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Abstract
Incomplete Multiple Kernel Clustering algorithms, which
aim to learn a common latent representation from pre-
constructed incomplete multiple kernels from the original
data, followed by k-means for clustering. They have at-
tracted intensive attention due to their high computational
efficiency. However, our observation reveals that the impu-
tation of these approaches for each kernel ignores the influ-
ence of other incomplete kernels. In light of this, we present
a novel method called Low-Rank Kernel Tensor Learning for
Incomplete Multiple Views Clustering (LRKT-IMVC) to ad-
dress the above issue. Specifically, LRKT-IMVC first intro-
duces the concept of kernel tensor to explore the inter-view
correlations, and then the low-rank kernel tensor constraint
is used to further capture the consistency information to im-
pute missing kernel elements, thereby improving the quality
of clustering. Moreover, we carefully design an alternative
optimization method with promising convergence to solve
the resulting optimization problem. The proposed method is
compared with recent advances in experiments with different
missing ratios on seven well-known datasets, demonstrating
its effectiveness and the advantages of the proposed interpo-
lation method.

Introduction
Multi-View Clustering (MVC) has aroused extensive re-
search enthusiasm due to its ability to enhance clustering
performance by exploiting consistent and complementary
information from different viewpoints (Zhao, Kwok, and
Zhang 2009). There are a number of successful multi-view
clustering methods that have been proposed and developed
over the past decade(Yu et al. 2011; Guo 2013; Li, Jiang, and
Zhou 2014; Gao et al. 2015; Tao, Liu, and Fu 2017; Zhang
et al. 2018; Chen et al. 2020; Huang et al. 2021; Wu et al.
2021; Huang et al. 2022; Zhang et al. 2022; Wu et al. 2023a;
Dong et al. 2023b,a; Duan et al. 2023). Although all methods
obtain great clustering performance, most of them assume
that all views of the samples are complete. However, in real
scenarios, partial views between samples may be missing.
There has been considerable application of existing MVC
techniques to incomplete views, but this has resulted in sig-
nificant performance degradation or even complete failure.
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Thus, Incomplete Multi-View Clustering (IMVC) becomes
a challenging problem.

To address the IMVC problem, various excellent ap-
proaches have been proposed in literature (Xu, Tao, and Xu
2015; Yin, Wu, and Wang 2015; Tran et al. 2017; Wen et al.
2018, 2019; Zhou, Wang, and Yang 2019; Zhuge et al. 2019;
Li, Wan, and He 2021; Liang et al. 2021; Wen et al. 2021a,
2022; Liu et al. 2022; Tang and Liu 2022; Jin et al. 2023;
Wu et al. 2023b). The existing methods of incomplete multi-
view clustering can be divided into three categories: ma-
trix factorization-based, graph-based, and kernel-based. Ma-
trix factorization-based IMVC methods generally transform
the incomplete multi-view data into a unified representation
(Shao et al. 2016; Rai et al. 2016; Zhao, Liu, and Fu 2016;
Zhao, Ding, and Fu 2017; Xu et al. 2018; Wang et al. 2018;
Wen et al. 2021b). The work in (Li, Jiang, and Zhou 2014)
first proposes partial multi-view clustering (PVC), which
attempts to find the consensus latent representation for all
views based on the assumption that samples can be repre-
sented similarly across different views. With the develop-
ment of graph learning, many researchers address the IMVC
problems via graph-based information (Zhuang et al. 2012;
Li et al. 2015; Wang et al. 2019; Wen et al. 2020; Gao et al.
2020; Li, Wan, and He 2021). This category fuses a con-
sensus graph from multiple views in different perspectives.
Wen et al. propose an approach that involves fusing view-
specific graphs with adaptive weights to learn a consensus
graph (Wen et al. 2020). The third category of IMVC meth-
ods is based on kernel learning, which maps all views into
kernel space and then imputes incomplete kernels for clus-
tering(Trivedi et al. 2010; Shao, He, and Yu 2015; Guo and
Ye 2019; Liu et al. 2020). Liu et al. propose a framework
that unifies imputation and clustering.(Liu et al. 2019).

