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Abstract

Adversarial attacks against stochastic multi-armed bandit
(MAB) algorithms have been extensively studied in the liter-
ature. In this work, we focus on reward poisoning attacks and
find most existing attacks can be easily detected by our pro-
posed detection method based on the test of homogeneity, due
to their aggressive nature in reward manipulations. This moti-
vates us to study the notion of stealthy attack against stochas-
tic MABs and investigate the resulting attackability. Our anal-
ysis shows that against two popularly employed MAB algo-
rithms, UCB1 and ϵ-greedy, the success of a stealthy attack
depends on the environmental conditions and the realized re-
ward of the arm pulled in the first round. We also analyze the
situation for general MAB algorithms equipped with our at-
tack detection method and find that it is possible to have a
stealthy attack that almost always succeeds. This brings new
insights into the security risks of MAB algorithms.

Introduction
In a stochastic multi-armed bandit (MAB) problem, a learner
each time takes an arm from a presented set to interact with
the environment for reward feedback, where the reward is
assumed to be i.i.d. sampled from an unknown but fixed dis-
tribution (Auer, Cesa-Bianchi, and Fischer 2002; Auer 2002;
Agrawal and Goyal 2017; Lattimore and Szepesvári 2020).
The learner’s goal is to maximize its cumulative rewards in
a finite number of interactions. As such algorithms continu-
ously learn from external feedback, their adversarial robust-
ness has attracted increasing attention in the community (Liu
and Shroff 2019; Ma et al. 2018; Jun et al. 2018). The most
well-studied adversarial setting is the reward poisoning at-
tack, where an attacker can selectively modify the reward of
the learner’s pulled arms to deceive the learner. Accordingly,
the attacker can have two distinct goals: with a high proba-
bility, 1) force the learner to take a particular arm a linear
number of times, i.e., known as a targeted attack; or 2) make
the learner suffer from linear regret, i.e., known as an untar-
geted attack, both subject to sublinear attack cost constraint.
It is known that most of the popular stochastic MABs algo-
rithms can be easily manipulated (Jun et al. 2018; Liu and
Shroff 2019), indicating a serious security vulnerability for
the practical use of MAB algorithms.
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The concerns have therefore spurred great research ef-
forts in developing adversarially robust stochastic MAB al-
gorithms. The existing efforts are mainly focused on de-
veloping new algorithms with provable robustness guaran-
tees (Lykouris, Mirrokni, and Paes Leme 2018; Gupta, Ko-
ren, and Talwar 2019; Guan et al. 2020; Liu and Lai 2020).
Various robust reward estimators or exploration strategies
are introduced to tolerate the adversarial reward corruption,
which, however, are at the cost of increased regret. Our study
shows that most existing reward poisoning attacks can be
effectively detected via the test of homogeneity (Buishand
1982). As a result, most existing MAB algorithms can be
easily protected by such a detection method, with little im-
pact on their regret. This provides a new perspective to ex-
amine the robustness or the so-called attackability (Wang,
Xu, and Wang 2022) of MAB algorithms under the presence
of attack detection methods.

This paper focuses on the targeted attack setting against
stochastic MAB algorithms. In Section , we first introduce
a method based on the test of homogeneity to detect possi-
ble reward poisoning attacks. Our key insight is that exist-
ing attack methods (Jun et al. 2018; Liu and Shroff 2019)
aggressively push the realized rewards of non-target arms
below that of the target arm, such that the observed reward
sequence on non-target arms is no longer i.i.d. samples from
the same distribution. As a result, the test of homogeneity is
in a good position to actively detect such data poisoning at-
tacks. We demonstrate that this method exhibits a low type-
I error, suggesting its reliability. We then prove that with
MAB algorithms like UCB1 or ϵ-greedy, if an attack method
can succeed with a high probability, this attack can always
be detected with a non-negligible probability. Consequently,
our detection method also demonstrates a low type-II error.
These results establish two key findings: 1) the proposed
detection method is highly effective, and 2) existing attack
methods can be easily detected using our approach.

In light of the limitations posed by existing attack meth-
ods in the presence of our proposed detection method, we
introduce the concept of stealthy attack in bandit problems
in Section . The results of Section also show that when
the learner applies UCB1 or ϵ-greedy algorithms, no at-
tack method can simultaneously achieve both stealthiness
and efficiency, under the conditions specified by the reward
gap, i.e., the bandit instance’s attackability. We then pro-
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pose a stealthy attack algorithm that works when the ban-
dit instance is attackable. We should note that this limitation
stems from the detection against reward poisoning attacks,
rather than a flaw in the attack design. Also, it is impor-
tant to note here that our work is not concerned with how
the learner should react after detecting an attack, but mainly
with the question of attackability of a MAB algorithm un-
der the presence of the proposed detection mechanism, and
accordingly how an attack can be carried out.

