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Abstract

Continuous-time models such as Neural ODEs and Neural
Flows have shown promising results in analyzing irregu-
larly sampled time series frequently encountered in electronic
health records. Based on these models, time series are typ-
ically processed with a hybrid of an initial value problem
(IVP) solver and a recurrent neural network within the vari-
ational autoencoder architecture. Sequentially solving IVPs
makes such models computationally less efficient. In this pa-
per, we propose to model time series purely with continuous
processes whose state evolution can be approximated directly
by IVPs. This eliminates the need for recurrent computation
and enables multiple states to evolve in parallel. We further
fuse the encoder and decoder with one IVP solver utilizing its
invertibility, which leads to fewer parameters and faster con-
vergence. Experiments on three real-world datasets show that
the proposed method can systematically outperform its prede-
cessors, achieve state-of-the-art results, and have significant
advantages in terms of data efficiency.

Introduction
Electronic Health Record (EHR) data contains multi-variate
time series of patient information, such as vital signs and
laboratory results, which can be utilized to perform diagnosis
or recommend treatment (McDermott et al. 2021). The data
in EHR time series is often irregularly sampled (i.e., unequal
time intervals between successive measurements) and can
have missing values (Zhang et al. 2022). The irregularity is
caused mainly due to unstructured manual processes, event-
driven recordings, device failure, and also different sampling
frequencies across multiple variables (Weerakody et al. 2021).
These complexities make learning and modeling clinical time
series data particularly challenging for classical machine
learning models (Shukla and Marlin 2021b; Sun et al. 2020).
In recent years, significant progress has been made in the
development of models for handling irregularly sampled time
series data (Che et al. 2018; Rubanova, Chen, and Duvenaud
2019; Shukla and Marlin 2021a; Zhang et al. 2022), which
have been extensively tested on EHR data.

Neural ODEs (Chen et al. 2018) are continuous-time mod-
els based on ordinary differential equations (ODEs) that can
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naturally handle irregularly sampled data. The data is as-
sumed to be generated by a continuous process that is mod-
eled using ODEs.

Rubanova, Chen, and Duvenaud (2019) further extend the
idea and develop Latent-ODE by integrating Neural ODEs
and recurrent neural network (RNN) into a variational au-
toencoder (VAE) (Kingma and Welling 2014) architecture.
However, neural ODE models require deploying a numerical
ODE solver which is computationally expensive. Biloš et al.
(2021) hence propose an efficient alternative by directly mod-
eling the solution of ODEs with a neural network, thereby
obtaining a variant of Latent-ODE using Neural Flows, re-
ferred to as Latent-Flow in this paper. However, when analyz-
ing time series, these Latent-based continuous-time models
(Latent-ODE and Latent-Flow) require sequential processing
of data, which makes them inefficient and hard to train.

In this work, we propose IVP-VAE, a continuous-time
model specifically designed for EHR time series, which is ca-
pable of dealing with irregularly sampled time series data in
a non-sequential way. Different from Latent-ODE and Latent-
Flow, our model takes variational approximation purely as
solving initial value problems (IVPs). Specifically, observa-
tions at different time points are mapped to states of an un-
known continuous process and propagated to a latent variable
z0 by solving different IVPs in parallel. This parallelization
leads to a significant speedup over existing continuous-time
models. Latent-based continuous-time models use the VAE
architecture, whose encoder and decoder consist of separate
recognition and generative modules. We observe that neural
IVP solvers are inherently invertible, i.e., IVPs can be solved
in both forward and backward time directions, and exploit
this property to utilize the same solver for both encoding and
decoding. Our design results in reduced model complexity in
terms of number of parameters and convergence rate.

We deploy our model on the tasks of time series forecast-
ing and classification across three real-world EHR datasets.
IVP-VAE generally outperforms the existing latent-based
continuous-time models across all the datasets and tasks.
More importantly, it achieves more than one order of magni-
tude speedup over its latent-based predecessors. With re-
gard to the state-of-the-art irregular sampled time series
classification and forecasting models, IVP-VAE consistently
ranks among the top-2 models, even though the baselines
are in many cases task-specific. IVP-VAE offers the best
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performance-efficiency trade-off across all the tasks. Addi-
tionally, our model is able to achieve significant improve-
ments in settings where the training data is limited, which is
often encountered in healthcare applications (e.g., cohort of
patients with a particular condition). We summarize the main
contributions of the current work below -

• We propose a novel continuous-time model IVP-VAE,
which can capture sequential patterns of EHR time series
by purely solving multiple IVPs in parallel.