These approaches have achieved great success in IMVC.
However, we observe that the consistency information of in-
complete views is not adequately exploited. Furthermore,
the last category, kernel-based, explodes cluster informa-
tion over the kernel matrix, while global structures in ker-
nels are not fully exploited. To handle these problems, in
this paper, we propose a novel Low-Rank Kernel Tensor
Learning for Incomplete Multiple Views Clustering(LRKT-
IMVC), which unifies imputation and clustering into one op-
timization process and incorporates low-rank kernel tensor
constraint to capture more consistency information for clus-
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tering. The overall framework of our approach is shown in
Fig. 1. First, we introduce an innovative definition for the
kernel tensor and establish a formal framework for address-
ing incomplete multiple kernel clustering using kernel ten-
sor nuclear norm theory. In particular, this represents a pi-
oneering effort within our research community. Instead of
considering only the local structure of the kernel matrix as
in previous kernel-based methods, we employ circulant al-
gebra for the kernel tensor to explore the high-order cor-
relations underlying multi-view data. Subsequently, we for-
mulate a four-step alternative optimization algorithm with
proven convergence properties to effectively address the re-
sulting optimization problem. We then conduct comprehen-
sive experiments on various benchmark datasets to investi-
gate the properties of the proposed LRKT-IMVC. The com-
prehensive experimental results demonstrate the effective-
ness of our proposed algorithm compared to other IMVC
competitors. The main contributions of this paper can be
summarized as follows:

1) We introduce an innovative concept: the kernel tensor,
and develop a versatile IMVC method with the low-rank
tensor constraint to impute the missing views. By captur-
ing the low kernel tensor subspace, we address the problem
of arbitrary view incompleteness for the first time. LRKT-
IMVC, a pioneering work, merges multiple kernel learning
with tensor nuclear norm theory in a unified framework for
the IMVC problem.

2) This paper presents, for the first time, a novel approach
for the comprehensive imputation of absent kernel elements.
It explores consistency information among all views through
the use of kernel tensor norms. Then, the incomplete kernel
matrix is completed by the obtained complementary infor-
mation.

3) We utilize the auxiliary tensor to address the tough op-
timization problem. Then, we design a four-step alternative
optimization algorithm to effectively and efficiently solve
LRKT-IMVC, and discuss its convergence, computational
complexity, and potential extensions. Comprehensive exper-
imental results clearly demonstrate the effectiveness and ef-
ficiency of our proposed method.

Proposed Method
Preliminary
In this section, we briefly review Multiple Kernel k-means
with Incomplete Kernels (MKKM-IK) and Tensor Nuclear
Norm Theory.
A. Multiple Kernel k-means with Incomplete Kernels
Given a collection {xi}ni=1 ⊆ X with d dimension and
n samples, and the pth feature mapping ϕp(·) : x ∈
X 7→ Hp, which maps x into a reproducing kernel
Hilbert space Hp (1 ≤ p ≤ m). Here, ϕβββ(x) =

[β1ϕ1(x)
⊤
, . . . , βmϕm(x)⊤]⊤ represents the sample x in the

multiple kernel setting, where βββ = [β1, . . . , βm]⊤ con-
sists of the coefficients of the m base kernels {κp(·, ·)}mp=1,
these coefficients are optimized during learning. Based on
the above definition, a kernel function can be written as
κp(xi, xj) = ϕβββ(xi)

⊤ϕβββ(xj) =
∑m

p=1 β
2
pκp(xi, xj), A ker-

nel matrix Kp can be obtained by applying the kernel func-

tion κp(·, ·) to the sample {xi}ni=1, Then the fused kernel
matrix Kβββ can be expressed as Kβββ =

∑m
p=1 β

2
pKp.

Multiple Kernel K-means with Incomplete Kernels
(MKKM-IK) (Liu et al. 2019) combines multiple kernel
clustering with incomplete kernels within a unified frame-
work, and it updates each of them alternately. First, it im-
putes the incomplete kernel based on the clustering results,
and then updates the clustering using the imputed kernels.
The objective can be defined as

min
{H,β, {Kp}mp=1}

Tr(Kβββ(In −HH⊤)),

s.t. H ∈ Rn×k, H⊤H = Ik,

β⊤1m = 1, βp ≥ 0,

Kp(sp, sp) = K(cc)
p , Kp ⪰ 0, ∀p,

(1)

where sp(1 ≤ p ≤ m) represents the sample index for
which the sample is present in pth kernel and K

(cc)
p de-

notes the sub-matrix composed of these present samples.
Kp(sp, sp) = K

(cc)
p is denoted to guarantee that Kp main-

tains the known entries during the process. The optimization
process of MKKM-IK additionally takes into account the
imputation of incomplete kernels. The optimized details can
refer to (Liu et al. 2019).
B. Tensor Nuclear Norm Theory
Let X ∈ Rn1×n2×n3 be a tensor, we denote the block circu-
lant matrix bcirc(X ) ∈ Rn1n3×n2n3 as

bcirc(X ) =


X(1) X(n3) · · · X(2)

X(2) X(1) · · · X(3)

...
...