We then analyze the possibility of a stealthy attack against
two most popularly used MAB algorithms, UCB1, and ϵ-
greedy (Auer, Cesa-Bianchi, and Fischer 2002), equipped
with our proposed attack detection method. We point out
that except for the cases where we prove no stealthy attack
can succeed, the stealthy attack we propose can be success-
ful against both algorithms. Next, we analyze the feasibil-
ity of stealthy attacks against general MAB algorithms. We
use construction to show that there are algorithms and cor-
responding attack methods where stealthy attacks can al-
most always succeed. This suggests that for the most gen-
eral MAB algorithms, the limitations on the feasibility of
the stealthy attack previously demonstrated for UCB1 and
ϵ-greedy do not hold. But when we restrict the randomness
of the algorithm itself, we find that we can prove a paral-
lel result. This also opens up a new direction of research in
adversarial bandit algorithms.

In addition to the theoretical analysis, we also performed
an extensive set of experiments based on simulations to
validate our results. We demonstrated that existing attacks
against UCB1 and ϵ-greedy can be easily detected by the
test of homogeneity. And the feasibility of a stealthy attack
depends on the environment (i.e., the ground-truth mean of
the target arm) and the realized reward of the first pulled
arm, which is out of anyone’s control.

To summarize, the main contributions of this work are,

• We propose a simple but effective method to detect re-
ward poisoning attacks against stochastic MAB algo-
rithms. We show that the detection method is highly ef-
fective and existing attack methods can be detected us-
ing our approach. This leads us to study a stealthy attack
against MAB algorithms. We show that stealthy attacks
can only be successful under certain circumstances; in
other words, the attackability of MAB algorithms is not
universal, and there is a trade-off between stealthiness
and effectiveness.

• We propose a stealthy attack method that can success-
fully manipulate the UCB1 or ϵ-greedy algorithm pro-
tected by the detection method, except the cases proved
to be not attackable in nature. Then, we construct two
examples to show that for general MAB algorithms, es-
pecially when the algorithm itself is stochastic, stealthy
attacks can almost always succeed. But for algorithms
whose randomness in arm selection is limited, the suc-
cess of stealthy attacks still depends on the environmen-
tal condition and the reward of the first pulled arm.

Related Work
Due to the wide adoption of bandit algorithms in practice,
increasing amount of research attention has been spent on
adversarial attacks against such algorithms to understand
their robustness implications. To date, most effort has been
focused on data poisoning attacks against stochastic MAB
(Jun et al. 2018; Liu and Shroff 2019) and linear contextual
bandit (Garcelon et al. 2020; Wang, Xu, and Wang 2022)
algorithms. And these methods follow the same principle:
deliberately lower the reward of non-target arms, to deceive
the learner to pull the target arm a linear number of times.
Our research shows that if the bandit algorithm is protected
by the test of homogeneity-based attack detection, most ex-
isting attack method will fail because the range in which the
reward can be lowered is limited. Other work focusing on
attacks against linear contextual bandits takes into account
the situation where attackers can modify historical data (Ma
et al. 2018). Some recent works studied action poisoning at-
tacks, in which the attacker manipulates the arms chosen by
the learner (Liu and Lai 2020). Recently, there are also stud-
ies on reward poisoning attacks against reinforcement learn-
ing (Behzadan and Munir 2017; Huang and Zhu 2019; Ma
et al. 2019; Sun, Huo, and Huang 2020; Zhang et al. 2020;
Liu and Lai 2021). However, none of these existing studies
consider the possible existence of attack detection, which
nullifies the attack’s real-world efficacy/implication.

