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Abstract

Model-based offline reinforcement learning (RL) algorithms
have emerged as a promising paradigm for offline RL. These
algorithms usually learn a dynamics model from a static
dataset of transitions, use the model to generate synthetic
trajectories, and perform conservative policy optimization
within these trajectories. However, our observations indi-
cate that policy optimization methods used in these model-
based offline RL algorithms are not effective at exploring
the learned model and induce biased exploration, which ulti-
mately impairs the performance of the algorithm. To address
this issue, we propose Offline Conservative ExplorAtioN
(OCEAN), a novel rollout approach to model-based offline
RL. In our method, we incorporate additional exploration
techniques and introduce three conservative constraints based
on uncertainty estimation to mitigate the potential impact of
significant dynamic errors resulting from exploratory transi-
tions. Our work is a plug-in method and can be combined
with classical model-based RL algorithms, such as MOPO,
COMBO, and RAMBO. Experiment results of our method
on the D4RL MuJoCo benchmark show that OCEAN signif-
icantly improves the performance of existing algorithms.

Introduction
Reinforcement learning (RL) (Sutton and Barto 2018) is
a machine learning method that enables agents to learn
optimal decision-making policy in complex environments
through interaction with their surroundings. While current
RL algorithms have made significant advances in fields such
as robot control (Kalashnikov et al. 2018; Quillen et al.
2018), autonomous driving (Yurtsever et al. 2020; Kiran
et al. 2021), and game intelligence (Silver et al. 2016), the
associated risks and costs of agent-environment interaction
cannot be overlooked. In this regard, offline RL (Lange,
Gabel, and Riedmiller 2012), which learns strategies from
existing datasets, presents a promising solution, making it
a critical component in implementing RL algorithms in the
real world.

Restricted datasets are the main reason for the per-
formance limitations of offline RL algorithms (Fujimoto,
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Figure 1: Comparison of random policy against maximum
entropy policy from MOPO (Yu et al. 2020). We train
MOPO for 2M gradient steps in the D4RL (Fu et al. 2020)
Maze2d-umaze-v1 task and rolled out trajectories from
states in the task dataset. The MOPO policy in the left figure
can only roll out on the right side of the existing data, while
a random policy can better explore the entire state space.

Meger, and Precup 2019). The current research mainly fo-
cuses on how to better utilize existing data to update poli-
cies and achieve better performance (Kumar et al. 2019; Wu,
Tucker, and Nachum 2019; An et al. 2021; Wu et al. 2021).
Simultaneously, model-based offline RL algorithms are a
natural fit for addressing the issue of limited data in offline
settings by modeling the dataset and learning the dynamic
model of the environment (Yu et al. 2020, 2021; Rigter, Lac-
erda, and Hawes 2022), which is used for rolling out tra-
jectories and updating policy. However, the cumulative er-
ror incurred during the interaction with the dynamic model
renders the rollout of a complete trajectory detrimental to
policy learning. Therefore, most model-based offline RL al-
gorithms adopt the k-step rollout method of MBPO (Janner
et al. 2019).

Our work highlights the fact that previous studies have not
explicitly investigated the exploration mechanism in the k-
step rollout method, which is particularly crucial in model-
based offline RL. Existing approaches have mainly relied
on simplistic mechanisms such as maximum entropy explo-
ration from SAC (Haarnoja et al. 2018), along with a rollout
stop mechanism based on uncertainty. However, we have ob-
served that such a mechanism introduces bias, as depicted
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in Figure 1. It is evident that the maximum entropy explo-
ration employed by MOPO is biased and fails to explore
the state space effectively. Biased exploration results in a bi-
ased training data distribution, which in turn contributes to a
degradation in the overall performance of the algorithm and
introduces instability. As a result, by ensuring a more com-
prehensive exploration during the rollout phase, we aim to
enhance the overall performance and stability of the learned
policy.

