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Abstract

With the increasing customization of spectrometers, spec-
tral unmixing has become a widely used technique in fields
such as remote sensing, textiles, and environmental protec-
tion. However, endmember variability is a common issue
for unmixing, where changes in lighting, atmospheric, tem-
poral conditions, or the intrinsic spectral characteristics of
materials, can all result in variations in the measured spec-
trum. Recent studies have employed deep neural networks
to tackle endmember variability. However, these approaches
rely on generic networks to implicitly resolve the issue, which
struggles with the ill-posed nature and lack of effective con-
vergence constraints for endmember variability. This paper
proposes a streamlined multi-task learning model to rectify
this problem, incorporating abundance regression and multi-
label classification with Unmixing as a Bayesian Inverse
Problem, denoted as BIPU. To address the issue of the ill-
posed nature, the uncertainty of unmixing is quantified and
minimized through the Laplace approximation in a Bayesian
inverse solver. In addition, to improve convergence under
the influence of endmember variability, the paper introduces
two types of constraints. The first separates background fac-
tors of variants from the initial factors for each endmember,
while the second identifies and eliminates the influence of
non-existent endmembers via multi-label classification dur-
ing convergence. The effectiveness of this model is demon-
strated not only on a self-collected near-infrared spectral tex-
tile dataset (FENIR), but also on three commonly used remote
sensing hyperspectral image datasets, where it achieves state-
of-the-art unmixing performance and exhibits strong general-
ization capabilities.

Introduction
Due to the limited spatial resolution of hyperspectral images,
each pixel is, in fact, a mixture of several different pure ma-
terials. The spectrum of an pure material is referred to as an
endmember. Spectral unmixing (Keshava and Mustard 2002;
Bioucas-Dias et al. 2012) addresses this issue by breaking
down hyperspectral images into the spectral of endmembers
and their respective ratios (Abundance) for each pixel. This
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Figure 1: There are three types of variations for the cotton
textiles. The x-axis represents 200 equally divided spectral
sampling points of the near-infrared spectrum ranging from
900 to 1700nm, while the y-axis depicts the reflectance.

technique has been widely used in a variety of applications,
including mineral mapping (Rogge et al. 2006) and land
cover change detection (Adams et al. 1995). With the contin-
ued shrinking in size of spectrometers, handheld spectrom-
eters are now being used in the field of textile composition
analysis. Spectral unmixing, denoted as a = F(x), involves
analyzing the abundance a of spectral materials from an in-
put spectrum x. On the other hand, spectral construction is
x̂ = G(a)+η of generating a corresponding spectrum, given
the known abundance of spectral materials (where η repre-
sents random noise). In essence, spectral unmixing can be
viewed as the inverse problem of spectral construction.

Endmember variability (Zare and Ho 2013; Somers et al.
2011; Borsoi et al. 2021) is a common issue in unmixing,
where changes in lighting, atmospheric conditions, tempo-
ral factors, or the intrinsic spectral characteristics of ma-
terials can all result in variations in the measured spec-
trum. This problem is particularly pronounced with low-
cost, low-precision devices such as handheld spectrometers,
as demonstrated in Figure 1, which depicts changes in the
near-infrared reflectance of pure cotton textiles. Variability
typically falls into two categories: intra-class variability and
inter-class similarity. Traditional models use a single end-
member to represent multiple variants within a class, leading
to uncertainty in abundance estimation. Meanwhile, inter-
class similarity can result in mismatched abundance ratios.
Therefore, addressing endmember variability is crucial for
accurate unmixing tasks.

Recent research (Borsoi et al. 2021) has sought to address
the issue of endmember variability in unmixing tasks. One
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Figure 2: The conditional dependence of the VAE (left) and
our proposed BIPU (right), where the diamond-shaped hol-
low nodes denote deterministic latent variables, the circular
solid nodes denote random noises, and the total correlation
network is applied to keep the distributions of the two sam-
pled variables independent of each other.

common approach involves relying on a known spectral li-
brary (Roberts et al. 1998; Borsoi, Imbiriba, and Bermudez
2019; Borsoi et al. 2020), where all endmember variability
spectra for each pure material endmember are treated as a
group of spectra for unmixing. However, this approach is
heavily dependent on the quality and completeness of the
spectral library. Another approach involves using probabil-
ity distributions to fit the endmembers of each pure ma-
terial (Stein 2003; Halimi, Dobigeon, and Tourneret 2015;
Zhou, Rangarajan, and Gader 2018). While these models of-
fer better generalization capabilities, they come with unreal-
istic computational complexity. With the rise of deep neural
networks, auto-encoder has also been applied to unmixing
tasks. These methods (Su et al. 2019; Palsson et al. 2018; Su
et al. 2018; Wang et al. 2019; Hong et al. 2021; Shi et al.
2021) leverage the non-linear representation of deep neural
network feature space to tackle the complex unmixing prob-
lems caused by endmember variability. However, the use
of a general network structure without explicit constraints
on the nonlinear optimization difficulties brought about by
endmember variability results in limited unmixing effective-
ness.

The first issue we address is the fundamental inverse prob-
lem of unmixing, with its inherent ill-posed nature (Goh
et al. 2019), making it complex and unstable to explicitly es-
timate the latent factors of abundance and endmembers. Ac-
cordingly, this paper aims to quantify and minimize unmix-
ing uncertainty using the Laplace approximation, approach-
ing it as a Bayesian inverse problem. The second issue per-
tains to the persistent endmember variability in unmixing,
which results in diverse spectral shapes with abundance,
complicating convergence during training. To mitigate this,
we apply two constraints to enhance convergence. The first
constraint separates the background factors of variants from
the prior factor for each endmember. The second constraint
improves abundance estimation by identifying non-existent
endmembers through multi-label learning, thereby eliminat-
ing their influence on the convergence process and signifi-
cantly reducing the solution space.