On the defense side, there is also an increasing amount
of research to improve the robustness of bandit algo-
rithms against adversarial attacks. Lykouris, Mirrokni, and
Paes Leme (2018) introduced a multi-layer active arm elim-
ination method to improve the bandit algorithm’s robustness
against reward poisoning attacks. The key idea is to use in-
creased confidence intervals to tolerate reward corruptions.
But the resulting regret also degrades linearly to the amount
of corruption. Gupta, Koren, and Talwar (2019) extended the
solution by performing phased arm elimination with over-
lapping arm sets to avoid eliminating a good arm too early.
This reduces the cost of regret for being robust. Guan et al.
(2020) proposed to use a median-based estimator together
with calibrated pure exploration for robust bandit learning.
Feng, Parkes, and Xu (2020) proved that general MAB algo-
rithms such as Thompson Sampling, UCB, and ϵ-greedy are
robust when the attacker is not allowed to decrease the real-
ized reward of each pulled arm. Liu and Lai (2020) shifted
the mean reward estimation by the difference between the
estimated confidence intervals between the best and worst
arms to improve their bandit algorithm’s robustness. Bo-
gunovic et al. (2021) proposed two algorithms with near-
optimal regret for the stochastic linear bandit problem, under
known and unknown attack budget respectively. And the key
insight is to expand the confidence interval for exploration.
Ding, Hsieh, and Sharpnack (2022) applied the same princi-
ple to develop contextual linear bandit algorithms robust to
both reward and context poisoning attacks.

The notion of attackability was first studied in (Wang, Xu,
and Wang 2022) under linear stochastic bandits, where the
authors suggested that the geometry spanned by the target
arm, the optimal arm, and the ground-truth bandit parame-
ter vector decides the attackability of the learning problem.
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As a result, some linear stochastic bandit instances are natu-
rally robust. Our work shares similar a spirit from this angle,
but we focus on the MAB setting, which was believed to be
always attackable in prior work.

Preliminaries

We study reward poisoning attacks against stochastic multi-
armed bandit algorithms (Auer, Cesa-Bianchi, and Fis-
cher 2002). Basically, a bandit game consists of N arms
with unknown but fixed σ-sub-Gaussian reward distributions
{F1, · · · , FN} centered at {µ1, . . . , µN}. The length of the
time horizon is T and predetermined. At each round t, the
learner pulls an arm It ∈ [N ] and receives reward r0t from
the environment following FIt . The performance of the ban-
dit algorithm is measured by its pseudo-regret, which is de-
fined as RT = E[

∑T
t=1(µi∗ − µIt))], where i∗ is the best

arm at hindsight, i.e., i∗ = argmaxi∈[N ] µi. The learner’s
goal is to minimize RT .

The attacker sits in-between the environment and the
learner. At each round t after the learner chooses to play arm
It, the attacker manipulates the reward into rt = r0t − αt,
which is then presented to the learner. If the attacker de-
cides not to attack, αt = 0. We call αt ∈ R the attack
manipulation. Without loss of generality, assume arm K is
the target arm, which is not the optimal arm in hindsight:
µK < maxi=1...N µi. Define the cumulative attack cost
as C(T ) =

∑T
t=1 |αt|. The attacker’s goal is to force the

learner to choose the target arm a linear number of times
with a sublinear attack cost. Or formally, we consider the
attack successful if after T rounds the attacker spends o(T )
cumulative attack cost and forces the learner to choose the
target arm for T − o(T ) times.

Detection Method

We first introduce our proposed detection method against ad-
versarial reward poisoning attacks. The key idea is that since
the attacker manipulates the rewards (i.e., lower the reward
of non-target arms), the rewards observed by the learner on
the same arm are no longer iid samples from the same distri-
bution. Therefore, the learner can use the test of homogene-
ity (Buishand 1982) to detect possible manipulations of ob-
served rewards so far. Once the attack is detected, the learner
can resort to different means to handle the adversarial situ-
ation, e.g., restart the reward estimation. But the design of
those different approaches is out of the scope of this paper.

Define the history of pulls before time t as Ht =
{(Is, rIs , cs)}

t
s=1, which represents all information at

time t. Let Ni(t) be the number of observations as-
sociated with arm i up to time t. Define µ̂0

i (t) :=
Ni(t)

−1
∑

{s:s≤t,Is=i} r
0
s as the empirical pre-attack

mean reward of arm i up to time t, and µ̂i(t) :=
Ni(t)

−1
∑

{s:s≤t,Is=i} rs as the corresponding empiri-
cal post-attack mean reward. Define function β(n, δ) and

event set E1 as follows,

β(n, δ) :=

√
2σ2

n
log

π2Nn2

3 δ
,

Eδ :=
{
∀i, ∀t ≥ N :

∣∣µ̂0
i (t)− µi

∣∣ < β (Ni(t), δ)
}
,

where δ ∈ (0, 1). Notice that β(n, δ) monotonically de-
creases with n. The following lemma shows that the distance
between the pre-attack and ground-truth mean rewards of all
arms is bounded by β(Ni(t), δ) with high probability.

Lemma 1. For δ ∈ (0, 1),P(Eδ) > 1− δ.