In this work, we present Offline Conservative Explo-
rAtioN (OCEAN), introducing additional exploration dur-
ing trajectory rollouts to solve the problem of biased ex-
ploration in model-based offline RL. However, in the case
of offline RL, direct exploration during the rollout stage is
bound to be influenced by model errors, which can ulti-
mately undermine the effectiveness of policy training. To
minimize the impact of exploration-induced model error, we
restrict the exploration strategy to ensure conservative ex-
ploration. Specifically, we employ three constraints to limit
excessive exploration by the policy. Firstly, we define the un-
certainty of the current state using uncertainties in the transi-
tion model to ensure that the policy explores states with low
uncertainty. Secondly, in states with low uncertainty, our ap-
proach selects a more conservative action from the explo-
ration strategy to generate the transition. Lastly, we limit
the rollout length and automatically adjust it. Our method
is an insertable approach that can be combined with the
current SOTA model-based offline algorithms. We incorpo-
rate OCEAN with three model-based offline RL algorithms,
MOPO, COMBO, and RAMBO and empirical results show
that OCEAN markedly boosts their performance across a
variety of benchmark tasks. Furthermore, our ablation ex-
periments provide additional evidence of the efficacy of our
method.

To the best of our knowledge, our research is the first to
specifically tackle the exploration problem in model-based
offline RL settings. Our work makes three main contribu-
tions, which are outlined as follows:
• We address a problem of biased exploration in model-

based offline RL settings.
• We propose a novel rollout method that effectively ad-

dresses the exploration challenge.
• We conduct extensive experimentation and validate the

effectiveness of our proposed approach, OCEAN, on the
D4RL MuJoCo benchmark.

Related Work
Offline RL aims to learn policies from a logged static
dataset. Starting from the vanilla model-free multistep actor-
critic method, there exist several modifications that can
be incorporated into an offline RL algorithm to improve
its performance (Prudencio, Maximo, and Colombini 2023;
Levine et al. 2020). Policy constraint methods modify the
objective of unconstrained policy improvement to maxi-
mize a constrained objective (Fujimoto, Meger, and Precup
2019; Kumar et al. 2019; Wu, Tucker, and Nachum 2019).
Regularization methods penalize learned value functions to
produce more conservative estimates (Kumar et al. 2020;

Nachum et al. 2019). One-step methods avoid iterative pol-
icy evaluation, instead performing a single step of evalua-
tion followed by a single policy improvement step (Gulcehre
et al. 2020; Brandfonbrener et al. 2021; Kostrikov, Nair,
and Levine 2021). Trajectory optimization methods learn a
model of the trajectory distribution induced by the behavior
policy (Chen et al. 2021; Janner, Li, and Levine 2021). Our
research focuses on model-based methods, which are simi-
lar to online model-based RL and employ a dynamics and
rewards model as a proxy for the real environment, simulat-
ing transitions and then using them for planning or policy
optimization.

Model-based offline RL algorithms use models learned
offline, which cannot correct their mistakes by interact-
ing with the environment. To mitigate the extrapolation er-
ror (Fujimoto, Meger, and Precup 2019), the most direct
way is to penal the model when visiting regions far away
from real dynamics, which is usually realized by uncer-
tainty estimation (Deisenroth and Rasmussen 2011; De-
peweg et al. 2016; Argenson and Dulac-Arnold 2020; Ki-
dambi et al. 2020; Yu et al. 2020; Yang et al. 2021). There are
also other research ways like constraining the learned policy
to be close to the behavior policy (Swazinna, Udluft, and
Runkler 2021; Cang et al. 2021; Matsushima et al. 2020) or
leveraging model-generated synthetic data for better train-
ing (Yu et al. 2021; Wang et al. 2021). We, instead, focus
on offering higher-quality exploration data for offline train-
ing. Previous work, such as COMBO (Yu et al. 2021) and
RAMBO (Rigter, Lacerda, and Hawes 2022), attempted to
use a random rollout policy but did not emphasize and ad-
dress the exploration problem. The most relevant to our work
are TATU (Zhang et al. 2023). However, TATU only consid-
ers truncating the synthetic trajectory and does not address
the exploration problem, which has also been overlooked in
previous work. OCEAN, instead, not only sheds light on the
lack of exploration capabilities but also takes into account
conservative constraints on exploration trajectories.

