial consistency
when conducting CL for MTS data.
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Sensitivity Analysis
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Figure 6: Sensitivity analysis for λMWTC , λGC , and λNC .

Hyperparameter Analysis We analyze λMWTC , λGC ,
and λNC to test their effects. The hyperparameters are trade-
offs between various losses, so we choose the values within
[0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1.0]. To re-
duce computation costs, we fixed other hyperparameters as
1 when testing one of them. From Fig. 6, we observe that
TS-GAC tends to achieve better performance when the hy-
perparameters are set as larger values. For example, the ac-
curacy increases by 2% with λGC increasing from 0 to 0.7
on HAR. The improvements show that the contrastive losses
have positive effects on CL performance. However, the im-
provements become small when the values are large enough.
For example, the performance has no obvious improvements
with increasing λGC from 0.7 to 1. Similar trends can also
be found in other hyperparameters. Therefore, we can de-
rive that the large hyperparameters have positive effects on
the performance; however, too large values are unnecessary.
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Figure 7: Sensitivity analysis for retained edges in views.

Number of retained edges for edge augmentations To
effectively augment sensor correlations, we design edge
augmentations by retaining the s strongest correlations, i.e.,
edges, for each sensor and replacing remaining correlations
with random values. The value of s is crucial for augment-
ing sensor relations and thus requires testing. Here, the weak
view should have larger s for weak augmentation while the
strong view should have smaller s for strong augmentation.
Meanwhile, each sensor in HAR and ISRUC has 9 and 10
edges respectively. Thus, we set s in the weak view within

[5,6,7,8,9] for HAR and add 10 for ISRUC. For the strong
view, we set s within [1, 2, 3, 4, 5] for both datasets. Fig. 7
shows the results on HAR and ISRUC, where no. of retained
edges represents the value of s. We take the results in HAR
for example, and observe that our model shows better perfor-
mance when s in the strong view is set to 2 while keeping s
in the weak view fixed. On the other hand, our model shows
better performance when s in the weak view is set to 7 or
8 while keeping s in the strong view fixed. These trends in-
dicate that having fewer retained correlations in the strong
view has a positive effect, but the value of s should not be
too small so as to avoid overly distorted correlations. Simi-
larly, having more retained correlations in the weak view is
beneficial, but the value of s should not be too large.

Conclusion
We propose TS-GAC for MTS classification. To achieve
spatial consistency, specific augmentation and contrasting
techniques are tailored for MTS data. To better augment
MTS data, graph augmentations are proposed, including
node and edge augmentations for ensuring the robustness
of sensors and their correlations. Besides, graph contrast-
ing is designed, including node- and graph-level contrasting
to extract robust sensor- and global-level features. We fur-
ther introduce multi-window temporal contrasting to ensure
temporal consistency for each sensor. Experiments show that
TS-GAC achieves SOTA performance in various MTS clas-
sification tasks.
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