Lemma 1 suggests a method for the learner to detect if
the observed reward sequence has been manipulated, and the
idea is simple: if the learner finds a set of empirical means
for an arm that is too widely distributed, then Eδ does not
hold, which rarely happens in the absence of attacks.

Detection Method. At the beginning of a bandit game,
the learner chooses a parameter δ ∈ (0, 1). The learner runs
the following hypothesis test for ∀t ∈ [T ] until the null hy-
pothesis is rejected. At each time t, the null hypothesis (i.e.,
no attack so far) and alternative hypothesis (i.e., there is an
attack) are as follows:

Ht
0 : the learner has not been attacked at and before t

Ht
1 : the learner has been attacked at or before t

The learner rejects the null hypothesis Ht
0, if ∃i ∈ [N ] such

that ⋂
j∈[t],Ni(j)>0

(
µ̂i(j)−β(Ni(j), δ), µ̂i(j)+β(Ni(j), δ)

)
= ∅.

(1)
The following lemma shows one aspect of the effective-

ness of our detection method: the proposed detection method
has a low type-I error.

Lemma 2. The probability of the union of all the type-I er-
rors introduced by Eq.(1) can be upper bounded by δ. In
our problem setting, the type-I error refers to the detection
method’s erroneous claim of an attack when there is, in fact,
no attack present.

In the remainder of this paper, we shall assume that the
learner adopts the detection method corresponding to a fixed
parameter δ in conjunction to its chosen bandit algorithm,
and we abbreviate β(n, δ) as β(n). We study the setting
where δ is publicly known and in practice, the attacker
should treat δ as a hyper-parameter for fine tuning.

In the remaining part of Section , we show another as-
pect of the effectiveness of our detection method. Lemma 3-
Corollary 2 demonstrates the proposed detection method ex-
hibits a high probability of detecting effective attacks (i.e., a
low type-II error). Specifically, If the detection method is ap-
plied on top of popularly employed MAB algorithms, such
as UCB1 or ϵ-greedy, we can show effective reward poison-
ing attacks against MABs (Jun et al. 2018; Liu and Shroff
2019) can be successfully detected with a decent probabil-
ity.

We first consider the case where the learner applies UCB1
(Auer, Cesa-Bianchi, and Fischer 2002), which selects an
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arm It to play at time t using the following rule:

It =

{
t, if t ≤ N

argmaxi

{
µ̂i(t− 1) + 3σ

√
log t

Ni(t−1)

}
, otherwise

For 1 ≤ i, j ≤ N , define ∆0
ij = µ̂i(N) − µj , ∆ij = µi −

µj . The following lemma gives the upper bound of target
arm (i.e., arm K) pulls related to the realized reward of the
first pulled arm r1 = µ̂1(N), before the detection method
declares the attack. This lemma points out the fundamental
reason why effective attacks are always easily detectable.

Lemma 3. Suppose the learner runs the UCB1 algorithm to
choose arms. For any history of pulls HT where the attack is
not detected, if ∆0

1K > β(1), with probability at least 1− 1
T 3

the number of rounds that target arm K is pulled up to time
T : NK(T ) is bounded by

max

{
3C(T )

∆0
1K − β(1)

,
81σ2 log T

(∆0
1K − β(1))2

,

(
π2N

3δ

) 2
5

}
where C(T ) is the cumulative attack cost.

The above lemma shows that under the condition ∆0
1K >

β(1), when the detection method fails to detect the attack,
with a high probability the attack itself will not succeed:
either the target arm will not be pulled linear times or the
attack cost cannot be sublinear.

We explain the dependency on the first pulled arm’s re-
alized reward µ̂1(N). Due to the attack is not detected, the
total amount of changes an attacker can make on an arm’s
average reward is limited. When the realized reward of the
first pulled arm is very large, the attacker will not be able
to reduce the average reward of this arm below the target
arm, and thus fails to be effective (i.e., the target arm will
be pulled T − o(T ) time). Otherwise, this attack will be
detected. We will show in Section 5.1 that when µ̂1(N) is
small, there exists an attack method that will not be detected
and has a high probability of success.

Based on Lemma 3, we have the following corollary re-
garding the efficiency of attack detection:

Corollary 1. Suppose the learner runs the UCB1 algorithm.
The attacker applies any attack methods such that it can fool
the learner to pull the target arm T − o(T ) times at a cost
of o(T ) with a high probability for any T large enough, i.e.,
with probability at least 1 − ϵ and for T is larger than a
constant T0. Given any ∆0 > 0, there exists a constant T1

related to ∆0 such that when T > T1, the attack will be
detected with probability at least 1− ϵ

(1− 1
T3 )

− P(µ̂1(N) ≤
µK + β(1) + ∆0).