Preliminaries
A Markov Decision Process (MDP) is a mathematical for-
mulation used to model an RL environment, which is de-
fined by a 6-tupleM = ⟨S,A, T, d0, r, γ⟩, where S denotes
the state space, A denotes the action space, T (st+1|st,at)
denotes the transition distribution, d0(s0) denotes the initial
state distribution, r(st,at) denotes the reward function, and
γ ∈ (0, 1] denotes the discount factor. The goal of RL is to
find an optimal policy π∗(a|s) that maximizes the expected
return for all trajectories induced by the policy, such that

π∗ = argmin
π

Eτ∼pπ(·)

[ ∞∑
t=0

γtr(st, at)

]
, (1)

where pπ(τ) = d0(s0)Π
∞
t=0[π(at|st)T (st+1|st,at)] is the

probability density function for given trajectory τ and policy
π.

In offline RL setting, a static dataset of transitions D =
(st,at, st+1, rt)i is given, where i indexes a transition in
the dataset, the actions are generated by a behavior policy
at ∼ πβ(·|st). The objective of offline RL is the same as
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the online case: to find a policy that maximizes the expected
return. However, we cannot evaluate this objective under an
arbitrary trajectory distribution pπ(τ), since π might experi-
ence distributional shift and visit states that we do not have
any information from our static dataset.

Model-based offline RL typically estimates the transi-
tion dynamics TΦT

(st+1|st,at) and the reward function
rΦr (st,at) using standard supervised regression with the
dataset D. Then the dynamics and rewards models serve as
proxies for the real environment and are utilized to simu-
late transitions. These transitions are employed during the
planning or policy optimization phase. Model-based meth-
ods tend to perform effectively when the data distribution
offers extensive coverage, as it becomes easier to learn a pre-
cise model using such data.

TATU (Zhang et al. 2023) introduces trajectory truncation
with uncertainty to model-based offline RL. They first cal-
culate the truncation threshold ϵ as follow:

ϵ =
1

α
max
i∈[|D|]

u(si, ai), (2)

where u(si, ai) is the uncertainty estimation of state-action
pair (si, ai) and α is a hyperparameter. Then in the rollout
phase, they calculate accumulated uncertainty along the roll-
out trajectory Uj =

∑j
k=1 [u(sk, ak)]. TATU will truncate

the synthetic trajectory where Uj > ϵ.

Method
In this section, we begin by further explaining the biased ex-
ploration in model-based offline RL settings. Subsequently,
we present a comprehensive algorithm for OCEAN (Offline
Conservative Exploration), providing step-by-step details of
its implementation.

Explanation of Biased Exploration
We begin by further analyzing the reason behind the biased
exploration depicted in Figure 1. It is widely acknowledged
that achieving a balance between exploration and exploita-
tion is fundamental in designing reinforcement learning al-
gorithms. In the case of online RL algorithms, it is com-
mon practice to explore initially, followed by utilizing the
gathered data and repeating this process. However, offline
model-free RL does not inherently support further explo-
ration. Hence, the model-free offline RL approaches aim to
effectively utilize available data while suppressing explo-
ration, such as constraining the strategy within the range
supported by the dataset.

In the conventional model-based offline setting, the op-
timization objective is

∑
s,a r(s, a) − U(s, a) + H(π(s)),

where U and H are correlated. A higher entropy corresponds
to a policy that is more likely to produce out-of-distribution
actions, leading to an increase in U , which results in a de-
crease in the overall objective and impedes the algorithm’s
ability to effectively explore. Also, the presence of r − U
has an antagonistic effect on H . This is because maximizing
r−U tends to promote a deterministic policy, which in turn
leads to biased exploration.

Figure 2: Comparison of OCEAN (right) against MOPO
(left) on rollout trajectories. For states characterized by
higher uncertainty, such as S0, we refrain from further ex-
ploration. Conversely, for states with lower uncertainty, such
as S1 and S2, we explore within regions of exploration sup-
port area. In all trajectories, we ensure truncation within the
range supported by the dataset.

By introducing additional exploration, we can decouple
exploration and exploitation to facilitate a more comprehen-
sive exploration of the transition model and promote stabil-
ity in the distribution of sampled data. This stabilization en-
sures that the algorithm’s asymptotic performance becomes
more consistent and reliable. However, unlike interactions
with the real environment, model-based exploration necessi-
tates a delicate balance between exploration and model error.
If the explored transition yields a substantial model error,
it could detrimentally impact the algorithm’s performance.
To address this issue, we propose the introduction of an ex-
ploration module based on uncertainty estimation, ensuring
that we explore regions where the model error is minimal.
We will now delve into the details of Offline Conservative
Exploration (OCEAN) below.