This paper presents three main contributions. Firstly, we
employed joint training of spectral reconstruction, abun-
dance regression, and multi-label classification tasks as an
unified model. Our experiments demonstrate the positive im-
pact of each task’s training on the unmixing performance.
Secondly, to model endmember variability in a more gen-
eralized manner, we introduced endmember variability la-
tent factors and designed the conditional dependency rela-
tionship within the latent factors, as shown in Figure. 2.
Through variational inference, we derived implementable
upper bounds as the optimization objective with relatively
low complexity. However, this approach relies on the as-
sumption that endmember variability and abundance latent
factors are mutually independent. To ensure the effective-
ness of the optimization objective in real-world scenarios,
we applied the total correction to maintain independence be-
tween the two distributions. Thirdly, we generated an abun-
dance mask from the multi-label classification task to serve
as a constraint during sampling and generating abundance,
where the upper bounds of the optimization objective is
tightened, resulting in more stable unmixing performance.
This paper demonstrates the effectiveness of our model in
analyzing the composition of textiles using near-infrared
spectra on the self-collected FENIR dataset. Additionally, it
verifies the generalization effect of our model on unmixing
across three remote sensing hyperspectral datasets. Further-
more, we will release the FENIR dataset for near-infrared
spectral research.

Related Works
Spectrum Unmixing
Traditional linear unmixing models can be primarily cat-
egorized into five types: geometric-based unmixing (Win-
ter 1999), non-negative matrix factorization-based unmix-
ing (Thouvenin, Dobigeon, and Tourneret 2016; Drumetz
et al. 2016), prototype analysis-based unmixing (Zhao, Jia,
and Zhao 2015), Bayesian-based unmixing (Chen, Nelson,
and Tourneret 2016), and sparse unmixing (Tang et al.
2015). From a network architecture perspective, existing
deep unmixing frameworks can be broadly classified into
five types: unmixing based on autoencoders (Palsson et al.
2018; Wang et al. 2019; Su et al. 2018, 2019), convolutional
neural networks (Zhang et al. 2018; Qi et al. 2020; Rasti
et al. 2022; Palsson, Ulfarsson, and Sveinsson 2021; Huang
et al. 2020), long short-term memory networks (Lei et al.
2020; Zhao, Yan, and Chen 2021), transformers (Ghosh et al.
2022), and deep generative networks. Specifically, (Su et al.
2019)’s work assumes that the encoder outputs the hidden
layer as an abundance estimate. It makes a strong assump-
tion that the dimension of the hidden layer is equal to the
number of endmembers, directly ignoring the influence of
the endmember variability.

Bayesian Inverse Problems
In scientific inverse problems, neural networks have been
employed to enhance solvers. These works can be broadly
classified into two categories. The first category uses deep
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Figure 3: The BIPU model architecture comprises three
stages. In the first stage, shared features are extracted for
the joint learning of unmixing and multi-label classification.
The second stage includes a generator that creates latent fac-
tors for both variability and abundance, with the assistance
of an abundance mask from the classification task to en-
hance convergence. The third stage uses these latent factors
to generate the reconstructed signals. Together, these three
stages facilitate signal reconstruction with the loss derived
from Bayesian Inversion. Additionally, the model features
a prediction branch for multi-label classification at the bot-
tom, which produces both the probability of the existence of
each endmember and the abundance mask for the generator.

learning to assist in improving traditional solvers. For in-
stance, (Adler and Öktem 2017) used convolutional neural
networks to partially learn gradient descent schemes, while
(Jin et al. 2017) used convolutional neural networks to re-
place components of convolutional operators in iterative al-
gorithms. The second category of methods directly employs
deep learning to regularize ill-posed inverse problems. (Li
et al. 2020) used neural networks to replace the Tikhonov
regularizer, while (Patel and Oberai 2019), as well as (Gon-
zalez et al. 2019), explored the use of Generative Adversar-
ial Networks and Variational Auto-Encoder, respectively, to
model prior probabilities in bayesian inverse problems. In
(Chen et al. 2019)’s work, autoencoders were used to learn
latent representations of unknown interests, allowing the in-
version task to be redefined as solving for latent representa-
tions. Methods for measuring uncertainty using deep learn-
ing can be classified into three types. The first type (Jiang
et al. 2021) employs deep learning networks to enhance
traditional uncertainty measurement methods. The second
type (Caldeira and Nord 2020) of method uses deep learn-
ing models with inherent stochastic properties to represent
uncertainty. The third type of method directly employs deep
networks to learn and model uncertainty. (Chua and Vallis-
neri 2020) generated one-dimensional or two-dimensional
projections of Bayesian posteriors quickly through neural
networks for gravitational wave astronomy. (Goh et al. 2019)
modeled uncertainty from divergence-based variational in-
ference, allowing most of the information typically present
in scientific inverse problems to be fully utilized during
training.

Models
Model Definition
Define x ∈ RD as the input spectrum (observed spectrum),
where D is the number of spectral domain sampling points;
x̂ ∈ RD represents the reconstructed spectrum; a ∈ RA

represents the spectral abundance, that is, the content of
the observed spectrum corresponding to the physical object
on A types of pure materials; v ∈ RV represents the V -
dimensional endmember variability latent variable, while V
is a model hyperparameter, not necessarily equal to A and
V < D. In the process of unmixing, a = F1(x; Φ) pre-
dicts the abundance, while v = F2(x; Ψ) yields the rep-
resentation of variability, where Φ and Ψ are the parame-
ters of F1 and F2, respectively. In the process of generation,
x̂ = G(a,v) + η produce the reconstructed sprectrum. As
an inverse problem of spectrum generation, the objective of
unmixing is

min
Φ,Ψ

∥x− G (F1(x; Φ),F2(x; Ψ)) ∥22

+
1

A

A∑
i=1

∥a(i) −F (i)
1 (x; Φ)∥22

+
1

V

V∑
i=1

∥v(i) −F (i)
2 (x; Ψ)∥22.

(1)

However, this objective function is challenging to solve, and
the training process can often only target a single point, mak-
ing it difficult to perform uncertainty quantification. As a re-
sult, we analyze the unmixing problem as a Bayesian inverse
problem.