This corollary suggests that for any effective attack
against the UCB1 algorithm, the detection will succeed with
at least a certain probability related to the environment when
T is large enough. In particular, this conclusion is also true
for existing attacks against MABs (Jun et al. 2018; Liu and
Shroff 2019).

We can explain the result as follows: when ∆0
1K >

β(1) + ∆0, by Lemma 3 we know that the attack with

failed detection will hardly be effective. Hence, for the at-
tack method with a high probability of success, the detec-
tion only fails with a very low probability: no more than

ϵ
(1− 1

T3 )
. And when ∆0

1K ≤ β(1) + ∆0, it is clear that the

detection fails with a probability no more than P(µ̂1(N) ≤
µK + β(1) + ∆0). Combining these two results gives an
upper bound on the probability of detection failure.

We also note that the probability lower bound in the corol-
lary depends on the environment conditions, and it is non-
negligible when the ground-truth mean µ1 is much larger
than µK . This points out the effectiveness of our detection
method. By using the properties of σ-sub-Gaussian distri-
bution, it is easy to prove that when ∆1K > ∆0 + β(1) +√

2σ2 log 1
p , the probability lower bound in the Corollary

1 is larger than 1 − ϵ
1− 1

T3
− p ≈ 1 − p. We empha-

size that the ground-truth mean in the environment is un-
bounded, therefore the difference between the ground-truth
means(i.e., ∆1K) can be great.

Next, let us consider the case that the learner employs the
ϵ-greedy algorithm. The learner plays each arm once for t =
1, · · · , N . For t > N

It =

{
draw uniform[N ], w.p. ϵt (exploration)
argmaxi µ̂i(t− 1), otherwise (exploitation)

We can still prove the result that is parallel to the case
when the learner applies UCB1, despite the randomness of
ϵ-greedy.

Lemma 4. Suppose the learner runs the ϵ-greedy algo-
rithm with ϵt = min{1, CN

t } and C ≥ 3. Given any
η ∈ (0, 1), for any interaction sequence HT where the at-
tack is not detected, if ∆0

1K > β(1), with probability at least
1 − η − 1

T 3.5 − 1
log T the number of rounds that target arm

K is pulled up to time T can be bounded as follows,

NK(T ) ≤ C

(
1 + log

T

CN

)
+

√
3(C + C log

T

CN
) log

1

η

+max

{
C1 log T,

81σ2 log T

(∆0
1K − β(1))2

,
3C(T )

∆0
1K − β(1)

, C2

}
where C1 = e

5a
9 −1C2N2, C(T ) is the total attack cost,

C2 = CNe
a
6c−

1
2 , a = β−1

(
∆0

1K−β(1)
3

)
.

Similar to the previous claim, the above lemma points
to the main reason for the effectiveness of the detection
method. It also states that the success of an attack under the
previous detection method depends on the realized reward
of the first pulled arm. As in the case of ϵ-greedy, we further
explicitly point out the effectiveness of the detection method
by the following corollary.

Corollary 2. Suppose the learner runs ϵ-greedy algorithm
with ϵt = min{1, CN

t } and C ≥ 3 to choose arm. The at-
tacker applies any of the attack methods such that it can fool
the learner to pull the target arm T − o(T ) times at a cost
of o(T ) with a high probability for any T large enough, i.e.,
with probability at least 1 − ϵ and for T is larger than a
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constant T0. Given ∆0 > 0 and η ∈ (0, 1), there exists a
constant T1 related to ∆0 and η such that when T > T1 the
attack detection will be successful with probability at least
1− ϵ

(1−η−T 3.5− 1
log T )

− P(µ̂1(N) ≤ µK + β(1) + ∆0).

Stealthy Attacks
In this section, we propose the concept of a stealthy attack
and discuss its feasibility when the learner applies different
learning algorithms. Under the restriction of stealthy attacks,
the magnitude of each attack is limited, and we demonstrate
that the attack on the algorithm is no longer necessarily fea-
sible, but rather depends on the environment and the realized
reward.

Stealthy Attacks against UCB1 and ϵ-greedy
We first provide the definition of a stealthy attack, which ba-
sically means that an attack method will hardly be detected
with our detection. We then propose a stealthy attack method
against UCB1 and ϵ-greedy, and we prove its effectiveness
under some conditions related to the environment and re-
ward realization.