. . .
...

X(n3) X(n3−1) · · · X(1)

 . (2)

Then we define

unfold(X ) =


X(1)

X(2)

...
X(n3)

 , fold(unfold(X )) = X , (3)

where the operator unfold maps X to a matrix whose size
is n1n3 × n2 and its inverse operator is fold. Based on
the above definition, the t-product of two tensors A ∈
Rn1×n2×n3 and B ∈ Rn2×n4×n3 is concisely defined as

S = A ∗ B = fold(bcirc(A)unfold(B)), (4)

where S ∈ Rn1×n4×n3 , The t-product is analogous to ma-
trix multiplication in the Fourier domain. Then t-SVD is
simply written as

X = U ∗ S ∗ V⊤, (5)

where the two tensors U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3

are orthogonal, and S ∈ Rn1×n2×n3 is a f-diagonal tensor.
The t-SVD based tensor nuclear norm (t-TNN) is given as

∥X∥∗ :=

min(n1,n2)∑
i=1

n3∑
k=1

|Sf (i, i, k)|, (6)

where Sf = fft(S, [] , 3) denotes the Fourier transform
along the third dimension.
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Figure 1: The general framework of LRKT-IMVC. From left to right, incomplete multi-view data are mapped into Hilbert
space, forming a kernel tensor via stacked kernel matrices. Then, rotates this kernel tensor uses t-SVD to capture high-order
correlations, aims to impute incomplete kernel matrices, and obtains clustering results. At the same time, the clustering result
informs and refines the imputation process.

Formulation
Previous clustering approaches based on kernel learning
have been widely used to address the problem of incom-
plete multi-view clustering. It performs clustering and im-
putation in a unified framework to further improve the clus-
tering property, which has shown its feasibility and avail-
ability in various fields. While achieving excellent clustering
results, we have identified two drawbacks associated with it:
(1) These algorithms do not fully consider that the imputa-
tion of each kernel could be performed by another kernel
matrix, even if they are missing. (2) It dose not consider
the high-order correlations of all kernel matrices, while the
global structures in kernels are not fully exploited, resulting
in poor imputation and clustering performance.

To overcome the above disadvantages, inspired by tensor
nuclear norm theory, we propose a creative clustering algo-
rithm that designs the kernel tensor and then takes advantage
of high-order correlations to guide the imputation of each
kernel. The definition of the kernel tensor is as follows.

Definition 1. (Kernel Tensor) Given a set of kernel matrices
{Kp}mp=1, the kernel tensor K is constructed by stacking the
kernel matrices of different views, that is,

K = Φ(K1,K2, · · · ,Km), (7)

where Φ(·) is a map function that merges kernel matrix Kp

into a 3-mode tensor of size n × n × m. The property of
the kernel tensor is analogous to the tensor, except that each
frontal slice of the kernel tensor is a kernel matrix rather than
a common matrix.

Based on the above definition of kernel tensor, the knowl-
edge of the tensor can be significantly extended to the ker-

nel tensor, and the consistency information between differ-
ent views can be effectively captured. Then we propose a
unique enhanced incomplete view recovery approach called
Low-Rank Kernel Tensor Learning for Incomplete Multiple
Views Clustering (LRKT-IMVC). Our method constructs a
kernel tensor by stacking kernel matrices obtained from dif-
ferent views, and then rotates the kernel tensor to the size of
n × m × n. We then use t-SVD to capture the high-order
correlations underlying multi-view data to recover the miss-
ing kernel elements. Incomplete view imputation is achieved
by using consistency information. According to the above
analysis, we conclude that the incomplete imputation of the
proposed LRKT-IMVC naturally introduces a constraint on
the kernel tensor nuclear norm similar to the tensor nuclear
norm and fully utilizes the information of other incomplete
kernels, which leads to significantly improved clustering
performance.

