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Abstract

Recent years have seen a surge of machine learning ap-
proaches aimed at reducing disparities in model outputs
across different subgroups. In many settings, training data
may be used in multiple downstream applications by different
users, which means it may be most effective to intervene on
the training data itself. In this work, we present FairWASP,
a novel pre-processing approach designed to reduce dispar-
ities in classification datasets without modifying the origi-
nal data. FairWASP returns sample-level weights such that
the reweighted dataset minimizes the Wasserstein distance
to the original dataset while satisfying (an empirical version
of) demographic parity, a popular fairness criterion. We show
theoretically that integer weights are optimal, which means
our method can be equivalently understood as duplicating
or eliminating samples. FairWASP can therefore be used to
construct datasets which can be fed into any classification
method, not just methods which accept sample weights. Our
work is based on reformulating the pre-processing task as a
large-scale mixed-integer program (MIP), for which we pro-
pose a highly efficient algorithm based on the cutting plane
method. Experiments demonstrate that our proposed opti-
mization algorithm significantly outperforms state-of-the-art
commercial solvers in solving both the MIP and its linear pro-
gram relaxation. Further experiments highlight the competi-
tive performance of FairWASP in reducing disparities while
preserving accuracy in downstream classification settings.

Introduction
Machine learning is increasingly involved in decision mak-
ing that impacts people’s lives (Sloane, Moss, and Chowd-
hury 2022; Zhang et al. 2022). There is concern that mod-
els may inherit from the data bias against subgroups defined
by race, gender, or other protected characteristics. Accord-
ingly, there is a vast literature on methods to make machine
learning models “fair.” While there is no consensus about
what it means for a model to be fair or unfair in a given
setting, these methods commonly aim to minimize dispari-
ties in model outputs or model performance across different
subgroups.

Fair machine learning methods are traditionally divided
into three categories: (i) pre-processing methods intervene
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on the training data, (ii) in-processing methods apply con-
straints or regularizers during the model training process it-
self, and (iii) post-processing methods alter the outputs of
previously trained models. See Hort et al. (2022) for a re-
cent review of methods across all three categories.

Among these three, no one category of methods clearly
dominates the others in terms of performance. Pre-
processing methods are useful when the person who gen-
erates or maintains a dataset is not the same as the per-
son who will be using it to train a model (Feldman et al.
2015), or when a dataset may be used to train multiple mod-
els. These methods typically require no knowledge of down-
stream models, so they are in principle compatible with any
subsequent machine learning procedure.

Many pre-processing methods operate by changing the
feature values or labels of the training data (Calders, Kami-
ran, and Pechenizkiy 2009; Žliobaite, Kamiran, and Calders
2011), subsampling or oversampling the data (Kamiran and
Calders 2010; Yan, Kao, and Ferrara 2020; Chakraborty,
Majumder, and Menzies 2021; Salazar et al. 2021), and/or
generating synthetic data (Xu et al. 2018; Salimi et al. 2019).
In high-stakes settings such as finance and healthcare, how-
ever, it may be unethical or even illegal to alter customer
or patient attributes or labels, e.g. with current data regu-
lations in the European Union (GDPR) or health informa-
tion (HIPAA) in the United States. Maintaining separate,
modified versions of datasets is possible but may be costly
for large datasets. An alternative is to learn a set of sample
weights that can be passed to a learning method at training
time (Calders, Kamiran, and Pechenizkiy 2009; Chai and
Wang 2022; Jiang and Nachum 2020; Li and Liu 2022).
While there are many methods that do this, they focus on
satisfying fairness constraints without providing guarantees
about how much they alter the distribution of the data.

Contributions We present FairWASP, a novel pre-
processing method that learns a set of sample weights for
classification datasets without modifying the training data.
FairWASP minimizes the Wasserstein distance between the
original and reweighted datasets while ensuring that the
reweighted dataset satisfies (an empirical version of) demo-
graphic parity, a popular fairness criterion, which we detail
in Section . Our contributions are as follows:

1. Since directly solving the target optimization problem is
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computationally infeasible, we provide a three-step refor-
mulation that leads to a tractable linear program in Sec-
tion . We prove that the solution to this linear program is a
solution to the original problem under a mild assumption
and show theoretically that, over the set of real-valued
weights, integer-valued weights are in fact optimal. This
means that FairWASP can be understood equivalently as
indicating which samples (rows) of the dataset should be
duplicated or deleted at training time, so it is compatible
with any downstream classification algorithm, not just al-
gorithms that accept sample weights.

2. We contribute a highly efficient algorithm to solve the
reformulated linear program (Section ), that vastly out-
performs state-of-the-art commercial solvers.

3. We extend FairWASP to satisfy a separate but equivalent
definition of demographic parity (Section ) by leveraging
the linear program reformulation above.

4. We empirically show that FairWASP achieves competi-
tive performance in reducing disparities while preserv-
ing accuracy in downstream classification settings when
compared to existing pre-processing methods (Section ).

See the Supplementary Materials for complete proofs of
theoretical claims, more discussion, and details on our algo-
rithm and experiments results.

Background
Setup Consider a dataset of n i.i.d. samples
{Zi = (Di, Xi, Yi)}ni=1 drawn from a joint distribu-
tion pZ = pD,X,Y with domain Z = D × X × Y . In
this context, D represents one or more protected variables
such as gender or race, X indicates additional features
used for decision-making, and Y is the decision outcome.
For example, Yi could represent a loan approval decision
for individual i, based on demographic data Di and credit
score Xi. Learning tasks typically aim at learning the
conditional distribution P (Y |X) or P (Y |X,D) from the
samples {Zi}ni=1. In this paper, we assume that the number
of demographic classes |D| and the number of outcome
levels |Y| are significantly smaller than n.