Stealthy Adversarial Attack. Assume that the learner’s
algorithm, as well as the parameter δ of the detection
method, have been determined, and the learner runs the
detection method as described in Section . We say that
an attack algorithm is stealthy if for any given environ-
ment {F1, · · · , FN} we have that the detection of the attack
throughout the game can succeed with probability at most δ.
In other words, we require the attack to be non-detectable.

Note that we require the detection of the stealthy attack be
successful with probability at most δ, which is because the
probability of type-I error of our detection mechanism is at
most δ. We believe that such an attack is stealthily enough.

The Limitation of Stealthy Attack. From Lemma 3, 4
we know that when ∆0

1K > β(1) and the detection of the
attack against UCB1 or ϵ-greedy failed, with high probabil-
ity the attack will also failed. Combined with the definition
of a stealthy attack, it is easy to demonstrate that for any
stealthy attack, when ∆0

1K > β(1) holds, then with high
probability it will not succeed. This shows that under certain
conditions, stealthy attacks cannot succeed in essence. The
reason is that the attacker must limit the strength of attacking
the non-target arms to avoid detection, which in turn leads
to the attack failure under some conditions.

Stealthy attack against UCB1 and ϵ-greedy. Next we
show that for the remaining cases, i.e. when ∆0

1K < β(1),
there exists a stealthy attack algorithm against both UCB1
and ϵ-greedy that can succeed with high probability.

Now we give the attack method. Suppose η ∈ (0, 1) is
chosen by the attacker. The attacker attacks arms in the fol-
lowing way:

For the first N rounds(N is the number of arms) the at-
tacker attacks in the following way: when t < N , for arm
i > 1 and i ̸= K the attacker attacks the arm and spends
minimal attack cost to make µ̂i(N) ≤ µ̂1(N)− 2β(1, η)−
2β(1) − d, d ≥ 0 is a constant chosen by the attacker. And
when the attacker attacks different learning algorithms, d
can be adjusted accordingly.

After the first N rounds, the attack happens when the
learner chooses to play an arm It ̸= K. If It ̸= 1 the at-
tacker gives an attack αt = αi where αi is the attack cost
the attacker used to attack arm i for the first time. If It = 1
the attacker computes an attack αt with the value such that

µ̂1(t) = µ̂1(N)− β(1)− β(N1(t− 1) + 1).

We now show that this attack method is stealthy and will
succeed with high probability when ∆0

1K < β(1).
Lemma 5. The attack method stated above is stealthy.

Proof. For attacks against arm 1 it’s obvious that the attack
detection will fail. For arm i > 1 and i ̸= K, ∀1 ≤ t ≤
T , µ̂i(t) = µ̂0

i (t) − αi. Then we have µ̂i(t) − µ̂i(j) =
µ̂0
i (t) − µ̂0

i (j), by Lemma 2 the detection to our attack will
be successful with probability at most δ. Hence, the attack is
stealthy.

Theorem 1. Suppose the learner applies the UCB1 algo-
rithm. If ∆0

1K < β(1), with probability at least 1 − η −
2(∆0

1K−β(1))7

7(9σ2 log T )
7
2

, the attacker forces the learner to choose the

target arm in at least T −
(

9σ2

(∆0
1K−β(1))2

+ 9Nσ2

d2

)
log T −

(N − 1) rounds, and incurs a cumulative attack cost at most

(
18(β(1) + β(1, η))σ2

(∆0
1K − β(1))2

+
9Nσ2(2β(1) + 4β(1, η) + d)

d2
)∗

log T +

(
9σ2 log T

d2
+ 1

) ∑
i̸=1,K

|∆1i|+ dN + 4β(1, η)N

+ 4β(1)N

Denote β(1) − ∆0
1K as ∆. The number of non-target

arm pulls is O
(
( σ2

∆2 + Nσ2

d2 ) log T +N
)

and the attack cost

is O
((

σ2

∆2 + Nσ2

d2

)
log T + σ2 log T

d2

∑
i̸=1,K |∆1i|+ dN

)
.