In addition, using the kernel tensor constraint not only im-
proves the quality of the imputed incomplete kernels, but
also solves the problem with the kernel matrix, which only
computes the relationship between two samples and ignores
the global structure. LRKT-IMVC constructs the kernel ma-
trices of different views as a kernel tensor K and tries to
use the knowledge of the tensor to explore more information
that can better support the performance of clustering. This
algorithm captures the high-order correlations of multiple
kernels and ensures consensus among multiple kernels from
a global perspective, which uses consistency among differ-
ent kernels to impute missing kernel elements and further
improve the quality of clustering.

LRKT-IMVC forms a new example for imputation of in-
complete views. Besides, it also adopts clustering and impu-
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tation alternate optimization to further achieve great cluster-
ing performance. The objective formulation of our proposed
LRKT-IMVC is as follows,

min
{H,βββ,{Kp}mp=1}

Tr(Kβββ(In −HH⊤)) + λ ∥K∥∗ ,

s.t. H ∈ Rn×k, H⊤H = Ik, βββ
⊤1m = 1,

βp ≥ 0,Kp(sp, sp) = K(cc)
p , Kp ⪰ 0, ∀p,

Kβ =

m∑
p=1

β2
pKp, K = Φ(K1,K2, · · · ,Km),

(8)

where λ is a hyperparameter and ∥K∥∗ denotes the kernel
tensor nuclear norm, which is similar to Eq. (6). Introduc-
tion of the low-rank kernel tensor constraints ∥K∥∗ is ad-
vantageous to capture the high-order correlations between
different kernels.

Optimization
Inspired by the alternating direction method of multipliers
(ADMM)(Lin, Liu, and Su 2011), we introduce the auxiliary
tensor variable G, the Eq. (8) can be transformed into an
unconstrained problem.

L(H;K1,K2, . . . ,Km;G;βββ)

= Tr(

m∑
p=1

β2
pKp(In −HH⊤)) + λ ∥G∥∗

+ ⟨W,K − G⟩+ ρ

2
∥K − G∥2F ,

(9)

where the tensor W denotes Lagrange multipliers and ρ is
actually the penalty parameter. It seems difficult to jointly
optimize H, βββ, G and {Kp}mp=1, not only because of the ten-
sor clear norm of G but also because the tensor K is affected
on all kernels. We alternately design a simple and efficient
algorithm to solve this problem.
• Update H: Fixing {Kp}mp=1, G and βββ, the optimization

problem of Eq. (9) with respect to H becomes

min
H

Tr(Kβββ(In −HH⊤)),

s.t. H ∈ Rn×k, H⊤H = Ik.
(10)

The Eq. (10) about optimized H is a traditional k-means
problem that can be solved by existing packages.

• Update Kp: Fixing H, G and βββ, the optimization prob-
lem of Eq. (9) with respect to Kp becomes

min
Kp

Tr(β2
pKp(In −HH⊤)) + ⟨Wp,Kp −Gp⟩

+
ρ

2
∥Kp −Gp∥2F .

(11)

To solve this subproblem, just setting the derivative of
Eq. (11) to zero, Kp can be obtained by

Kp =
ρGp −Wp − β2

p(In −HH⊤)

ρ
. (12)

• Update G: Fixing H, {Kp}mp=1 and βββ, the optimization
in Eq. (9) w.r.t G is equivalent to the following subprob-
lem:

G∗ = argmin
G

λ ∥G∥∗ +
ρ

2

∥∥∥∥G − (K+
1

ρ
W)

∥∥∥∥2

F

. (13)

We can solve Eq. (13) though the follow theorem.
Theorem 1(Xie et al. 2018): Let τ > 0, and G ∈
Rn1×n2×n3 , F ∈ Rn1×n2×n3 , the globally optimal so-
lution of the following problem

min
G

τ ∥G∥∗ +
1

2
∥G − F∥2F , (14)

is given by the tensor tubal-shrinkage operator

G = Cn3τ (F) = U ∗ Cn3τ (S) ∗ V⊤, (15)

noticed that F = U ∗ S ∗ V⊤ and Cn3τ = S ∗ J ,
where J ∈ Rn1×n2×n3 is a f-diagonal tensor whose di-
agonal element in the Fourier domain is Jf (i, i, j) =
(1 − n3τ

S(j)
f

(i, i))+. Furthermore, the Lagrange multiplier

W need to be updated as follows:

W∗ = W + ρ(K − G). (16)

• Update βββ: Fixing H, {Kp}mp=1 and G, the optimization
problem of Eq. (9) with respect to βββ becomes

min
β

m∑
p=1

β2
pTr(Kp(In −HH⊤)),

s.t. βββ⊤1m = 1, βp ≥ 0, ∀p.