• By utilizing the invertibility property of IVP solvers, we
achieve parameter sharing between encoder and decoder
of the VAE architecture, and thus provide a more efficient
generative modeling technique.

• Across real-world datasets on both forecasting and clas-
sification tasks, IVP-VAE achieves a higher efficiency
compared to the existing continuous-time models. With
regard to other state-of-the-art models, it achieves a better
performance-efficiency trade-off.

• IVP-VAE achieves significant improvements over base-
line models in settings where the training data is limited.

Source code is at https://github.com/jingge326/ivpvae.

Background and Related Work
EHR data contains comprehensive information about patients’
health conditions and has empowered the research on develop-
ing personalized medicine (Abul-Husn and Kenny 2019). The
availability of several large EHR datasets, including MIMIC-
III (Johnson et al. 2016), MIMIC-IV (Johnson et al. 2023),
and eICU (Pollard et al. 2019), has facilitated the develop-
ment of deep learning models for this domain. Specific tasks
like time series forecasting and mortality prediction have
been widely used to test models’ capability in data modeling
and representation learning (Harutyunyan et al. 2019; Mc-
Dermott et al. 2021; Purushotham et al. 2018; Schirmer et al.
2022). Functions built upon these can be used to support early
warning of deterioration, identify patients at risk, diagnosis,
etc. (Gao et al. 2020; Syed et al. 2021). However, EHR time
series are usually irregularly sampled (Zhang et al. 2022),
i.e., the time interval between consecutive observations is
not fixed, and only some or no observations are available at
each timestamp, making them sparse and of variable length
(Weerakody et al. 2021).

There has been significant progress in developing models
that are naturally able to handle irregularly sampled time
series as the input (Shukla and Marlin 2021b). Several stud-
ies propose recurrent models that add decay mechanisms to
model the irregularity in observations while training (Cao
et al. 2018; Kim and Chi 2018; Li and Xu 2019). For example,
GRU-D (Che et al. 2018) uses a temporal decay mechanism
that is based on gated recurrent units (GRUs) and incorpo-
rates missing patterns. However, along with recurrent units
comes the unstable gradient issue, and difficulties in long
sequence modeling and parallelizing (Lipton, Berkowitz, and
Elkan 2015). Another group of work introduces attention
mechanisms into models for irregular time series (Chien and
Chen 2021; Horn et al. 2020; Shukla and Marlin 2021a;
Tipirneni and Reddy 2022). For example, Raindrop (Zhang

et al. 2022) combines attention with graph neural networks
to model irregularity. Owing to quadratic computation com-
plexity and high memory usage, deploying these models to
longer sequences becomes practically infeasible (Zhou et al.
2021). Convolutional models for irregular time series formu-
late the convolutional kernels as continuous functions (Fey
et al. 2018; Li and Marlin 2020; Romero et al. 2022), en-
abling them to handle sequences with arbitrary size and irreg-
ular sample intervals. However, when dealing with arbitrary
length sequences, they usually need to first pad missing en-
tries with specific values (such as zero) (Romero et al. 2022),
which can introduce irrelevant data and conceal important
information.

Neural ODEs (Chen et al. 2018) are continuous-time mod-
els that can naturally handle irregularly sampled data. The La-
tent ODE model (Rubanova, Chen, and Duvenaud 2019) uses
an ODE-RNN encoder in a VAE (Kingma and Welling 2014)
architecture. GRU-ODE-Bayes (De Brouwer et al. 2019)
combines ODE and GRU into a continuous-time version of
the GRU. Solving an ODE with a numerical ODE-Solver is
computationally expensive. Neural Flow (Biloš et al. 2021)
proposes an efficient alternative. The solution of an ODE is
modelled directly with a neural network instead of using a
numerical solver (see methodology section about continuous-
time models for details). A shortcoming of current research
in this area is that existing methods often require sequentially
solving a large amount of ODEs, which makes the training
and inference less efficient.

Present Work Our method builds on VAE-based continu-
ous models with Neural ODE and Neural Flow as IVP solvers.
We introduce a set of novel architectural designs to further
improve the efficiency. An embedding layer maps the input
into a latent space where the IVP solvers are deployed. We
eliminate the need for recurrent and sequential computation
by modeling each time point as an IVP. As the IVP solvers
are invertible by design, we propose to use the same IVP
solver in the encoder and decoder of a VAE.