Offline Conservative Exploration
OCEAN is a plug-in method that can be seamlessly inte-
grated into existing model-based offline frameworks. The
algorithmic overview of OCEAN is depicted in Algorithm
1.

Following MBPO (Janner et al. 2019), we first model
the dynamics using a neural network that outputs a
Gaussian distribution over the next state and reward
T̂θ,ϕ(st+1, rt|st,at) = N (µθ(st,at),

∑
ϕ(st,at)). In order

to better estimate state transitions and facilitate the compu-
tation of uncertainties, we learn an ensemble of N dynam-
ics models {T̂ iθ,ϕ}Ni=1 with each model initialized randomly
and trained independently via maximum likelihood. The loss
function for training the forward dynamics models is as fol-
lows:

Lθ,ϕ = E(st,at,r,st+1)∼D

[
− log T̂θ,ϕ(st+1, rt|st,at)

]
.

(3)
In practice, models output the difference between the cur-

rent state and the next state, i.e., µθ(st,at) = s+ δθ(st,at).
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Then we will choose M elite models from N ensemble mod-
els for policy training.

After the completion of model training, similar to MBPO,
we use a policy to roll out h steps with the model and up-
date the policy with the collected data. However, OCEAN
modifies the policy rollout phase to ensure the generation
of more exploratory trajectories and guarantee that the gen-
erated data falls within the range supported by the model.
Specifically, our method involves three constraints to enable
conservative exploration. Firstly, for every state in the roll-
out trajectory, we determine whether it is suitable for ex-
ploration. We aim to avoid exploring areas where the model
estimates are inaccurate. Secondly, we perform exploration
on filtered states and select more conservative transitions to
add to the buffer. Finally, we truncate the rollouts to ensure
safe exploration within the dataset support region. In Figure
2, we provide an example to illustrate our algorithm. Below,
we provide a detailed explanation of how each constraint is
implemented.

State Evalution Constraint For the first constraint, at the
beginning of each rollout step, to avoid exploring states
where the model estimation deviates significantly from the
real dynamics, we only explore current states with low un-
certainty. It is important to highlight that in this context, we
estimate the uncertainty of the states, rather than the uncer-
tainty of the state-action pairs. To estimate the uncertainty of
the current state, we employ a sampling approach. Specifi-
cally, we sample a set of n exploration actions {aei,j}i=1,...,n

for state sj from our exploration strategy

aei,j = π(sj) + ϵi (4)

where π refers to the origin policy and ϵi ∼ N (0, σ2). In
practice, our exploration policy is obtained by adding Gaus-
sian noise with zero mean and a variance of δ2 to the orig-
inal policy π, which is named πe. It is worth noting that
in our implementation, the original policy is also modeled
using a Gaussian distribution. However, the variance of the
original policy is significantly smaller than that of the added
Gaussian noise, which enables exploration of the policy in a
broader range.

We then calculate the average uncertainty
∑n
i=1 U

e
i,j of

explored state-action pairs by an uncertainty estimator. The
choice of uncertainty estimator is flexible, and based on the
findings of (Lu et al. 2021), the available uncertainty esti-
mators in our work include Max Aleatoric (Yu et al. 2020),
Max Pairwise Diff (Kidambi et al. 2020), and Ensemble
Standard Variance (Lakshminarayanan, Pritzel, and Blun-
dell 2017). We set a hyperparameter of penalty threshold uT
to decide whether to explore the current state.

Exploration Range Constraint The second constraint
limits the extent of exploration to the boundaries supported
by the model. For the states deemed suitable for exploration,
we reuse the exploration actions sampled previously for sim-
plifying the calculation process. From the explored transi-
tions, we adopt a more conservative approach in selecting
the transitions, which can be done in the following three
ways:

Algorithm 1: OCEAN

Require: Offline dataset D, rollout horizon h, penalty
threshold uT , truncation coefficient λ

1: Initialize model buffer Dmodel ← ∅
2: Train the N ensemble dynamics models on D with

Equation 3
3: Calculate the max uncertainty umax in dataset
4: for epoch in 1 to n do
5: Sample state s0 from dataset D
6: for j in 1 to h do
7: Sample an action aj ∼ π(·|sj)
8: Sample n actions {aei,j}i=1,...,n from exploration

policy πe
9: Randomly pick dynamics T̂ from {T̂ iψ}Ni=1

10: sample next states sj+1, {sei,j+1}i=1,..,n ∼ T̂ cor-
responds to aj and {aei,j}i=1,...,n