(17)

The variable βββ can be efficiently optimized via solving
quadratic programming with linear constraints.

In summary, our four-step algorithm for solving Eq. (9) is
described in Algorithm 1, where obj(t) denotes the objective
value at the t-th iteration.

Algorithm 1: The proposed Method

Input: {K(cc)
p }mp=1, {sp}mp=1, λ and ϵ0;

Initialize: Initializeβββ(0) = 1m/m, K(0)
p and t = 1, G = W = 0;

1: while not converge do
2: K

(t)
βββ =

∑m
p=1 (β

(t−1)
p )2K

(t−1)
p ;

3: Update Ht by solving a kernel k-means clustering optimiza-
tion problem Eq. (10)

4: Update K
(t)
p by Eq. (11);

5: Update G(t) via subproblem Eq. (13) ;
6: Update W(t) by Eq. (16);
7: Update βββ(t) by Eq. (17);
8: Check the convergence conditions: obj(t) − obj(t−1) ≤ ϵ0;
9: end while

10: Output H, perform k-means on H to get final clustering result.

Discussion and Extension
Convergence. In this paper, LRKT-IMVC is theoretically
guaranteed to converge to a local optimum. The objective
value in Eq. (8) is monotonically decreasing at each itera-
tion when one variable is optimized with the others fixed,
and thus it is proved that the whole optimization algorithm
converges to a local optimum. To demonstrate this point in
practice, we plot the object value curves of our approach,
i.e., the number of iterations with missing ratios on par-
tial datasets. As recognized by our experimental results in
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Fig. 2, the objective value of LRKT-IMVC decreases mono-
tonically with each iteration and usually converges quickly.
In fact, our method achieves convergence in less than 10 it-
erations under most conditions.
Computational Complexity. According to the optimization
procedure in Algorithm 1, the computational complexity of
our algorithm at each iteration is O(n3 + 2n2m log(mn) +
m3), where n, m and k represent the number of samples,
views, and clusters, respectively. Note that Kp can be calcu-
lated in parallel by using auxiliary tensors. In this way, our
method should scale well to other kernel methods.
Extension. Our proposed algorithm adopts the low-rank ten-
sor constraint to capture the high-order correlations of in-
complete kernels. Therefore, various similarity methods can
be used to extend this work and multiple kernel clustering
to further improve the interpolation effect. Second, our pro-
posed LRKT-IMVC imputes the missing kernel elements
from the global structure so that they can be interpolated
more perfectly and compensate for the shortcomings of the
kernel-based methods for IMVC.

Experiments
Experimental Settings
We perform experiments on seven widely used mul-
tiview benchmark datasets shown in Table 1, includ-
ing HW2sources, UCI Digits, HW, Caltech101-20,
BDGP fea, CCV and Hdigit, respectively. For each of
these datasets, we generate the kernel matrix by applying
the well-known Gaussian kernel. The sample sizes in the
datasets range from 2000 to ten thousand. In addition, the
number of kernels and clusters also show large variation,
which guarantees the experiment to better evaluate the
property of different clustering algorithms.

Various commonly used imputation methods are com-
pared with our approach, including zero filling (ZF), mean
filling (MF), k-nearest-neighbor filling (KNN), and Lapla-
cian filling (LF). The widely used MKKM is applied
with these imputed basic kernels. These two-stage meth-
ods are termed MKKM+ZF, MKKM+MF, MKKM+KNN
and MKKM+LF, respectively. Furthermore, we also seri-
ously compared the method of MKKM-IK (Liu et al. 2019)
with different initialization for comprehensive compari-
son, including MKKM-IK+ZF, MKKM-IK+MF, MKKM-
IK+KNN and MKKM-IK-MKC. Except for the compari-
son with the kernel-based method, we briefly compared var-
ious approaches of BSV (Zhao, Liu, and Fu 2016), Concat
(Zhao, Liu, and Fu 2016), DAIMC (Hu and Chen 2019a)
and OPIMC (Hu and Chen 2019b). For fair comparision,
we directly utilized the source codes provided by the corre-
sponding literature.