Methodology
In this section, we first formulate the problem, followed by
a brief background on continuous-time models. We then
introduce and describe our model in detail.

Problem Formulation
In our setup, we consider a multivariate time series X as a
sequence of L observations: X = {(xi, ti)}Li=1. Each ob-
servation xi is collected at a time ti. xi ∈ RD where D
represents the number of variables being measured at each
time point (e.g., in EHR data these could represent a patient’s
heart rate, respiratory rate etc.). The dataset X consists of
N such sequences, X = {X1, . . . , XN}, collected within a
fixed time window. Note that the length L of the sequences
can vary across the dataset due to the irregular spacing of the
observation time points.

Our goal is to first build a generative model g for irreg-
ularly sampled time series (like EHR), which is capable of
forecasting future values, and additionally augment it with a
classifier to conduct classification tasks for which g serves
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as a representation learning module. The time series fore-
casting task is to predict observations Xτ collected in time
window [T, T + τ ], based on past observations X , where τ
is the forecast horizon. The classification task is to predict
the categorical label y of the sample X .

Continuous-time Models
A continuous-time model (Chen et al. 2018) assumes that the
data xt at time t is generated by a latent process F whose
state z can be propagated continuously to serve diverse pur-
poses, such as generative modeling or representation learn-
ing. The propagation is achieved by solving IVPs, which are
ODEs together with initial conditions, i.e.

F (t0) = z0 (1)

f(t, zt) =
dF (t)

dt
(2)

zi = zi−1 +

∫ ti

ti−1

f(t, zt)dt (3)

Neural ODEs (Chen et al. 2018) parameterize f with uni-
formly Lipschitz continuous neural networks, which are used
to specify the derivative at every t ∈ [t0, T ]. States of the
continuous process were calculated using the Runge–Kutta
method or other numeric integrators. Neural Flow (Biloš et al.
2021) proposes to directly model the solution curve F with
invertible neural networks. Both Neural ODEs and Neural
Flow propagate hidden states by solving IVPs.

These continuous-time models are combined with recur-
rent units to analyze irregular time series. Given a hidden
state zi−1, the idea to obtain the next hidden state is to prop-
agate z using an IVP solver until the next observation xi at
time ti and then to use an RNN cell to update it, as expressed
by the following equations.

z−
i = IVPSolve((zi−1, ti−1), ti) (4)

zi = RNN(xt, z
−
i ) (5)

This represents the general IVP-RNN hybrid model first
proposed by Rubanova, Chen, and Duvenaud (2019) using
Neural ODEs as the IVP solver, known as Latent-ODE. The
Latent-Flow variant of Latent-ODE uses Neural Flow as the
IVP solver to directly obtain z−

i (Biloš et al. 2021). The entire
model is trained as a VAE with the IVP-RNN hybrid model
used as encoder to infer the posterior. Both Latent-ODE and
Latent-Flow have proven to be effective in modeling irregular
time series. However, the sequential nature of processing in-
formation makes these models computationally less efficient.

Proposed Model: IVP-VAE
The key idea that our model builds upon is that time series
values {xi}Li=1 are discrete observations of an unknown con-
tinuous process. Each sample X correspondingly represents
a continuous process, of which we obtain an indirect ob-
servation at each available timestamp ti. In this sense, our
proposed model IVP-VAE is essentially a generative model
for these continuous processes. From this idea, we design the
model following two basic points: (i) We can circumvent the
sequential operation bottleneck by processing all time steps

Algorithm 1: IVP-VAE. The same IVP solver works for both
encoder and decoder by solving IVPs in opposite directions.

Input: Data points and timestamps X = {(xi, ti)}Li=1

Output: Reconstructed {x̂i}Li=1

1: t0 = 0
2: {zi}Li=1 = Embedding({xi}Li=1)
3: {∆ti}Li=1 = t0 − {ti}Li=1

4: {zi
0}Li=1 = {IVPSolve (zi,∆ti)}Li=1

5: q(z0|X) = Inference
(
{zi

0}Li=1

)
6: z0 ∼ q(z0|X)
7: {∆ti}Li=1 = {ti}Li=1 − t0
8: {zi}Li=1 = IVPSolve (z0,∆ti)}Li=1

}
pθ(X | z0).