We can see that a larger d decreases the non-target arm pulls,
and the attacker only needs to choose d ≤

√
N∆, because if

d >
√
N∆ we have σ2

∆2 > Nσ2

d2 . When choosing d = Θ(∆),
the cost is O( σ2

∆2 (N +
∑

i̸=1,K |∆1i|) log T + ∆N). The

probability is 1 − η − O

((
∆

σ
√
log T

)7)
, when T → ∞ it

approaches 1− η.
Theorem 2. Suppose the learner applies the same ϵ-greedy
algorithm as in Lemma 4. If ∆0

1K < β(1), with probability
at least 1− 3η, the attacker forces the learner to choose the
target arm in at least

T−t2−N

(
C + C log

T

CN
+

√
3(C + C log

T

CN
) log

1

η

)
rounds, and using a cumulative attack cost at most

C(T ) ≤

(
C + C log

T

CN
+

√
3(C + C log

T

CN
) log

N

η

)
× (4Nβ(1, η) + 2Nβ(1) +

∑
i̸=1,K

|∆1i|+ dN) + 2β(1)t2+

β(1, η))t2
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where t2 = 4(1+ σ2

∆2 )(
3σ2

4∆2 log
4
η+

2σ2

∆2 log 4T
η )+2 log 4

η+t1,

t1 = max{CNe
5b
6c−

3
2C log η

4−
1
2 , 5CN}, b = 2σ2

∆2 log(1 +
∆2

σ2 )

We note that b < 2 ⇒ t1 = O(N), t2 = O( σ4

∆4 log T +
N). Notice the cost and non-target arm pulls, the attacker
only needs to choose d = 0 and then the cost is O((N +∑

i̸=1,K |∆1i| + σ4

∆4 ) log T ). Compared to the cost in The-
orem 1, the log T term has a higher order of 4 for σ

∆ and is
thus more sensitive to its change.

In addition, the reason that the feasibility of a stealthy and
effective attack does not depend on the first realized rewards
of the other non-target arms is that the attacker can use the
realized reward of the first pulled arm to attack the other
non-target arms by making their first observed reward very
low. This is exactly what our algorithm does in this section.

Stealthy Attacks on General Algorithms
Now let us consider a more general situation. We study
the feasibility of the stealthy attack when the learning al-
gorithms are not limited to either UCB1 or ϵ-greedy. The
following lemma shows that there exists an effective learn-
ing algorithm that corresponds to the existence of a stealthy
attack algorithm that always succeeds in the attack.

Lemma 6. We can find a learning algorithm such that given
any sub-Gaussian environment (F1, · · · , FN ), the number
of arm pulls of any sub-optimal arm i follows E(Ni(T )) =
Θ(log T ), and simultaneously the attacker can find a cor-
responding stealthy attack method s.t. for any target arm
K ∈ {1, · · · , N} with probability at least 1 − η the at-
tacker can force the learner to choose the target arm for
T − O(log T ) times with a cumulative attack cost at most

O(log T
√
log( 1η )).

The construction method is shown in the appendix. The
design of our learning algorithm incorporates specific ”ac-
tion takings”, or in other words, special ways of arm selec-
tion, which are then utilized by the attack method.

Lemma 5.4 demonstrates that it is possible to find attack
methods that are always stealthy and effective to some ban-
dit algorithms; but when the bandit algorithms have limited
randomness, e.g., UCB1 and ϵ-greedy, from Theorem 3 and
4 we know that it might be impossible to find such an at-
tack method. These two different results show that there are
essential differences between different bandit algorithms in
terms of the feasibility of a stealthy attack.

However, when we control the randomness of the dis-
tribution of rewards and the randomness of the algorithm
itself, we can get results parallel to the previous cases
with UCB1 and ϵ-greedy. We call an algorithm effective
under the control of the reward randomness (ERR)
(or effective under the control of the algorithm and
reward randomness (EARR)) if and only if it has the fol-
lowing property: given any η ∈ (0, 1) and environment
(F1, · · · , FN ). When a learner applies this algorithm, there
exist two functions g(t, η) : g(t,η)

t → 0 as t → ∞ and
l(n, η) : l(n, η) ≥ β(n) such that if ∀i, ∀N ≤ t ≤ T the

empirical mean of a history of pulls HT : µ̂i(Ni(T )) was
bounded in the interval (µi− l (Ni(t), η) , µi+ l (Ni(t), η)),
then for T is large enough with probability at least 1−η, the
regret RT is bounded by g(T, η): RT ≤ g(T, η) (or then as
long as T is large enough the regret RT is bounded by g(T ):
RT ≤ g(T, η) under EARR). It is not hard to see that the
common algorithms like UCB1, Thompson Sampling, and
ϵ-greedy are ERR, and UCB1 is an EARR algorithm.

For the EARR algorithm, We can prove the result parallel
to the result in the previous subsection.