In this paper, we assume that at least one view is available
for a sample. Inspired by the approach in (Zhu et al. 2018;
Liu et al. 2018, 2019, 2020), we design the index vectors
{sp}mp=1 that list the present samples of pth view to gener-
ate incomplete kernels. The missing ratio, defined as ϵ, rep-
resents the percentage of samples with incomplete views.
Note that the performance of clustering is relatively affected
by the parameter ϵ. In this experiment, we compare these al-

Datasets Samples Views Classes

HW2sources 2000 2 10
UCI Digits 2000 6 10

HW 2000 6 10
Caltech101-20 2386 6 20

BDGP fea 2500 2 5
CCV 6773 3 20

Hdigit 10000 2 10

Table 1: Datasets used in our experiments.

gorithms to show the above point. Additionally, ϵ is set to
[0.1 : 0.1 : 0.9] on all datasets.

For all datasets, the true number of clusters is known in
advance and is taken as the true number of classes. We use
three widely used criteria to evaluate the clustering perfor-
mance, namely clustering accuracy (ACC), normalized mu-
tual information (NMI) and purity. To reduce the effect of
randomness in k-means, we repeat all experiments 50 times
with random initialization and record the best result. Mean-
while, we randomly generate the ”incomplete” patterns 10
times and report the statistical results.

Experimental Results
Overall Clustering Performances. We summarize the re-
sults across all missing ratios and report their averages, with
the best results marked in Table 2. This table reports the
ACC, NMI, and purity of the above algorithms. Meanwhile,
Fig. 3 vividly shows the ACC and NMI comparison with the
variation of missing ratios on partial data sets. The others are
shown in the appendix due to space limitations. We have the
following observations.

i) LRKT-IMVC shows the best performance in terms
of three metrics against all compared algorithms in most
circumstances. We observe that the proposed algorithm
significantly outperforms MKKM-IK-ZF, MKKM-IK-MF,
MKKM-IK-KNN. For example, consider the results on
BDGP fea. It improves the state-of-the-art by 12.2%, 7.8%,
5.8%, 6.3%, 8.5%, 9.7%, 9.4%, 12.0% and 13.0% respec-
tively, in terms of ACC with the variation of missing ratios in
[0.1 : 0.1 : 0.9], indicating the effectiveness of utilizing con-
sistency and complementary information from other kernels
to impute the missing kernel elements.

ii) Our algorithm achieves better clustering performance
than MKKM-ZF, MKKM-MF, MKKM-LF and MKKM-
KNN. We can see the details from Table 2, for instance,
it exceeds the best of them by 10.1%, 22.1%, 22.1%, 5.1%,
16.8%, 3.2% and 3.9% in terms of NMI on all benchmark
datasets. The gaps for the other criteria are similar. These re-
sults well demonstrate the effectiveness of using the tensor
constraint in the kernel-based method for IMVC and unify-
ing the imputation of incomplete views and the clustering
task into a single optimization procedure.

iii) MKKM-IK-MKC (Liu et al. 2019) (in yellow) is
a representative proposed method and demonstrates bet-
ter performance in various circumstances. Yet its afore-
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(a) HW2sources (b) Hdigit (c) BDGP fea (d) HW (e) Caltech101-20 (f) UCI Digits

Figure 2: The objective values of LRKT-IMVC with missing ratio 0.1. The curves with other missing ratios and on other datasets
are similar and we omit them due to space limitations.