11: Calculate the uncertainty Uj and {Ue
i,j}i=1,...,n re-

spectively
12: if Uj ≤ λ · umax then
13: if

∑n
i=1 U

e
i,j ≤ uT then

14: Select an imagined transition from
{(sei,j ,aei,j , rj , sei,j+1)}i=1,...,n into the
model buffer Dmodel

15: else
16: Put the imagined transition (sj ,aj , rj , sj+1)

into the model buffer Dmodel

17: end if
18: else
19: break
20: end if
21: end for
22: Sample data from D ∪Dmodel and optimize policy π
23: end for

• Min Uncertainty: argminae
i
{u(s,aei ), i = 1, ..., n},

which corresponds to the state-action pair that has the
minimum uncertainty.

• Median Uncertainty: arg mediumae
i
({u(s,aei ), i =

1, ..., n}), which corresponds to the state-action pair that
has the medium uncertainty.

• Random Uncertainty: random sample action from the ex-
ploration actions.

Trajectory Truncation Constraint Finally, to prevent the
influence of model error caused by excessively long rollouts,
we impose a limit on the rollout length. Similar to the TATU
method (Zhang et al. 2023), we employ an automatic clip-
ping approach based on uncertainty. Specifically, we calcu-
late the maximum uncertainty umax exhibited by the model
within the dataset. Then, at each rollout step, we calculate
the uncertainty corresponding to the state-action pair gener-
ated by the rollout policy. If the calculated uncertainty ex-
ceeds the threshold of λ · umax, we truncate the trajectory
at that step. Here, λ is a tunable hyperparameter, which is
typically set to 1 in our experiments. By implementing this
automatic clipping method, we restrict the length of rollouts
to mitigate the impact of model errors. The threshold based
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Task Name MOPO MOPO+OCEAN CQL TD3+BC IQL
halfcheetah-m 73.2(4.1) 74.4(2.0) 49.4 48.2 47.4
hopper-m 31.4(25.7) 87.4(22.8) 59.1 60.8 65.7
walker2d-m2 87.3(9.6) 89.9(2.1) 83.6 84.4 81.1
halfcheetah-m-r 70.1(2.2) 68.8(2.1) 47.0 45.0 44.2
hopper-m-r 98.1(16.2) 103.4(1.8) 98.6 67.3 94.8
walker2d-m-r 72.7(20.1) 90.7(3.3) 71.3 83.4 77.3
halfcheetah-m-e 79.3(12.6) 99.3(2.0) 93.0 90.7 88.0
hopper-m-e 82.5(33.2) 110.0(1.2) 111.4 91.4 106.2
walker2d-m-e 102.2(11.7) 108.7(7.0) 109.8 110.2 108.3
Average Score 77.4(5.9) 92.5(2.7) 80.35 75.71 79.13

Table 1: Normalized average score comparison of OCEAN+MOPO against MOPO and some recent baselines on the D4RL
MuJoCo “-v2” dataset. r=random, m=medium, m-r=medium-replay, m-e=medium-expert. MOPO-based algorithms run for
2M gradient steps across 8 different random seeds and the final mean performance of 100 episodes is reported. (·) captures the
standard deviation. The top score of each environment for each part is bolded.

Task Name COMBO COMBO+OCEAN RAMBO RAMBO+OCEAN
halfcheetah-m 76.7(5.3) 75.6(5.1) 74.9(1.7) 73.1(2.0)
hopper-m 97.4(2.6) 100.9(0.3) 98.5(19.0) 103.7(2.7)
walker2d-m2 81.2(4.2) 82.6(0.9) 84.7(5.5) 84.7(11.1)
halfcheetah-m-r 68.1(4.5) 70.8(1.3) 68.0(2.2) 68.9(2.2)
hopper-m-r 95.4(15.5) 104.1(0.8) 81.7(26.3) 93.5(13.9)
walker2d-m-r 77.1(10.1) 76.4(17.2) 79.8(9.5) 93.2(6.4)
halfcheetah-m-e 97.3(1.1) 98.9(0.4) 94.9(5.6) 96.3(4.1)
hopper-m-e 107.2(6.0) 111.2(1.9) 86.6(27.1) 86.1(26.1)
walker2d-m-e 108.0(4.1) 110.4(0.7) 87.8(32.5) 101.7(23.7)
Average Score 89.8(2.4) 92.3(2.0) 84.1(6.1) 89.0(4.5)