9: {x̂i}Li=1 = Reconstruct({zi}Li=1)
10: return {x̂i}Li=1

independently as one ODE’s different IVPs which can be
solved in parallel. (ii) IVP solvers are inherently invertible,
which enables us to use the same solver for both forward and
backward propagation. The model is trained as a VAE whose
encoder includes an embedding module and the IVP solver
evolving latent state zi backward in time, while the decoder
includes the same IVP solver evolving the state forward in
time, and a reconstruction module generating estimated data
x̂i based on state zi. The model is illustrated in Figure 1 and
the whole idea is summarized in Algorithm 1. The steps are
described in the following sections. The IVP-VAE model can
then be used for different downstream tasks, for example by
appending a classification module.

Embedding and Reconstruction Within the embedding
module, given a time series X = {(xi, ti)}Li=1, we first
generate corresponding binary masks {mi}Li=1 that indicate
which variables are observed and which are not at time ti.
Next, we obtain vi = (xi|mi) for all observations at ti by
concatenating xi with mi. A neural network ϵ is then de-
ployed on vi, zi = ϵ(vi), to extract useful information from
multivariate observations at each timestamp, and produce zi

which represents the state of the continuous process at ti.
On the decoder side, we design a similar module for data

reconstruction that maps zi to xi. The aim of adding em-
bedding and reconstruction modules is to create a space in
which the latent state z evolves, and also re-organize infor-
mation into a more compact form. For these two modules, we
use MLPs for demonstration and brevity. They can be more
complex or well-designed networks. The embedding and the
reconstruction operation are represented by line 2 and line 9
in Algorithm 1, respectively.

Evolving Backward in Time Given that the true posterior
p(z0 | X) is intractable (Kingma and Welling 2014), the
overall goal is to approximate the posterior, i.e., learn a varia-
tional approximation qϕ(z0 | X) which can then be used to
sample z0. For xi, the initial condition is defined as (zi, ti)
in the encoder. The task of a neural IVP solver is to start from
ti, move towards t0 continuously and calculate z0:

zi
0 = IVPSolve(zi,∆ti), (6)
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Figure 1: Modeling irregular time series with IVP-VAE. (Left) In the encoder, an embedding module maps data xi into latent
state zi. The state is evolved backward in time: Take (zi, ti) as initial condition and calculate state z0 at t0 using an IVP solver.
(Right) In the decoder, the latent state is evolved forward in time: Take (z0, t0) as initial condition and go opposite along the
timeline to obtain state zi using the same IVP solver. A reconstruction module then maps zi back to data x̂i.

where ∆ti = t0 − ti. (zi, ti) and (zi
0, t0) are on the same

integral curve and satisfy the same ODE. Similarly, {zi
0}Li=1

is obtained for all {xi,∆ti}Li=1. As we take observation xi

as an indirect observation of the unknown continuous process,
we can make a guess of this process based on each xi, and
then derive zi

0 of the process. Here, zi
0 is an estimation of

z0 made by the IVP solver based on xi. Afterward, there are
two issues to be addressed. First, each zi

0 should approximate
z0 during training. Second, all L zi

0 should be integrated
together for the following generative module (decoder). For
the first issue, we will discuss more details below in the
training section. For the second issue, we define qϕ(z0 |
X) to be the posterior distribution over the latent variable
z0 induced by the input time series X . To obtain it from{
qϕ(z

i
0 | X)

}L

i=1
in Inference (line 5 in Algorithm 1), we

introduce a mixture distribution over {zi
0}Li=1, constructed

by diagonal Gaussian distribution N
qϕ(z

i
0 | X) = N (µzi

0
,σzi

0
) (7)

qϕ(z0 | X) =
L∑

i=1

πi ∗ qϕ(zi
0 | X), (8)

where µzi
0
= h(zi

0), and σzi
0
= Softplus(h(zi

0)). h denotes
a feed-forward neural network and Softplus is the activation
function. π denote the mixing coefficients for the L compo-
nents. The entire operation is summarized by lines 3–5 in
Algorithm 1. More details about π will be discussed below
in the section about supervised learning.

Evolving Forward in Time In this part, we first draw an
instance from the posterior distribution qϕ(z0 | X) to obtain
z0 (line 6 in Algorithm 1), which will further be used as a
representation of the time series sample and also as the initial
point of extrapolation. We then start from z0 and propagate
the latent state z forward along the timeline, with ∆ti =
ti − t0 (line 7). Thus, z1, z2, ..., zL can be calculated for all
the L timestamps by another call of the IVP solver (line 8):

{zi}Li=1 = {IVPSolve (z0,∆ti)}Li=1. (9)

The multivariate observation xi can then be obtained from
zi using the data reconstruction module explained previously

(line 9 in Algorithm 1). The entire operation is mathemati-
cally represented as approximating pθ(X | z0).