Referring to the idea of using VAE to solve Bayesian
Inverse Problems, our work combines two types of latent
factors for modeling. Denote p1(a|x), p2(v|x) as the tar-
get posterior probability of abundance and variability re-
spectively. Due to the assumption that the distributions of
a and v are independent, p(a,v|x) = p(a|x)p(v|x). De-
note qΦ(a|x) and qΨ(v|x) as the model posterior prob-
ability of abundance and variability, then q(a,v|x) =
qΦ(a|x)pΨ(v|x). Denote plkhd as the likelihood model den-
sity, while ppr and p̂pr are the prior probability of abun-
dance and variability, respectively. Suppose that the noise
η is independent to a and v, and the three latent variables
follow Gaussian distributions as N (µe,Γe), N (µpr,Γpr)

and N (µ̂pr, Γ̂pr), respectively. In this way, the objective of
the Bayesian inverse problem is to minimize

ppost(a,v|x) ∝ plkhd(x|a,v)ppr(a)p̂pr(v)

= exp(−1

2
(∥x− G(a,v)− µe∥2Γ−1

e
)

+∥a− µpr∥2Γ−1
pr

+ ∥v − µ̂pr∥2Γ̂−1
pr

).

(2)

For the optimization process of Eq 2, to achieve the
measurement and minimization of the uncertainty for the
observed spectrum, Laplace approximation is applied as
Γpost = (JG([a,v]m)TΓ−1

e JG([a,v]m) + Γ
−1

pr + Γ̂
−1

pr )
−1,

where [a,v]m are the maximum a posterior (MAP) esti-
mates, and JG is the Jacobian matrix for G at the MAP
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estimation. However, for this Laplace approximation, the
iterative optimization process is computationally expensive
and difficult to implement. In inverse problems, the measure-
ment of the difference between the model posterior and tar-
get posterior distributions has symmetry, which is conducive
to uncertainty quantification. Therefore, Jensen-Shannon
divergence (JSD) is used here instead of Kullback-Leibler
divergence (KLD), defined as JSα(q(a,v|x)∥p(a,v|x)) =
αKL(q(a,v|x)∥s(a,v|x)) + (1 −
α)KL(p(a,v|x)∥s(a,v|x)). where s(a,v|x) =
αp(a,v|x) + (1 − α)q(a,v|x), and α ∈ (0, 1) is a
hyper-parameter whose functionality will be described at
the next section.

Framework of Unmixing

Figure. 3 illustrates the network structure of the model pre-
sented in this article. Initially, the Backbone network ex-
tracts the features of the input spectrum, serving as the in-
put for two branches. The first branch generates the mean
µa/µv and variance Γa/Γv of abundance and endmember
variability latent variables through two fully connected lay-
ers, respectively. In contrast, the other branch generates the
abundance mask m through an L2 layer one-dimensional
convolutional network. Subsequently, abundance and end-
member variability latent variables are sampled to generate
sampling values ã and ṽ, respectively. Both are then input
into the Decoder network for spectral reconstruction, gener-
ating the reconstructed spectrum x̂.

Within this framework, we need to solve the Bayesian in-
verse problem defined at Eq.??. Dividing both sides of Eq.??
by α gives

1

α
JSα(q(a,v|x)

= log(p(x))− Ea,v∼q

[
log

(
p(a,v,x)

q(a,v|x)

)]
− Ea,v∼q

[
log

(
α+

(1− α)q(a,v|x)
p(a,v|x)

)]
− (1− α)Ea,v∼p

[
log

(
α+

(1− α)q(a,v|x)
p(a,v|x)

)]
≤ log(p(x)) +KL(q(a,v|x)∥p(x))
− Ea,v∼q log(p(x|a,v))
−KL(q(a,v|x)∥p(a,v|x))− log(1− α)

+
1− α

α
KL(p(a,v|x)∥q(a,v|x))

− (1− α) log(1− α)

α
.

(3)

In this way, the following formula can be applied
as the objective of our variational inference process
1
αJSα(q(a,v|x) +KL(q(a,v|x)∥p(a,v|x)), and consid-
ering the assumption that the distribution a is independent
to v, minimizing this objective is equivalent to minimize its

upper bounds as

1− α

α
KL(p(a,v|x)∥q(a,v|x))

+KL(q(a,v|x)∥p(x))− Ea,v∼q log(p(x|a,v))

=
1− α

α
KL(p(a|x)∥qΦ(a|x))

+
1− α

α
KL(p(v|x)∥qΨ(v|x))

+ Ea∼qΦ

[
log

(
qΦ(a|x)
p(x)

)]
+ Ev∼qΨ

[
log

(
qΨ(v|x)
p(x)

)]
+ log(p(x))

− (Ea∼qΦ log(p(x|a)) + Ev∼qΨ log(p(x|v))
− log(p(x)).

(4)

In this way, the objective function over Φ and Ψ turns to

1− α

α
KL(p(a|x)∥qΦ(a|x))

+KL(qΦ(a|x)∥p(x))− Ea∼qΦ log(p(x|a))

+
1− α

α
KL(p(v|x)∥qΨ(v|x))

+KL(qΨ(v|x)∥p(x))− Ev∼qΨ log(p(x|v)),

(5)

which demonstrates that selecting different values of α in-
terpolates between zero-forcing KL(p∥qΦ)/KL(p∥qΨ) and
zero-avoiding KL(qΦ∥p)/KL(qΨ∥p). As α → 1, Eq. 5 con-
verges to the negative value of ELBO, while as α → 0, the
influence of JSD gradually supersedes KLD. By adjusting
α, our framework enables the optimizer to select the dis-
tance concept for directing the model posterior towards the
target posterior, thereby providing control over data fitting
and regularization.

Optimization
This section aims to transform the objective function Eq. 5
into an easily implementable loss function through approxi-
mation methods. Assume the model posteriors of abundance
and variability follow the Gaussian distributions N (µa,Γa)
and N (µv,Γv). For each observed spectrum x(n) from N
pieces of spectrum in training dataset, there is a unique cor-
responding abundance value a and variation v. Minimiz-
ing the KL divergence between the target posteriors and
the model posteriors is equivalent to maximizing the like-
lihood function over Φ and Ψ. Here, we apply two net-
works with shared parameters to fit the prior probability
[µ

(n)
a , (Γ(n)

a )−
1
2 ] = FΦ(x,W a) and [µ

(n)
v , (Γ(n)

v )−
1
2 ] =

FΨ(x,W v), where W a,W v ∈ RL×A×D are sets of pa-
rameters from L-layer networks of FΦ and FΨ. Then the
sampled representations of abundance and variability are de-
fined as

ã(n) = µ(n)
a + (Γ(n)

a )
1
2 ϵ(n)a , (6)

ṽ(n) = µ(n)
v + (Γ(n)

v )
1
2 ϵ(n)v , (7)
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where the noise ϵ
(n)
a ∼ N (0, IA) and ϵ

(n)
v ∼ N (0, IV ).