Table 2: Normalized average score comparison of OCEAN+COMBO and OCEAN+RAMBO against their base algorithms on
the D4RL MuJoCo “-v2” dataset. r=random, m=medium, m-r=medium-replay, m-e=medium-expert. All algorithms run for 1M
gradient steps across 8 different random seeds and the final mean performance of 100 episodes is reported. (·) captures the
standard deviation. The top score of each environment is bolded.

on uncertainty allows us to control the influence of uncer-
tain predictions and maintain the reliability of the rollout
process. We truncate the synthetic trajectory like TATU, but
TATU calculates the cumulative uncertainty of the entire tra-
jectory, whereas we solely focus on the uncertainty of a sin-
gle state-action pair. This narrower focus on individual state
uncertainty allows us to adopt a more optimistic approach
when truncating rollouts.

Experiments
Our experiments aim to: a) evaluate how well OCEAN im-
proves the performance of state-of-art offline model-based
methods, b) examine whether conservative exploration is
necessary, c) determine the impact of different hyperparam-
eters on the performance of the algorithm.

To achieve these goals, we first combine OCEAN
with popular model-based offline RL algorithms, MOPO,
COMBO and RAMBO. Then we proceed to validate the ef-
ficacy of exploration and conservatism in the OCEAN al-
gorithm individually. Additionally, we conduct experiments
to explore various uncertainty estimators and exploration
strategies. Lastly, we perform parameter tuning experiments

on the two pivotal hyperparameters in OCEAN, namely the
penalty threshold uT and noise standard deviation δ.

We evaluate our approach on D4RL (Fu et al. 2020)
MuJoCo datasets and our code is based on OfflineRL-
Kit library1. It is a relatively comprehensive and high-
performance library in the current offline model-based RL
implementations. The base hyperparameters that we use for
OCEAN mostly follow the OfflineRL-Kit library.

Results
In order to assess the potential performance improvements
of OCEAN compared to MOPO, COMBO, and RAMBO,
we conducted a series of experiments on nine D4RL Mu-
JoCo datasets. These datasets are commonly used for eval-
uating the performance of model-based offline RL algo-
rithms. Our result is shown in Table 1 and Table 2. It is im-
portant to highlight that the experimental results obtained
from our base algorithms may not precisely match those
of the OfflineRL-Kit library. This discrepancy arises be-
cause, for each task and seed combination, we utilize the
same dynamic model instead of training a unique model for

1https://github.com/yihaosun1124/OfflineRL-Kit
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(a) (b) (c) (d)

Figure 3: Ablation study experiments on the walker2d-medium-replay-v2 task. Figure 3a compares MOPO, MOPO+OCEAN
and MOPO with noise, which illustrates the effectiveness of the conservative. Figure 3b compares MOPO+OCEAN and MOPO
with trajectory truncation and validates the effectiveness of the exploration. Figures 3c and 3d run on RAMBO+OCEAN and
illustrate the effectiveness of different uncertainty estimators and different exploration action selection strategies, respectively.
MOPO-based experiments run for 2M gradient steps and RAMBO-based experiments run for 1M gradient steps.

each seed. This approach allows us to expedite the iterative
process and promptly validate the effectiveness of our ap-
proach. The results of model-free approaches are from the
OfflineRL-Kit library. More implementation details can be
found in our appendix and we also show all the training
curves compared to the baseline in the appendix.

Table 1 shows results for MOPO, MOPO+OCEAN,
and model-free baselines CQL (Kumar et al. 2020),
TD3+BC (Fujimoto and Gu 2021), and IQL (Kostrikov,
Nair, and Levine 2021). It can be found that OCEAN
markedly boosts the performance of MOPO on most of the
datasets, especially in the hopper task(hopper-m, hopper-m-
r, and hopper-m-e) which improved from 70.7 to 100.3 on
average score. The total average score over 9 tasks gains
19.5% improvement and the total standard deviation reduces
by 54.2%, which means with the inclusion of our method,
the algorithm experiences enhanced stability and demon-
strates superior performance. Also, we observe a competi-
tive or better performance of MOPO+OCEAN on the eval-
uated datasets against model-free methods like CQL, IQL,
and TD3+BC. MOPO+OCEAN has the best average score
of 92.5 across all of the algorithms.