In terms of capturing temporal dependencies, RNN-related
models repeatedly operate on sequential observations and
extract useful information in an autoregressive way. Using
IVP-VAE, the dependence is captured by Neural ODEs with
derivatives, and Neural Flows with invertible transformations.
Thus, the encoder and decoder do not require any recurrent
operation, as all latent states at different time points can
evolve independently given an ODE.

Invertibility and Bidirectional Evolving The mechanism
that one neural IVP solver works for both the encoder and de-
coder by solving IVPs in opposite time directions is achieved
by utilizing the invertibility of IVP solvers. A detailed intro-
duction to neural IVP solvers and the invertibility phenomena
can be found in Appendix A.1.

Training
The IVP-VAE model can be trained both on unsupervised
and supervised learning.

Unsupervised Learning To learn the parameters of our
IVP-VAE model given a dataset of sparse and irregularly
sampled time series, we define the learning objective for one
sample X as

LVAE(ϕ, θ) =Ez0∼qϕ(z0|X) [log pθ (X | z0)]

− 1

L

L∑
i=1

DKL(qϕ(z
i
0 | X)∥p(z0)),

(10)

which corresponds to the evidence lower bound (ELBO)
(Kingma and Welling 2014).

As mentioned earlier, each zi
0 should approximate z0 dur-

ing training, so the second term of LVAE(ϕ, θ) is the average
of KL-divergence loss between

{
qϕ(z

i
0 | X)

}L

i=1
and p(z0).

Given that not all data dimensions are observed at all time
points, we calculate the reconstruction loss based on all avail-
able observations.

Supervised Learning Forecasting. The model’s capability
of extrapolation can be used for time series forecasting. To
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produce value predictions out of the input time window T ,
one can simply continue to propagate the latent state zi using
the same neural IVP solver to any desired time points, e.g.
in the forecast time window [T, T + τ ], without adding any
additional component. After propagation, the same recon-
struction module can be used to map zi to x̂i, thus obtaining
X̂τ , which is the forecasted content with regard to the truth
Xτ . We combine LVAE with the reconstruction error LRe on
Xτ to obtain Equation 11, where α is a hyperparameter.

LForecast(ϕ, θ) = LVAE(ϕ, θ) + α · LRe(X̂
τ∥Xτ ) (11)

Classification. We can also augment IVP-VAE with a clas-
sifier that leverages the latent state evolving as feature ex-
traction and representation learning. We define this portable
classification component to be of the form pλ (y | z0), where
λ represents model parameters (essentially a feed-forward
network). This leads to an augmented learning objective, as
shown in Equation 12, where CE is the cross entropy loss.

LClass(ϕ, θ, λ) =LVAE(ϕ, θ)

+ α · CE(p(y)∥pλ (y | z0))
(12)

The value of the mixing coefficient πi in Equation 8 de-
pends on the performed task. There exist various methods to
determine the mixing coefficients in a mixture distribution. In
our proposed model, we empirically obtained two different
settings for the mixing coefficients: πi =

1
L for classification

and πi =
DKL(qϕ(z

i
0|X)|p(z0))∑L

j=1 DKL(qϕ(z
j
0|X)|p(z0))

for forecasting tasks.

Experiments
In this section, we present the experimental protocol and the
range of baseline models used along with the EHR datasets.

Datasets
We evaluate our model on three real-world public EHR
datasets from the PhysioNet platform (Goldberger et al.
2000): MIMIC-IV (Johnson et al. 2020, 2023), PhysioNet
2012 (Silva et al. 2012) and eICU (Pollard et al. 2018, 2019).

The MIMIC-IV dataset is a multivariate EHR time series
dataset consisting of sparse and irregularly sampled physio-
logical signals collected at Beth Israel Deaconess Medical
Center from 2008 to 2019. After data preprocessing follow-
ing a similar procedure to Biloš et al. (2021), 96 variables
covering patient in- and outputs, laboratory measurements,
and prescribed medications, are extracted over the first 48
hours after ICU admission. We obtain 26,070 records and use
them for both forecasting and classification.

The PhysioNet 2012 dataset was published as part of the
PhysioNet/Computing in Cardiology Challenge 2012 with
the objective of in-hospital mortality prediction. It includes
vital signs, laboratory results, and demographics of patients
admitted to an ICU. We use the provided 4,000 admissions
from the challenge training set and 37 features over the first
48 hours after patient admission following Biloš et al. (2021).