Therefore, the final objective of this Bayesian inverse prob-
lem is

min
W a,W v

LBIP

= min
W a,W v

1

N

N∑
n−1

1− α

α

(
log |Γ(n)

a |+ log |Γ(n)
v |

+∥µ(n)
a − ã(n)∥2

(Γ
(n)
a )−1

+ ∥µ(n)
v − ṽ(n)∥2

(Γ
(n)
v )−1

)
+
∥∥∥x(n) − G

(
ã(n), ṽ(n)

)
− µe

∥∥∥2
Γ−1

e

+ tr
(
Γ
−1

pr Γ
(n)
a

)
+ tr

(
Γ̂
−1

pr Γ
(n)
v

)
+ ∥µ(n)

a − µpr∥2Γ−1
pr

+ ∥µ(n)
v − µ̂pr∥2Γ̂−1

pr

+ log
|Γpr|
|Γ(n)

a |
+ log

|Γ̂pr|
|Γ(n)

v |
.

(8)

Abundance Mask via Multi-Label Classification
As illustrated in Figure. 3, we employ a network FΘ that
partially shares its parameters with networks FΦ and FΨ, to
predict the probability h = FΘ(x,W h) whether the spec-
trum of each pure material is in the input spectrum. This
probability only indicates the likelihood of the presence of
a specified pure material spectrum and is not necessarily
equivalent to its abundance. W h ∈ RL2×A×D is the set of
parameters from L2-layer networks FΘ. Cross entropy loss
is applied to train the brunch of multi-label classification as

LMLC =
N∑

n=1

A∑
k=1

a
(n)
k log(h

(n)
k ). (9)

At the same time, we can use the spectral probability h from
the multi-label classification task to constrain the conver-
gence process of the Bayesian Inversion Solver, and generate
masks mk = I[hk > ξ] for the k-th endmember, where I is
an indicator function, indicating that if the condition inside
the square brackets is satisfied, it is 1, otherwise it is 0; ξ
indicates that when the probability hk of the k-th material
existing in the observed spectrum is greater than ξ, the mask
is 1, otherwise the mask is 0. In this way, the abundance
mask is applied at Eq. 6 to be

ã(n) = µ̃(n)
a + (Γ(n)

a )
1
2 ϵ̃(n)a = mµ(n)

a + (Γ(n)
a )

1
2 (mϵ(n)a )).

(10)
Then replace µ

(n)
a with µ̃(n)

a at Eq. 5.
Theoretically, when the formula converges and the num-

ber of dimensions where the mask m equals 1 is denoted
as M , then M ≤ A. Since the abundance on the material
dimension where the mask is 0 is also 0, adding the mask
will not significantly impact JSD or cause the newly gener-
ated loss LBIP to lose its upper bound constraint. Simulta-
neously, as some dimensions are invalidated by multiplica-
tion, the newly generated loss LBIP decreases, resulting in
a tighter upper bound and prompting the model to produce
stable results with higher probability.

aRMSE 1
N

∑N
n=1

√
1
A

∑A
k=1

(
a
(n)
k − ã

(n)
k

)2
γ-accuracy 1

A·N
∑N

n=1

∑A
k=1 I

[∣∣∣a(n)
k − ã

(n)
k

∣∣∣ ≤ γ
]

accuracy 1
A·N

∑N
n=1

∑A
k=1 I

[∣∣∣m(n)
k = I(a

(n)
k > ξ)

∣∣∣]
Table 1: The evaluation metrics used in the experiments

Total Correlation for Abundance and Variability
At the previous section of model definition, we posited that
the distributions of the two latent variables, abundance a and
endmember variation v, are independent. However, this as-
sumption is challenging to satisfy in real-world scenarios.
Drawing inspiration from this paper, we aim to enhance the
stability of our model by minimizing the KL divergence be-
tween q(a,v|x) and qΦ(a|x)qΨ(v|x). To achieve this, we
train a classifier H to determine whether a set of generated
latent variables a and v originate from pΦ and qΨ or from
q(a,v|x). Consequently, our goal is to minimize the follow-
ing formula:

LTC =
∑
n

log

(
1−H([ã(n), ṽ(n)

H([ã(n), ṽ(n)])

)
. (11)

Besides, with the label of real abundance a(n), we can
constraint the sampled abundance with regression loss

LREGR =

√√√√ 1

A ·N

N∑
n=1

A∑
k=1

(
a
(n)
k − ã

(n)
k

)2
. (12)

Finally, the loss function of our model is L = LBIP +
λ1LMLC + λ2LTC + λ3LREGR.

For the convenience of noting, we denote the model in
this paper as BIPU. As a comparison model for the ablation
study, we denote the model with only the LBIP +LTC loss
as BIPU-base. Based on this, the model that only adds re-
gression loss is denoted as BIPU-regr; the model that only
adds multi-label classification is denoted as BIPU-mlc; and
the model that adds both multi-label classification and abun-
dance mask is denoted as BIPU-mask.

Experiments
Datasets
FENIR dataset 1: a large-scale, near-infrared textile fiber
dataset, compiled by professionals through the standardized
collection of textile fiber product samples from various en-
terprises. Currently, FENIR data encompasses 12 common
fiber components, accounting for approximately 80% of the
market’s textile fiber composition. FENIR’s 12 primary fiber
components comprise a total of 391,945 valid series of spec-
trum. The dataset primarily stores collected data informa-
tion, such as wavelength, absorption rate, reflectivity, and
light intensity, as well as corresponding component compo-
sition and content label information.

1https://drive.google.com/file/d/1 7XDhx 03TGutcPcU9GeWc
wJ f2SMs 8/view?usp=sharing
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Synthetic Dataset: generated by selecting five endmem-
bers from the USGS spectral library. The image comprises
200×200 pixels and 224 spectral bands, spanning a wave-
length range of 0.4 to 2.5µm. Further details about the sim-
ulation process can be found at (Drumetz et al. 2016; Yao
et al. 2021).