Dataset Metric (%) *ZF *MF *KNN *LF *IK-ZF *IK-MF *IK-KNN *IK-MKC Ours

HW2sources
ACC 18.0(2.3) 18.0(2.2) 18.0(2.3) 16.9(2.3) 16.6(2.6) 16.5(2.6) 16.6(2.6) 17.9(4.7) 26.2(8.5)
NMI 8.0(2.5) 7.8(2.9) 8.0(2.6) 6.2(3.0) 5.8(3.2) 5.7(3.3) 5.8(3.2) 10.7(8.1) 18.1(10.2)
PUR 18.8(2.4) 18.8(2.4) 18.8(2.4) 17.7(2.6) 17.4(2.9) 17.3(2.9) 17.4(2.9) 19.5(5.7) 27.1(8.6)

UCI Digits
ACC 55.0(8.9) 55.1(8.2) 56.6(9.0) 55.0(8.8) 55.0(8.8) 55.1(8.3) 55.3(9.3) 54.9(8.9) 77.4(1.8)
NMI 46.3(8.8) 47.0(8.4) 43.4(9.1) 46.4(8.8) 46.4(8.7) 47.0(8.4) 45.0(8.9) 46.4(8.6) 69.1(1.9)
PUR 57.0(7.8) 57.5(6.9) 58.0(7.9) 57.1(7.7) 57.1(7.7) 57.5(6.8) 56.9(8.2) 57.0(7.7) 77.7(1.8)

HW
ACC 54.8(8.9) 55.1(8.3) 56.6(9.2) 54.7(8.9) 54.7(9.1) 55.2(8.3) 55.1(9.6) 54.9(8.8) 77.4(1.8)
NMI 46.1(8.7) 47.0(8.4) 43.2(9.4) 46.1(8.8) 46.1(8.9) 47.1(8.3) 45.0(9.1) 46.3(8.6) 69.1(1.9)
PUR 55.4(8.7) 55.3(8.2) 56.8(8.9) 55.4(8.8) 55.4(8.9) 55.4(8.2) 55.6(9.3) 55.5(8.7) 77.5(1.8)

Caltech101-20
ACC 31.3(4.1) 30.2(4.3) 31.5(4.1) 32.6(4.0) 34.8(2.3) 34.2(2.6) 35.2(2.4) 32.7(4.2) 35.9(4.2)
NMI 39.1(5.3) 38.8(4.9) 39.0(4.9) 41.4(5.0) 43.9(3.3) 44.1(3.0) 44.1(3.3) 41.6(5.1) 46.5(3.7)
PUR 64.1(4.2) 63.6(4.1) 64.1(4.1) 66.2(4.1) 68.0(2.7) 67.9(2.6) 68.1(2.8) 66.3(4.4) 70.3(3.4)

BDGP fea
ACC 32.9(2.1) 33.0(2.9) 35.4(2.7) 33.6(1.6) 34.1(1.7) 34.5(1.5) 33.7(1.7) 37.6(3.1) 47.0(1.1)
NMI 8.8(1.7) 8.6(2.5) 12.0(2.2) 9.9(1.3) 10.0(1.3) 10.9(1.6) 9.4(1.4) 13.9(3.2) 28.8(3.0)
PUR 34.4(2.1) 33.9(2.9) 37.2(2.7) 36.0(1.4) 36.4(1.6) 36.3(1.8) 35.8(1.4) 36.7(3.3) 50.6(1.5)

CCV
ACC 14.1(1.1) 13.5(1.1) 13.9(1.0) 14.7(0.8) 14.7(0.8) 14.7(0.7) 14.7(0.8) 16.3(1.4) 17.0(1.7)
NMI 9.0(1.3) 9.0(1.4) 9.2(1.3) 9.3(1.0) 9.4(1.0) 9.6(0.9) 9.4(1.1) 11.5(1.6) 12.5(1.7)
PUR 17.9(1.1) 17.7(1.2) 17.9(1.1) 18.4(0.9) 18.5(0.8) 18.6(0.7) 18.5(1.0) 19.9(1.5) 20.8(1.8)

Hdigit
ACC 15.5(4.3) 15.5(4.4) 15.4(4.3) 14.7(3.5) 14.4(3.4) 14.1(3.2) 14.4(3.4) 12.0(0.9) 19.5(4.7)
NMI 4.7(5.2) 4.8(5.3) 4.7(5.2) 3.7(4.1) 3.2(3.7) 3.0(3.8) 3.2(3.7) 0.7(0.8) 8.7(6.8)
PUR 16.0(4.7) 16.0(4.7) 15.9(4.7) 15.2(3.8) 14.9(3.7) 14.6(3.5) 14.9(3.7) 12.3(1.2) 20.3(4.9)

Table 2: Results (mean(std)) of our proposed method and other compared methods on seven datasets. ’*’ represents ’MKKM-’.