The eICU Collaborative Research Database is a multi-
center dataset of patients admitted to ICUs at 208 hospitals
located throughout the United States between 2014 and 2015.
We follow the preprocessing procedure presented in Romero

MIMIC-IV PhysioNet 2012 eICU

# Samples 26,070 3,989 12,312
# Variables 96 37 14
Missing rate (%) 97.95 84.34 65.25
Average length 173.4 75.0 114.55
Positive rate (%) 13.39 13.89 17.61
Granularity 1 min 1 min 1 min

Table 1: Key information of the three datasets after prepro-
cessing: Number of admissions used, number of selected
variables, overall percentage of missing values, average se-
quence length over admissions, positive rate for mortality,
granularity of measurements.

et al. (2022) and extract 14 features over the first 48 hours
after ICU admission for 12,312 admissions.

The key information of the three datasets after preprocess-
ing is summarized in Table 1. MIMIC-IV has the highest
rate of missing values, the longest average sequence length,
and the smallest positive rate for mortality. The eICU data is
the least sparse, with a missing rate of only about 65 %. The
full list of selected variables of each dataset can be found in
Appendix A.3.

Baselines
We compare our model against several baselines for the fore-
casting and classification of multivariate irregular time-series.

• GRU-∆t concatenates feature values with masking vari-
able and time interval ∆t as input (Rubanova, Chen, and
Duvenaud 2019).

• GRU-D incorporates missing patterns using GRU com-
bined with a learnable decay mechanism on both the input
sequence and hidden states (Che et al. 2018).

• mTAN leverages an attention mechanism to learn temporal
similarity and time embeddings (Shukla and Marlin 2021a).

• GRU-ODE-Bayes couples continuous-time ODE dynam-
ics with discrete Bayesian update steps (De Brouwer et al.
2019).

• CRU constructs continuous recurrent cells using lin-
ear stochastic differential equations and Kalman filters
(Schirmer et al. 2022).

• Raindrop represents dependencies among multivariates
with a graph whose connectivity is learned from time series
(Zhang et al. 2022).

• Latent-ODE uses an ODE-RNN encoder and Neural ODE
decoder in a VAE architecture (Rubanova, Chen, and Du-
venaud 2019).

• Latent-Flow replaces the ODE component of Latent-ODE
with more efficient Neural Flow models (Biloš et al. 2021).

Corresponding to two Latent-based models, we evaluate
IVP-VAE with two types of IVP solvers, i.e. one with ODE
called IVP-VAE-ODE and another with Flow called IVP-
VAE-Flow. Hyperparameter settings are described in Ap-
pendix A.2. Latent-ODE and Latent-Flow, which are the
primary baselines for our model, are jointly referred to as
Latent-based models below.
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Experimental Protocols
All three datasets are used for forecasting and classification
experiments. Each dataset is randomly split into 80% for
training, 10% for validation and 10% for testing. Follow-
ing previous works (Rubanova, Chen, and Duvenaud 2019;
Shukla and Marlin 2021a; Zhang et al. 2022), we repeat each
experiment five times using different random seeds to split
datasets and initialize model parameters.

In forecasting experiments, we use the first 24 hours of
data as input and prediction the next 24 hours of data. We
assess models’ performance using the mean squared error
(MSE). For classification experiments, we focus on predicting
in-hospital mortality using the first 24 hours of data. Due to
class imbalance in these datasets, we assess classification
performance using area under the ROC curve (AUROC) and
area under the precision-recall curve (AUPRC). To compare
the models’ running speed, we also report T-epoch (Biloš et al.
2021; Horn et al. 2020; Shukla and Marlin 2021a), which
is the time that each model needs to complete one epoch
(counted in seconds). All models were tested in the same
computing environment with NVIDIA Tesla V100 GPUs.

Considering the fact that even though some public EHR
datasets have sufficient general samples for training complex
deep learning models, when it comes to a specific group of
patients or a specific medical phenomenon, the available data
for training are usually not sufficient (Shickel et al. 2017).
We also deploy our model and other baselines in experiments
with limited samples, conducting a comprehensive compari-
son across various dataset sizes. The samples are drawn from
the MIMIC IV dataset. The test dataset consistently contains
2,000 samples, whereas the number of samples for training
and validation ranges from 250 to 4,000. These small-sized
datasets are then divided into training and validation sets
at a 4:1 ratio. Both classification and forecasting tasks are
conducted within this setting.