Jasper Ridge Dataset: This stunning hyperspectral scene
was captured by the AVIRIS sensor, soaring high above
the picturesque rural landscape of Jasper Ridge in sunny
California, USA. The original image boasts an impressive
512×614 pixels, with a dazzling array of 224 wavelength
bands spanning from 0.38 to 2.5µm, and a ground sampling
distance (GSD) of just 20m. In this captivating study scene,
we delved deep into the analysis of four main endmembers
- the lush trees, the sparkling water, the rich soil, and the
winding roads - with abundance maps sourced from the web-
site 2.

EnMAP Munish Dataset: Crafted from the correspond-
ing HyMap data, meticulously gathered from the bustling
city of Munich in picturesque Germany, and expertly pro-
cessed using the cutting-edge end-to-end EnMAP simula-
tion tool: EeteS (Segl et al. 2012). They carefully selected
an ROI that encompasses a remarkable 93×171 pixels, with
a ground sampling distance (GSD) of just 30m, and an im-
pressive 221 bands spanning a spectral range from 0.38 to
2.5µm. In this captivating scene, we delved into the analy-
sis of the sturdy roofs, the sleek asphalt, the rich soil, the
sparkling water, and the lush vegetation.

Experimental Results
Experiment Settings In this paper, set α = 0.1, λ1 =
0.02, λ2 = 0.9, λ3 = 5e − 3, ξ = 0.5 and V = ⌈A

2 ⌉. The
numbers of endmember at the four datasets FENIR, Syn-
thetic, Jasper Ridge and EnMAP Munish are 12, 5, 4 and
5, respectively, and therefore V are 6, 3, 2 and 3. We apply
ResNet18 as the backbone networks, while the three-layer
one-dimensional convolution network is applied to extract
features for the multi-label classification. During training,
the batch size is 128, and we use Adam optimizer for 500
epochs with the learning ratio 5e-3. We choose eight repre-
sentative baseline models as comparison: NHU-DAE (Wang
et al. 2019), DAEN (Su et al. 2019), HU-DCN (Zhang
et al. 2018), CNNAEU (Palsson, Ulfarsson, and Sveinsson
2021), HU-FNNC (Lei et al. 2020), HU-LAE (Zhao, Yan,
and Chen 2021), TANet (Jin et al. 2022), EGU-Net (Hong
et al. 2021) and VAE (Shi et al. 2021), with slight tuned
hyper-parameters at FENIR dataset. For the three remote
sensing datasets, six baseline modes are used as compari-
son: FCLSU (Heinz et al. 2001), ALMM (Hong et al. 2018),
DAEU (Palsson et al. 2018), DAEN, CNNAEU and EGU-
Net. The metrics are shown as Tab. 1. Among them, aRMSE
is a commonly used metric for unmixing to evaluate the
overall performance of abundance estimation, γ-accuracy
is used to measure the stability of abundance estimation,
and accuracy is used to evaluate the overall performance of
multi-label classification. The hardware platform is Ubuntu
20.04.2 LTS (GNU/Linux 5.15.0-78-generic x86 64), with

2https://rslab.ut.ac.ir/data

two gpu cards of Nvidia GeForce 3090, and six cores of In-
tel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz. We also use
Pytorch in version of 1.8.1, running on 64G memories. The
average computation time of training is about 68.4s for an
epoch over 500 epochs.

Unmixing on FENIR From Tab. 2, it can be seen that,
First and foremost, BIPU and its ingenious variants have
achieved a remarkable improvement in performance and
enhanced stability when compared to the baseline mod-
els, boasting at 18.60% to 31.48% reduction in aRMSE
and a significant increase in γ-accuracy within the range
of γ ∈ [1%, 30%]; In particular, VAE, EGU-Net, HU-
LAE, and TANet have each proposed modeling approaches
to address endmember variability. As demonstrated on the
FENIR dataset, BIPU has proven to be particularly effec-
tive in handling this issue. Secondly, BIPU outshines its
variant models in terms of aRMSE and γ-accuracy within
the range of γ ∈ [3%, 30%], with the difference in per-
formance between γ-accuracy within the range of γ ∈
[1%, 2%] and BIPU-mask being negligible, suggesting that
BIPU has achieved a relatively stable SOTA performance on
the FENIR dataset; Thirdly, BIPU-base surpasses the eight
baseline models in terms of aRMSE and γ-accuracy within
the range of γ ∈ [1%, 30%], indicating that the Bayesian In-
version Solver proposed in this paper has made a significant
leap forward in unmixing at FENIR; Fourthly, when com-
pared to BIPU-base, BIPU-mlc sees a significant increase
in aRMSE and only minor improvements within the range
of γ ∈ [1%, 5%], revealing that simply adding a multi-
label classification branch does not significantly enhance
unmixing performance; Fifthly, when compared to BIPU-
mlc, BIPU-mask excels in all indicators, reaching its peak
within the range of γ ∈ [1%, 2%], suggesting that the multi-
label classification branch can only effectively improve the
stability of unmixing performance by utilizing abundance
masks to constrain the upper bound; Sixthly, when com-
pared to BIPU-base, BIPU-regr sees a significant reduction
in aRMSE but its performance declines within the range of
γ ∈ [1%, 10%], indicating that while BIPU-regr can opti-
mize unmixing performance, it needs to be combined with
masks to achieve optimal unmixing stability.