Table 2 shows results for COMBO, COMBO+OCEAN,
RAMBO, and RAMBO+OCEAN. We find that OCEAN
improves the performance of COMBO and RAMBO on
many datasets. Additionally, we observe that the impact
of OCEAN on the overall performance improvement of
RAMBO and COMBO is relatively limited. This can be at-
tributed to the fact that RAMBO inherently influences the
rollout stage through implicit model updates and possesses
certain exploration capabilities and COMBO adopts a more
conservative strategy, resulting in a reduced contribution of
our conservative constraints to the performance enhance-
ment.

Ablation Study
To demonstrate the effectiveness of OCEAN, we conduct
exhaustive ablation experiments on the walker2d-medium-
replay-v2 task. The result is shown in Figure 3.

Conservative validity. To illustrate the significance of
conservative strategy, we conducted a comparison among
three approaches: MOPO, MOPO with action noise, and

MOPO with OCEAN, as depicted in Figure 3a. Both ac-
tion noise and OCEAN employ Gaussian noise with a stan-
dard deviation of 0.5. It can be observed that due to ex-
cessive exploration, the disparity between the rollout transi-
tion and the real environment transition becomes too large,
resulting in a similar performance of the original MOPO
and MOPO with noise during the later stages of train-
ing. In contrast, by adopting the conservative estimation of
OCEAN, MOPO+OCEAN demonstrates not only a substan-
tial improvement in asymptotic performance but also a more
stable convergence value, which gains 24.8% performance
improvement in average score and 83.6% standard devia-
tion reduction. Based on the experiment, we conclude that
OCEAN experiences a significant performance boost due to
the incorporation of conservative constraints.

The effectiveness of exploration. Figure 3b presents
a comparison between MOPO with OCEAN and MOPO
solely with trajectory truncation. The latter is not explored
within the supported scope of the model. From the results,
we can find that on average, OCEAN with trajectory trun-
cation exhibits a significant decrease of 14.3 in score com-
pared to the regular OCEAN algorithm. Additionally, the use
of trajectory truncation introduces an increase of 12 in the
performance standard deviation. It becomes evident that al-
though the algorithm’s performance has improved with the
inclusion of trajectory truncation, there remains a substan-
tial gap in both performance and stability when compared
to OCEAN. By considering both Figure 3a and Figure 3b
together, it becomes apparent that OCEAN emphasizes not
only conservation but also the importance of exploration as
a fundamental component.

Choices of uncertainty estimator. The uncertainty
heuristics we used in our work is listed below:

• Max Aleatoric: maxNi=1 ||
∑i
ϕ(s, a)||F , which computed

over the variance heads of model ensemble.
• Max Pairwise Diff: maxi,j |||µiθ(s, a) − µjθ(s, a)|, which

corresponds to the pairwise maximum difference of the
ensemble predictions.

• Ensemble Standard Variance:
∑∗

(s, a) =
1
N

∑N
i=1((

∑i
ϕ(s, a))2 + (µiϕ(s, a))2 − (µ∗(s, a))2

where µ∗(s, a) = 1
N

∑N
i=1 µ

i
ϕ(s, a), which corresponds

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15902



to a combination of epistemic and aleatoric model
uncertainty.

Based on Figure 3c, it is evident that the performance dis-
parity among the three uncertainty estimates is not signif-
icantly large. The performance of Max Aleatoric and En-
semble Standard Variance is relatively similar, both slightly
outperforming Max Pairwise Diff. In our experiments, we
default to using Max Aleatoric as the uncertainty estimator.

Choices of exploration strategy. As depicted in figure
3d, we examined the impact of selecting three different ex-
ploration strategies, which have been elaborated in the meth-
ods section. It is evident that the disparity among various
strategies for selecting noise actions is relatively small. The
”min” strategy, which selects the noise action with the least
uncertainty, exhibits slightly better performance compared
to the other two strategies. This observation suggests that
the conservative nature of the ”min” strategy could be the
contributing factor to its relatively superior performance.