Theorem 3. Suppose the learner runs an EARR algorithm
to choose arms. Given any η ∈ (0, 1) and environment
(F1, · · · , FN ), we can find a function g(t, η): g(t,η)

t →
0 as t → ∞, such that for any history of pulls Ht where
the attack is not detected, if ∆0

1K > 2β(1), with probability
at least 1 − η − 1

T 8( 1
2
−ν)2

that in Ht the number of rounds
that target arm K is pulled up to time T is no more than

max{ g(T, η)

ν(∆0
1K − 2β(1))

,
16σ2 lnT

(∆0
1K − 2β(1))2

,
2C(T )

∆0
1K − 2β(1)

}

where C(T ) is the cumulative attack cost.

This theorem shows that the stealthy attack on an
EARR algorithm will fail in some cases. But for a general
ERR(which may not be EARR) algorithm we do not have
the same result. We can prove a similar result to Lemma 6:

Lemma 7. We can find an ERR algorithm such that the
attacker can find a corresponding stealthy attack method
s.t. given any environment (F1, · · · , FN ) for any target arm
K ∈ {1, · · · , N} with probability at least 1 − η the at-
tacker can force the learner to choose the target arm for
T − O(log T ) times with a cumulative attack cost at most

O
(
log T

√
log( 1η )

)
.

The construction is similar to that in Lemma 6. Com-
bined with Theorem 3, this lemma suggests that there is a
restriction on the possibility of a successful stealthy attack
for EARR, but this does not directly hold for ERR.

Experiments
We performed extensive empirical evaluations using simu-
lation to verify our theoretical results against different MAB
algorithms, attack methods, and environment configurations.
We mainly present results for UCB1 here, specific results for
ϵ-greedy will be provided in the appendix.

Experiment Setup
In our simulations, we execute the reward poisoning attack
method proposed in (Jun et al. 2018) as our baseline and our
attack algorithms against UCB1 and ϵ-greedy algorithms in
the presence of attack detection proposed in Section . We
varied the number of arms N in {10, 30} and set each arm’s
reward distribution to an independent Gaussian distribution.
The ground-truth mean reward µi of each arm i is sampled
from N(0, 1). For the ϵ-greedy algorithm, we set its explo-
ration probability ϵt = min{1, CN

t }. We set C = 500 > 3
is chosen only for the convenience of presenting the results.
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Figure 1: Probability of successful detection under (Jun et al. 2018)’s attack method when UCB1 is the victim algorithm. Left:
(N,T ) = (10, 10000). Right: (N,T ) = (30, 20000)

Figure 2: Target arm pulls under different attack methods when UCB1 is the victim algorithm. Left: (N,T ) = (10, 10000).
Right: (N,T ) = (30, 20000)

In all our experiments, we set the detection method’s pa-
rameter δ to 0.05, the high probability coefficient η to 0.05,
and the reward’s noise scale σ in the environment to 0.1.
We run each experiment for T = 10000 (for N = 10) or
20000 (for N = 30) iterations and repeat each experiment
20 times to report the mean and variance of performance.

Experiment Results
We first consider the effectiveness of our attack detection
method when the attacker applies the commonly used attack
algorithm (Jun et al. 2018) against UCB1 and ϵ-greedy al-
gorithms. We randomly created 10 bandit instances to repeat
the experiment, where we only vary the ground-truth mean
reward gap ∆1K . We set ∆1K = β(1)/24−i for the i-th ban-
dit instance. As shown in Figure 1, with a high probability
this attack algorithm’s reward manipulations can be detected
successfully, which is predicted by Corollary 1 and 2. We
find that this result is almost unaffected under different set-
tings of N and T . That’s because when N is large enough,
there may be more non-target arms whose ground-truth
mean is significantly larger than the target arm’s ground-
truth mean.

Next, we compare the performance of the baseline al-
gorithm and our proposed algorithm under the detection.
We created different environments to run the experiment,

by varying ∆1K in {β(1)/2, β(1), 2β(1)}. We stop accu-
mulating the number of target arm pulls once the attack is
detected. Note that this does not mean that the learner will
necessarily stop learning after this point. From Figure 2, we
can find that because the attack will be detected quickly, our
baseline attack algorithm cannot trap the victim algorithm to
pull the target arm linear times. For our algorithm, because
it is stealthy, the victim algorithm failed to notice the reward
manipulation and was executed till the end.

Conclusion
In this paper, we studied the problem of reward poisoning
attacks on stochastic multi-armed bandits. We introduced a
mechanism to detect such attacks, and we find that previous
attack methods against UCB1 and ϵ-greedy algorithms can
be easily detected. Focusing on such a detection method, we
proposed a stealthy attack method that will succeed under
specific conditions concerning the stochastic bandit environ-
ments and the reward of the first pulled arm.
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