Ablation Study We collected four sub-datasets
for isolated training and evaluation, which are: L C
(Linen Cotton), P N A (Poly Nylon Acrylic), N A (Ny-
lon Acrylic) and CA W S (Cachmere Wool Silk), with
data volumes of 81718, 40494, 9293 and 10366, respec-
tively. From Figure. 4, it can be seen that, Firstly, by
comparing BIPU-base to VAE, BIPU-mlc to VAE+MLC,
and BIPU-mask to VAE+MLC+MASK, it becomes clear
that the Bayesian Inversion Solver proposed in this paper
has achieved a significant leap forward in the unmixing of
FENIR when compared to VAE. Secondly, when compared
to VAE, VAE+MLC sees significant improvements only on
the L C subset, while the enhancements on the other three
subsets are not as pronounced. However, after the addition
of the abundance mask, the performance has improved
significantly. Similarly, BIPU-mlc does not see any notable
improvements when compared to BIPU-base, but after
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Models aRMSE 1% 2% 3% 5% 10% 15% 20% 25% 30%
NHU-DAE 0.1489 8.18 14.63 20.09 28.26 37.93 43.73 47.68 51.66 55.36
DAEN 0.1468 10.12 15.71 20.98 30.07 40.22 46.18 52.00 55.88 58.19
HU-DCN 0.1431 12.09 17.38 23.00 33.19 42.88 51.95 60.07 63.39 66.90
CNNAEU 0.1322 12.95 17.10 24.84 34.68 45.23 54.03 61.25 62.87 68.99
HU-FNNC 0.1306 13.10 18.19 22.54 32.48 43.33 52.68 61.90 63.85 67.11
HU-LAE 0.1448 9.89 16.38 21.47 31.99 39.89 46.11 54.02 57.19 59.90
TANet 0.1284 14.69 19.15 24.90 35.40 48.88 55.19 62.33 65.96 68.83
EGU-Net 0.1250 16.05 18.94 24.56 36.03 50.22 57.79 62.12 65.23 69.09
VAE 0.1188 18.03 21.69 26.53 36.96 52.73 60.19 65.02 68.47 71.49
VAE+MLC+MASK 0.1079 22.18 23.94 28.73 39.20 58.41 65.79 74.68 76.33 78.90
BIPU-base 0.0875 25.09 31.58 37.83 49.57 63.89 72.81 79.06 81.45 84.72
BIPU-mlc 0.0967 26.38 33.19 37.60 51.72 62.03 70.84 72.77 76.91 79.17
BIPU-mask 0.0880 33.13 39.51 43.94 52.38 64.01 71.20 75.98 77.52 80.16
BIPU-regr 0.0848 28.92 33.17 39.40 51.21 61.82 71.57 79.84 80.99 84.33
BIPU 0.0814 32.94 39.47 44.28 53.21 67.06 75.33 81.65 83.47 86.08

Table 2: Empirical results of unmixing on FENIR dataset, with metrics of aRMSE and γ-accuracy, while VAE+MLC+MASK
the multi-task training of VAE and multi-label classification with abundance mask.

the addition of the abundance mask, the performance has
improved significantly. From this, it can be inferred that
the multi-label classification branch can only effectively
improve unmixing performance by adding a abundance
mask to tighten the upper bound. Finally, on the L C and
N A subsets, there is no significant difference in stability of
unmixing between BIPU and BIPU-mask. On the P N A
subset, BIPU-mask outperforms BIPU in terms of stability
of unmixing. On the challenging CA W S subset, BIPU has
significantly better stability of unmixing than BIPU-mask.
This indicates that Lregr does not always play a role in
improving performance on different subsets. However,
when combined with Tab. 2, it can be seen that Lregr has a
positive impact on all categories of FENIR. Therefore, we
ultimately choose to add Lregr to the objective function of
the BIPU model.

Performance of Multi-Label Classification In this sec-
tion, we will delve deep into the improvement on multi-
label classification. As can be seen from Tab. 3: Firstly,
compared to only performing multi-label classification, the
addition of multi-label classification and abundance mask
to VAE has significantly improved classification perfor-
mance, boasting an accuracy improvement range of 4.53%
to 9.21%; at the same time, the accuracy improvement range
of BIPU-mask compared to BIPU-mlc is 1.13% to 4.19%;
this proves that the abundance mask still has a significant
improvement effect on classification. Secondly, since BIPU-
base does not possess multi-label classification capabilities,
BIPU-mlc is used to compared with MLC here, with an ac-
curacy improvement range of 4.75% to 9.85%; at the same
time, BIPU-mask is compared with VAE+MLC+MASK,
with an accuracy improvement range of 0.78% to 4.19%.
This shows that the convergence process of the Bayesian
inversion solver proposed in this paper has significant im-
provements on multi-label classification. Thirdly, compared
to BIPU-mask, BIPU has an accuracy difference of -0.14%,
+0.32%, -0.14% and +0.75% on the four subsets respec-

Method L C P N A N A CA W S
MLC 79.62 89.47 90.92 60.23
VAE+MLC+MASK 85.43 94.00 96.10 69.44
BIPU-mlc 84.89 93.52 95.75 70.08
BIPU-mask 87.43 95.31 96.88 74.27
BIPU 87.29 95.63 96.74 75.02

Table 3: Experimental results of multi-label classification on
FENIR, with the metric of Accuracy(%).

tively, indicating that Lregr does not necessarily have an
positive effect on multi-label classification performance on
different datasets.

Generalization on Hyperspectrum Images In order to
verify the generalization ability of the model proposed in
this paper, we have meticulously selected three remote sens-
ing hyperspectral datasets and conducted extended experi-
ments in terms of application scenarios for hyperspectrum
images. As can be seen from Tab. 4: First and foremost, the
unmixing performance of BIPU and its ingenious variants is
significantly better than that of each baseline model, prov-
ing that the Bayesian inversion solver proposed in this pa-
per has a stable and significant improvement effect on re-
mote sensing hyperspectral unmixing tasks. Second, com-
pared to BIPU-base, the unmixing performance of BIPU-
mlc has significantly decreased, but the unmixing perfor-
mance of BIPU-mask has significantly improved compared
to BIPU-mlc, and has improved to some extent compared to
BIPU-base on Jasper Ridge and EnMAP Munish; this fur-
ther proves that only when the abundance mask is applied
can the multi-label classification task effectively tighten the
upper bound of the unmixing task, thereby effectively im-
proving the unmixing performance. Third, the unmixing
performance of BIPU-regr on remote sensing hyperspec-
tral datasets is better than that of BIPU-base, indicating that
Lregr has a certain degree of promoting effect on unmixing
performance in this scenario. Fourth, BIPU is significantly
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Figure 4: Empirical results of γ accuracy on four subsets from FENIR dataset. VAE+MLC denotes the multi-task training of
VAE and multi-label classification, while VAE+MLC+MASK the model with abundance mask based on VAE+MLC.