mentioned shortcomings lead to poor performance in many
situations. Meanwhile, as we can see from Fig. 3, the
proposed LRKT-IMVC dramatically improves MKKM-IK-
MKC and achieves excellent clustering performance, it ex-
ceeds MKKM-IK-MKC by 9.5%, 10.2%, 11.6%, 12.5%,
4.8%, 5.0%, 5.2%, 5.0% and 4.2% of different missing ra-
tios in Hdigit in terms of ACC. The improvement in other
datesets is similar for different missing ratios. These results
clearly demonstrate the superiority of capturing high-order
correlations in incomplete multiple kernels.

iv) In addition, we make comparisons with various meth-
ods that do not rely on multiple kernel learning. As we can
see from Fig. 4, when the percentage of present views is
high, it changes gently, while the other methods decrease
dramatically as the missing ratio increases. From the Fig. 4,
the performance of BSV, Concat, DAIMC, and OPIMC is
poor, while our algorithm performs almost consistently, es-
pecially at high missing ratios, and does not get worse as
the number of present views decreases. The result demon-
strates the advantages of combining tensor constraint and
kernel learning in incomplete multiple views.

In summary, LRKT-IMVC shows superior clustering per-
formance on all datasets compared to other methods, es-
pecially in the high missing ratio and can efficiently han-
dle large-scale data sets, validating the effectiveness of our
method in the imputation of incomplete kernels.

Parameter Sensitivity. Similar to MKKM-IK-MKC, our
method also introduces a parameter λ to balance the quality
of clustering and kernel reconstruction. We set λ in a range
of

[
10−4, 101

]
and conduct experiments to study the sensi-

tivity and effect of the parameter on the clustering perfor-
mance on all datasets. Besides, we set unusual λ in different
missing ratio to get the best clustering result. Based on this
setting, we surprisingly find that via adjusting the value of λ,
we can achieve more excellent clustering performance. As
we can see from Fig. 5, our approach obtains more splen-
did performance with the increase of missing ratio, which
seems unreliable in existing kernel-based IMVC methods.
This is the power of introducing the kernel tensor constraint
in the imputation of incomplete kernels. As the missing ra-
tio increases, the quality of clustering can be improved by
changing the value of λ to increase the low-rank kernel ten-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Comparison of ACC and NMI with variation of missing ratios on partial datasets. The curves with other missing ratios
and on other datasets are similar and we omit them due to space limitations.

sor constraint. The kernel tensor K sufficiently excavates the
high-order correlations underlying multi-view data and cap-
tures more consistency and complementarity information to
help impute missing kernel elements. Therefore, the perfor-
mance of clustering improves as the number of current views
decreases. In general, the experimental results show that our
approach is somewhat sensitive to the parameter λ.

(a) ACC (b) NMI

Figure 4: ACC and NMI comparison with different missing
ratio on BDGP fea.

Quantitative Study. To further illustrate the effectiveness of
LRKT-IMVC solution in missing multiple views especially
in kernel-based method, we evaluate the curves of cluster-
ing performance on partial datasets with respect to various
missing ratio in Fig. 3 and Fig. 4. As we can see, LRKT-
IMVC naturally proves the success of unifying kernel tensor
nuclear norm and kernel learning into one framework and
further improving the quality of the cluster. In addition, the
performance of all previous algorithms decreases with the
increase of the missing ratio, but we miraculously find that
LRKT-IMVC can achieve excellent clustering result even

with the decrease of views via adjusting the appropriate hy-
perparameter. The result is to break our stereotypical think-
ing in incomplete multi-view and give us new interesting in
solving IMVC problem.

(a) HW (b) CCV

Figure 5: The result of LRKT-IMVC with different missing
ratio on HW and CCV influenced by parameter λ.

Conclusion
In this paper, we propose a novel algorithm, which stacks
the kernels of different views into a kernel tensor and em-
ploys the low-rank kernel tensor constraint in the incomplete
view interpolation, which enjoys the incomplete kernel im-
putation and clustering simultaneously. In this way, LRKT-
IMVC explores more consistency information among dif-
ferent kernels, which greatly improves the quality of impu-
tation and then guides the result of clustering. To handle the
resulting optimization problem, we utilize an auxiliary ten-
sor and design a four-step alternative algorithm with guar-
anteed convergence. Extensive experiments on benchmark
datasets demonstrate the effectiveness of our algorithm.
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