Results and Analyses
In this section, we evaluate IVP-VAE’s capability of data
modeling and representation learning for EHR time series
data. There are different branches of methods for irregular
time series. We first make a thorough comparison of our
designs and their Latent-based predecessors to show the im-
provement. Afterward, we compare our designs against the
state-of-art and representative methods from other branches.

Improvements Over Latent-Based Models
To have a clear view of the improvement of performance and
efficiency, we make a detailed comparison of our design and
Latent-based models in Table 2. Regarding performance in
classification (AUROC & AUPRC, larger means better) and
forecasting (MSE, smaller means better) tasks, IVP-VAE gen-
erally outperforms Latent-based models across all datasets.

We further compare efficiency of these models in terms of
T-epoch and T-forward (the time taken by each model to com-
plete one forward run). Clearly, IVP-VAE models are able to
achieve a significant speed advantage over the correspond-
ing Latent-based models. For instance, on forecasting tasks
of MIMIC-IV, IVP-VAE-Flow is about 42 times faster than

ODE Flow

IVP-VAE Latent IVP-VAE Latent

MIMIC-IV

C
la

ss
ifi

ca
tio

n AUROC 0.802 0.768 0.805 0.786
AUPRC 0.422 0.393 0.427 0.404
T-forward 0.066 2.536 0.017 0.784
T-epoch 1478.8 5270.3 1445.8 3105.5
# Epochs 12.6 56.2 10.8 57.8
# Parameters 209,677 199,017 325,017 429,697

Fo
re

ca
st

in
g MSE 0.724 0.769 0.727 0.755

T-forward 0.106 3.059 0.025 1.063
T-epoch 155.4 4294.9 81.5 2272.0
# Epochs 31.8 37.2 35.6 42.8
# Parameters 112,776 102,116 228,116 332,796

PhysioNet 2012

C
la

ss
ifi

ca
tio

n AUROC 0.770 0.767 0.771 0.766
AUPRC 0.359 0.364 0.362 0.327
T-forward 0.031 1.072 0.009 0.285
T-epoch 35.6 333.4 32.6 166.5
# Epochs 19.6 89.2 19.4 96.2
# Parameters 174,218 188,338 289,558 419,018

Fo
re

ca
st

in
g MSE 0.563 0.586 0.567 0.584

T-forward 0.072 0.916 0.012 0.307
T-epoch 20.2 292.9 8.2 264.7
# Epochs 54.4 38.4 68.0 44.2
# Parameters 77,317 91,437 192,657 322,117

eICU

C
la

ss
ifi

ca
tio

n AUROC 0.786 0.783 0.786 0.781
AUPRC 0.468 0.477 0.472 0.482
T-forward 0.033 2.733 0.009 0.539
T-epoch 342.5 2296.1 319.4 1127.4
# Epochs 16.0 78.8 23.0 93.0
# Parameters 160,395 184,175 275,735 414,855

Fo
re

ca
st

in
g MSE 0.596 0.598 0.581 0.594

T-forward 0.081 2.604 0.012 0.655
T-epoch 77.7 1778.3 28.2 616.3
# Epochs 60.2 32.0 78.2 42.5
# Parameters 160,395 184,175 275,735 414,855

Table 2: Detailed comparison of IVP-VAE and its predecessor
using different IVP solvers on three datasets for classification
and forecasting. We compare the time needed for one forward
pass (T-forward) and for one epoch (T-epoch), number of
epochs, and number of parameters. Better results are in bold.

Latent-Flow in terms of T-forward. Since T-epoch includes
T-forward as well as the time for data loading, loss calcula-
tion, backpropagation, etc., which significantly contribute to
the computation time, the improvement in T-epoch is not as
significant as in T-forward. Nevertheless, IVP-VAE-Flow is
still more than 28 times faster than Latent-Flow. The speed
advantage is achieved by eliminating recurrent operations
and solving IVPs in parallel.