Methods Synthetic(%) Jasper(%) EnMAP(%)
FCLSU 6.78±0.18 17.83±0.98 33.15±1.85
ALMM 2.47±0.19 10.15±1.72 22.97±3.15
DAEU 3.27±0.24 10.91±1.50 23.55±4.33
DAEN 2.57±0.11 9.57±2.34 21.18±4.36
CNNAEU 2.49±0.16 9.34±2.11 18.34±1.34
EGU-Net 1.83±0.07 8.61±2.11 16.80±1.07
BIPU-base 1.48±0.12 7.62±2.24 15.84±1.77
BIPU-mlc 1.76±0.10 8.04±1.49 16.97±2.45
BIPU-mask 1.53±0.17 7.54±1.96 14.68±2.03
BIPU-regr 1.46±0.13 7.76±1.50 15.57±1.83
BIPU 1.35±0.16 7.02±1.87 14.70±2.04

Table 4: Quantitative results of unmixing measured by
aRMSE on Synthetic, Jasper Ridge and EnMAP Munish
datasets.

better than BIPU-mask in terms of unmixing performance
on Synthetic and Jasper Ridge datasets, and there is no sig-
nificant difference between BIPU and BIPU-regr on EnMAP
Munish. Therefore, it is believed that the model proposed in
this paper, BIPU, can achieve a relatively stable SOTA ef-
fect.

Hyperparameters Tuning For α=[0.01, 0.05, 0.1, 0.15,
0.2, 0.3, 0.4, 0.5, 0.8], aRMSE=[0.1059, 0.0929, 0.0814,
0.0853, 0.0938, 0.1013, 0.1052, 0.1148, 0.1205]. For
λ1=[0.05, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04],
aRMSE=[0.1017, 0.0939, 0.0853, 0.0814, 0.825, 0.0898,
0.0932, 0.1048]. For λ2=[0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1,
1.2, 1.3], aRMSE=[0.0905, 0.087, 0.0832, 0.0822, 0.0814,
0.0818, 0.0819, 0.0841, 0.0838]. For λ3=[5e-4, 1e-3, 2e-3,
5e-3, 1e-2, 2e-2, 5e-2], aRMSE=[0.0867, 0.0841, 0.0829,
0.0814, 0.0835, 0.0831, 0.0844]. For η=[0.3, 0.4, 0.5, 0.6,
0.7], aRMSE=[0.1131,0.1040, 0.0814, 0.0968, 0.01094]. It
indicates that the performance is significantly sensitive to η,

relatively sensitive to α & λ1, and relatively stable with the
settings of λ2 and λ3.

Conclusion

To address the issue of endmember variability, we has pro-
posed a unified multi-task model that integrates unmixing,
abundance regression, and multi-label classification.

Firstly, we validated the effectiveness of spectral recon-
struction, abundance regression, and multi-label classifi-
cation tasks respectively, through ablation experiments on
near-infrared spectral data of textiles and remote sensing
hyperspectral data. Our unified model achieved state-of-
the-art unmixing performance in four scenarios across two
domains, demonstrating the stability and generalization of
BIPU unmixing. Secondly, by comparing the performance
of BIPU-base against other baseline models that address
endmember variability, we discovered that our proposed la-
tent factors of variability can more effectively solve the
problem of endmember variability when distribution correc-
tion is applied to both the latent factors of variability and
abundance, verifying the effectiveness of our derived fea-
sible upper bounds. Finally, after comparing the unmixing
performance of BIPU-mlc with BIPU-base, we concluded
that simply adding a multi-label classification task does not
significantly improve unmixing performance. Only after in-
corporating an abundance mask did we observe a significant
improvement in unmixing of BIPU-mask. By adding multi-
label classification and abundance abundance masks to VAE,
we also achieved significant improvements in unmixing per-
formance. Furthermore, we verified that the abundance mask
can also significantly improve the accuracy of multi-label
classification. In future work, we will explore the use of non-
linear encoders to generate spectral feature of endmembers
during reconstruction and investigate the characteristics of
the factor of variability for a more interpretable model.
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Tan, P. 2019. Solving inverse problems by joint pos-
terior maximization with a VAE prior. arXiv preprint
arXiv:1911.06379.
Halimi, A.; Dobigeon, N.; and Tourneret, J.-Y. 2015. Unsu-
pervised unmixing of hyperspectral images accounting for
endmember variability. IEEE Transactions on Image Pro-
cessing, 24(12): 4904–4917.
Heinz, D. C.; et al. 2001. Fully constrained least squares
linear spectral mixture analysis method for material quan-
tification in hyperspectral imagery. IEEE transactions on
geoscience and remote sensing, 39(3): 529–545.
Hong, D.; Gao, L.; Yao, J.; Yokoya, N.; Chanussot, J.; Hei-
den, U.; and Zhang, B. 2021. Endmember-guided unmixing
network (EGU-Net): A general deep learning framework for
self-supervised hyperspectral unmixing. IEEE Transactions
on Neural Networks and Learning Systems, 33(11): 6518–
6531.
Hong, D.; Yokoya, N.; Chanussot, J.; and Zhu, X. X. 2018.
An augmented linear mixing model to address spectral vari-
ability for hyperspectral unmixing. IEEE Transactions on
Image Processing, 28(4): 1923–1938.
Huang, Y.; Li, J.; Qi, L.; Wang, Y.; and Gao, X. 2020.
Spatial-Spectral Autoencoder Networks for Hyperspectral
Unmixing. In IGARSS 2020 - 2020 IEEE International Geo-
science and Remote Sensing Symposium, 2396–2399.
Jiang, Z.; Zhang, S.; Turnadge, C.; and Xu, T. 2021. Com-
bining autoencoder neural network and Bayesian inversion
to estimate heterogeneous permeability distributions in en-
hanced geothermal reservoir: Model development and veri-
fication. Geothermics, 97: 102262.
Jin, K. H.; McCann, M. T.; Froustey, E.; and Unser, M. 2017.
Deep convolutional neural network for inverse problems in
imaging. IEEE transactions on image processing, 26(9):
4509–4522.
Jin, Q.; Ma, Y.; Mei, X.; and Ma, J. 2022. TANet: An Unsu-
pervised Two-Stream Autoencoder Network for Hyperspec-
tral Unmixing. IEEE Transactions on Geoscience and Re-
mote Sensing, 60: 1–15.
Keshava, N.; and Mustard, J. F. 2002. Spectral unmixing.
IEEE signal processing magazine, 19(1): 44–57.
Lei, M.; Li, J.; Qi, L.; Wang, Y.; and Gao, X. 2020. Hy-
perspectral Unmixing via Recurrent Neural Network With
Chain Classifier. In IGARSS 2020 - 2020 IEEE International
Geoscience and Remote Sensing Symposium, 2173–2176.
Li, H.; Schwab, J.; Antholzer, S.; and Haltmeier, M. 2020.
NETT: Solving inverse problems with deep neural networks.
Inverse Problems, 36(6): 065005.
Palsson, B.; Sigurdsson, J.; Sveinsson, J. R.; and Ulfarsson,
M. O. 2018. Hyperspectral unmixing using a neural network
autoencoder. IEEE Access, 6: 25646–25656.
Palsson, B.; Ulfarsson, M. O.; and Sveinsson, J. R. 2021.
Convolutional Autoencoder for Spectral–Spatial Hyperspec-
tral Unmixing. IEEE Transactions on Geoscience and Re-
mote Sensing, 59(1): 535–549.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15886