Hyperparameter Tuning
There are generally two key hyperparameters in OCEAN,
the penalty threshold uT and the Gaussian noise standard
deviation δ.

Penalty threshold uT. The threshold parameter uT is in-
deed a crucial parameter for OCEAN, as it determines the
extent of exploration in the algorithm. A larger value of
uT will result in more exploration across states, thereby in-
creasing the algorithm’s exploration strength. The parameter
uT is closely tied to model loss. In tasks where the model
fits well and exhibits a smaller loss, it is advisable to set a
smaller value for the parameter uT , which allows for more
conservative exploration and vice versa. We reported the ex-
periment results in Table 3, where ’mean’ refers to using the
average uncertainty of a batch of data as the threshold. Our
findings indicate that both excessively large and excessively
small thresholds have a detrimental effect on the algorithm’s
performance. Smaller thresholds limit exploration opportu-
nities, while larger thresholds tend to explore regions with
high uncertainty, leading to increased model errors. Addi-
tionally, our experiments demonstrate that utilizing the aver-
age uncertainty of a batch as the threshold yields satisfactory
performance.

uT MOPO+ COMBO+ RAMBO+
1 86.3(2.8) 60.5(21.2) 82.2(6.6)
2 87.7(4.0) 76.4(17.2) 66.2(20.0)
3 83.0(7.8) 76.1(21.0) 83.3(4.0)
mean 90.7(3.3) 74.5(12.0) 93.2(6.4)

Table 3: Comparison of MOPO+OCEAN,
COMBO+OCEAN and RAMBO+OCEAN with differ-
ent penalty threshold uT on walker2d-medium-replay-v2.
MOPO results run for 2M gradient steps and other results
run for 1M. All results run across 8 different random
seeds and averaged over the final 10 evaluations. + means
+OCEAN. “mean” means using the average uncertainty of
a batch of data as the threshold.

Gaussian noise standard deviation δ. The Gaussian
noise standard deviation controlled the intensity of explo-
ration. As indicated in Table 4, selecting a smaller δ brings
the algorithm’s performance closer to that of the baseline al-
gorithm, while a larger δ may have a detrimental effect on
the algorithm’s performance. For instance, in both COMBO
and RAMBO, using a delta value of 1 leads to performance
degradation, which can be attributed to the fact that larger
noise values often correspond to greater model errors. Fur-
thermore, we conducted a comparison of the performance
of random actions. It is observed that random actions yield
relatively good performance. This can be attributed to the
higher degree of exploration associated with random actions
compared to noise actions. In general, striking a balance be-
tween exploration and conservatism is crucial for achieving
optimal algorithm performance. Therefore, the algorithm’s
sensitivity to changes in δ is higher. In our experiments, we
typically opt for a δ value of 0.5 or random actions.

δ MOPO+ COMBO+ RAMBO+
0.1 82.0(2.5) 72.8(12.9) 77.7(3.2)
0.3 80.4(10.9) 68.5(13.1) 82.1(6.7)
0.5 88.8(3.1) 74.5(12.0) 93.2(6.4)
0.7 89.9(2.2) 57.5(20.3) 87.7(3.2)
1 90.7(3.3) 60.4(26.5) 69.1(11.9)
random 89.3(2.5) 76.4(17.2) 76.8(4.7)

Table 4: Comparison of MOPO+OCEAN,
COMBO+OCEAN and RAMBO+OCEAN with Gaus-
sian standard deviation δ on walker2d-medium-replay-v2.
MOPO results run for 3M gradient steps and other results
run for 1M. All results run across 8 different random seeds
and are averaged over the final 10 evaluations. + means
+OCEAN. “random” means using random actions sampled
from a uniform distribution from -1 to 1.

Conclusion

This paper addresses the issue of biased exploration in
model-based offline RL and attempts to enhance the per-
formance of existing algorithms by introducing additional
exploration. We propose offline Conservative Exploration
(OCEAN), which employs noise exploration while utiliz-
ing uncertainty estimation to prevent the policy from explor-
ing regions with high model uncertainty. Our approach is a
plug-in method that can be combined with state-of-the-art
model-based offline methods such as MOPO, COMBO, and
RAMBO. Experimental results demonstrate that our method
significantly improves the performance and stability of cur-
rent approaches. Furthermore, our ablation experiments val-
idate the effectiveness of conservative constraints and addi-
tional exploration.
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