Furthermore, we compare IVP-VAE with its counterparts
on convergence rate. As indicated by # Epochs, IVP-VAE
models converge significantly faster than Latent-based mod-
els, with IVP-VAE models needing lesser epochs to achieve
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MIMIC-IV PhysioNet 2012 eICU

MSE AUROC AUPRC MSE AUROC AUPRC MSE AUROC AUPRC

GRU-∆t 0.730±0.014 80.9±0.6 42.0±2.0 0.587±0.055 72.0±4.4 29.0±4.5 0.583±0.009 76.1±1.4 42.8±2.1
GRU-D 0.736±0.005 78.6±0.9 41.9±1.3 0.588±0.060 76.2±3.2 32.9±4.3 0.578±0.007 79.6±1.5 47.7±2.4
mTAN 0.715±0.011 76.6±0.6 37.9±2.4 0.588±0.050 76.2±2.8 33.8±5.3 0.582±0.010 76.9±2.4 45.1±3.2
Raindrop - 77.1±1.4 36.8±2.8 - 75.3±2.3 30.9±3.9 - 76.6±2.1 45.1±2.7
GOB 0.809±0.014 - - 0.619±0.029 - - 0.664±0.012 - -
CRU 0.946±0.016 - - 0.688±0.032 - - 0.820±0.044 - -
IVP-VAE-Flow 0.727±0.013 80.5±0.5 42.7±1.4 0.567±0.038 77.1±3.0 36.2±5.3 0.581±0.009 78.6±1.7 47.2±0.029

Table 3: Comparison of the proposed IVP-VAE-Flow model and state-of-the-art baselines. ’-’ denotes that a model doesn’t
support the task. We report test MSE for forecasting and AUROC

(
×10−2

)
and AUPRC

(
×10−2

)
for mortality prediction on

three datasets. IVP-VAE-Flow achieves competitive performance across all datasets and tasks.

the best validation accuracy. This advantage is achieved by
the parameter sharing mechanism in our models, i.e. one IVP
solver for both the encoder and decoder. Multiplying the time
per epoch by the number of epochs to obtain the total training
time, we find that IVP-VAE based models are at least one
order of magnitude faster than Latent-based models for both
classification and forecasting tasks.

Regarding model size (# Parameters in Table 2), IVP-VAE-
Flow is smaller than Latent-Flow in all scenarios. IVP-VAE-
ODE is smaller than Latent-ODE in most cases, except for
forecasting tasks on MIMIC-IV. Compared to Latent-based
models, IVP-VAE (1) eliminates recurrent units, (2) uses one
IVP solver instead of two, and (3) adds in the embedding and
reconstruction modules. Factor (1) and (2) can reduce the
number of parameters, while factor (3) increases the number
of parameters. The overall parameter difference is the result
of the superposition of these three factors.

Comparison Against Other Representative Models
We compare IVP-VAE-Flow as the best-performing proposed
model with other state-of-the-art and representative base-
lines. The results of forecasting (in MSE) and classification
(AUROC, AUPRC) experiments on the three datasets are
presented in Table 3. For each metric, we use bold font to
indicate the best result. When compared with other state-
of-the-art baseline models, the IVP-VAE-Flow model con-
sistently achieves at least the second-best result. Also, IVP-
VAE even achieves the best results for the PhysioNet 2012
dataset for both forecasting and classification. Overall, the
proposed method exhibits competitive performance across
all the datasets and tasks.

Experiments on Small Datasets
To further demonstrate the capabilities of the proposed model,
we examine the performance under low sample size condi-
tions. This scenario is analogous to a rare disease setting in
the field of EHR prediction, where data can only be obtained
for a small cohort of patients. In such cases, the effectiveness
of models in capturing temporal evolving patterns and rapidly
updating parameters becomes essential. Figure 2 compares
the performance of 4 typical methods on small datasets where
we collected only a limited number of samples for model
training and validation. As we can see, for both forecast and

Figure 2: Performance comparison on small datasets: (Left)
MSE for forecasting and (right) AUROC for classification
task. IVP-VAE based models consistently and substantially
outperform all baseline approaches across all datasets with
different number of samples.

classification tasks, IVP-VAE based model consistently and
substantially outperforms other approaches across all settings
with different sample sizes. The advantage of the model on
small datasets is also due to its parameter sharing mechanism
in the encoder and decoder.

Conclusion and Discussion

In this paper, we have presented a faster and lighter
continuous-time generative model IVP-VAE, which is able
to model and learn representations of irregular sampled EHR
time series by purely solving IVPs in parallel under the VAE
architecture. Our results showed that the proposed models
perform comparable or better than other baselines on classifi-
cation and forecasting tasks, while offering training times that
are one order of magnitude faster than previous continuous-
time methods. Further experiments on small datasets showed
that our model has an advantage in scenarios where the num-
ber of training samples is limited. Based on this, more work
can be done to demonstrate the ability of IVP-VAE to model
irregular sample time series with diverse datasets, not only
EHR datasets, and different tasks like missing value imputa-
tion, time series regression, etc.
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