Patel, D.; and Oberai, A. A. 2019. Bayesian inference
with generative adversarial network priors. arXiv preprint
arXiv:1907.09987.
Qi, L.; Li, J.; Wang, Y.; Lei, M.; and Gao, X. 2020.
Deep spectral convolution network for hyperspectral im-
age unmixing with spectral library. Signal Processing, 176:
107672.
Rasti, B.; Koirala, B.; Scheunders, P.; and Ghamisi, P. 2022.
UnDIP: Hyperspectral Unmixing Using Deep Image Prior.
IEEE Transactions on Geoscience and Remote Sensing, 60:
1–15.
Roberts, D. A.; Gardner, M.; Church, R.; Ustin, S.; Scheer,
G.; and Green, R. 1998. Mapping chaparral in the Santa
Monica Mountains using multiple endmember spectral mix-
ture models. Remote sensing of environment, 65(3): 267–
279.
Rogge, D. M.; Rivard, B.; Zhang, J.; and Feng, J. 2006. Iter-
ative spectral unmixing for optimizing per-pixel endmember
sets. IEEE Transactions on Geoscience and Remote Sensing,
44(12): 3725–3736.
Segl, K.; Guanter, L.; Rogass, C.; Kuester, T.; Roessner,
S.; Kaufmann, H.; Sang, B.; Mogulsky, V.; and Hofer, S.
2012. EeteS—The EnMAP end-to-end simulation tool.
IEEE Journal of Selected Topics in Applied Earth Obser-
vations and Remote Sensing, 5(2): 522–530.
Shi, S.; Zhao, M.; Zhang, L.; and Chen, J. 2021. Varia-
tional autoencoders for hyperspectral unmixing with end-
member variability. In ICASSP 2021-2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 1875–1879. IEEE.
Somers, B.; Asner, G. P.; Tits, L.; and Coppin, P. 2011. End-
member variability in spectral mixture analysis: A review.
Remote Sensing of Environment, 115(7): 1603–1616.
Stein, D. 2003. Application of the normal compositional
model to the analysis of hyperspectral imagery. In IEEE
Workshop on Advances in Techniques for Analysis of Re-
motely Sensed Data, 2003, 44–51. IEEE.
Su, Y.; Li, J.; Plaza, A.; Marinoni, A.; Gamba, P.; and
Chakravortty, S. 2019. DAEN: Deep autoencoder networks
for hyperspectral unmixing. IEEE Transactions on Geo-
science and Remote Sensing, 57(7): 4309–4321.
Su, Y.; Marinoni, A.; Li, J.; Plaza, J.; and Gamba, P. 2018.
Stacked nonnegative sparse autoencoders for robust hyper-
spectral unmixing. IEEE Geoscience and Remote Sensing
Letters, 15(9): 1427–1431.
Tang, W.; Shi, Z.; Wu, Y.; and Zhang, C. 2015. Sparse Un-
mixing of Hyperspectral Data Using Spectral A Priori In-
formation. IEEE Transactions on Geoscience and Remote
Sensing, 53(2): 770–783.
Thouvenin, P.-A.; Dobigeon, N.; and Tourneret, J.-Y. 2016.
Hyperspectral unmixing with spectral variability using a
perturbed linear mixing model. IEEE Transactions on Sig-
nal Processing, 64(2): 525–538.
Wang, M.; Zhao, M.; Chen, J.; and Rahardja, S. 2019. Non-
linear unmixing of hyperspectral data via deep autoencoder
networks. IEEE Geoscience and Remote Sensing Letters,
16(9): 1467–1471.

Winter, M. E. 1999. N-FINDR: an algorithm for fast au-
tonomous spectral end-member determination in hyperspec-
tral data. In Descour, M. R.; and Shen, S. S., eds., Imaging
Spectrometry V, volume 3753, 266 – 275. International So-
ciety for Optics and Photonics, SPIE.
Yao, J.; Hong, D.; Xu, L.; Meng, D.; Chanussot, J.; and Xu,
Z. 2021. Sparsity-enhanced convolutional decomposition: A
novel tensor-based paradigm for blind hyperspectral unmix-
ing. IEEE Transactions on Geoscience and Remote Sensing,
60: 1–14.
Zare, A.; and Ho, K. 2013. Endmember variability in
hyperspectral analysis: Addressing spectral variability dur-
ing spectral unmixing. IEEE Signal Processing Magazine,
31(1): 95–104.
Zhang, X.; Sun, Y.; Zhang, J.; Wu, P.; and Jiao, L. 2018.
Hyperspectral Unmixing via Deep Convolutional Neural
Networks. IEEE Geoscience and Remote Sensing Letters,
15(11): 1755–1759.
Zhao, G.; Jia, X.; and Zhao, C. 2015. Multiple endmembers
based unmixing using Archetypal Analysis. In 2015 IEEE
International Geoscience and Remote Sensing Symposium
(IGARSS), 5039–5042.
Zhao, M.; Yan, L.; and Chen, J. 2021. LSTM-DNN Based
Autoencoder Network for Nonlinear Hyperspectral Image
Unmixing. IEEE Journal of Selected Topics in Signal Pro-
cessing, 15(2): 295–309.
Zhou, Y.; Rangarajan, A.; and Gader, P. D. 2018. A Gaus-
sian mixture model representation of endmember variabil-
ity in hyperspectral unmixing. IEEE Transactions on Image
Processing, 27(5): 2242–2256.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15887