Demographic Parity (DP) Demographic parity (DP),
also known as statistical parity, requires an outcome variable
to be statistically independent of a sensitive feature (Dwork
et al. 2012). This could mean, for example, that an algorithm
used to screen resumes for interviews is required to recom-
mend equal proportions of female and male applicants. DP
is arguably the most widely studied fairness criterion to date
(Hort et al. 2022). Violations of DP may be measured in
different ways. For FairWASP, we adopt a measure similar
to Dwork et al. (2012) and Calmon et al. (2017), namely
the distances between the marginal distribution of an out-
come variable and the distributions of that outcome variable
conditional on levels of a sensitive feature. Additionally, we
show in Section that measuring DP as the distance between
outcome distributions for each level of the sensitive feature
(Calmon et al. 2017) can also be reformulated in a similar
way as the FairWASP optimization problem.

Pre-processing via Reweighting Calders, Kamiran, and
Pechenizkiy (2009) proposed utilizing a set of sample
weights based on the sensitive feature and the outcome vari-
able to target DP. Since then, a variety of papers have uti-
lized similar reweighting approaches (Kamiran and Calders
2010; Jiang and Nachum 2020; Chai and Wang 2022; Li and
Liu 2022). However, previous papers provide no guarantees
about how the sample weights will change the overall dis-
tribution of the data. If the weights alter the distribution of
the data significantly, the downstream model might not learn
the correct conditional distribution between target variables
and features, i.e., P (Y |X) or P (Y |X,D). While minimiz-
ing data perturbation has been considered in pre-processing
papers which seek to learn transformations of the data it-
self (Zemel et al. 2013; Calmon et al. 2017), to our knowl-
edge, FairWASP is the first reweighting approach that seeks
to minimize the overall distributional distance from the orig-
inal data.

Wasserstein Distance The general Wasserstein distance
(or optimal transport metric) between two probability dis-
tributions (µ, ν) supported on a metric space X is defined as
the optimal objective of the (possibly infinite-dimensional)
linear program (LP):

Wc(µ, ν)
def.
= min

π∈Π(µ,ν)

∫
X×X

c(x, y)dπ(x, y), (1)

where Π(µ, ν) is the set of couplings composed of joint
probability distributions over the product space X × X
with marginals (µ, ν). Equation (1) is also called the Kan-
torovitch formulation of optimal transport (Kantorovitch
1958). Here, c(x, y) represents the “cost” to move a unit of
mass from x to y. A typical choice in space X with metric
dX is c(x, y) = dX (x, y)p for p ≥ 1, and then W1/p

c is re-
ferred to as the p-Wasserstein distance between probability
measures. Using the Wasserstein distance between distribu-
tions is particularly useful as it provides a bound for func-
tions applied to samples from those distributions. In other
words, define the following deviation:

d(µ, ν)
def.
= sup

f∈F
|Ez∼µf(z)− Ez∼νf(z)| ,

where F is a family of functions f . If F = Lip1,
the class of Lipschitz-continuous functions with Lips-
chitz constant of 1, then the deviation d(µ, ν) is equal
to the 1-Wasserstein distance (Santambrogio 2015; Villani
et al. 2009). Analogous bounds can be derived for the 2-
Wasserstein distance when F =

{
f | ∥f∥S1(µ) ≤ 1

}
, the

class of functions with unitary norm over the Sobolev space
S =

{
f ∈ L2 | ∂xif ∈ L2

}
(Claici, Genevay, and Solomon

2018). This fact provides a theoretical intuition for down-
stream utility preservation, i.e., the closer two distributions
are in Wasserstein distance, the more similar the down-
stream performance of learning models trained on such dis-
tributions is expected to be. Finally, the Wasserstein dis-
tance has been used to express fairness constraints in sev-
eral in-processing methods (Chzhen et al. 2020; Chzhen and
Schreuder 2022). To our knowledge, however, it has not pre-
viously been used in a pre-processing setting.
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FairWASP Optimization Problem
In this section we propose FairWASP, which casts dataset
pre-processing as an optimization problem that aims at min-
imizing the distance to the original data distribution while
satisfying fairness constraints.

Given a dataset Z = {(Di, Xi, Yi)}ni=1, we can write the
reweighted distribution of the dataset as:

pZ;θ
def.
=

1

n

n∑
i=1

θiδZi ,

with {θi}i∈[n] such that
∑

i θi = n, and Dirac measures

δZi
centered on Zi. Here [n]

def.
= {1, 2, . . . , n}. Note that

the empirical distribution of the original dataset can be writ-
ten in the form above by setting θi = ei = 1 for any i,
i.e., pZ;e = 1

n

∑n
i=1 eiδZi . We will use e to represent the

n-vector with all entries being 1. We use the Wasserstein
distance between pZ;θ and pZ;e to measure the discrepancy
between the original and reweighted datasets. To control for
discrimination, we adopt the fairness constraints proposed
by Calmon et al. (2017), which are equivalent to imposing
demographic parity over the original dataset. In our formula-
tion, this translates to requiring the conditional distribution
for all possible values of D under the weights {θi}i∈[n] to
closely align with the marginal distribution over Y in the
original dataset, which we denote pY ,

J (pZ;θ(Y = y|D = d), pY (y)) ≤ ϵ, ∀ d ∈ D, y ∈ Y (2)

where J(·, ·) denotes a distance function between scalars.
We will use the shorthand pZ;θ(y|d) for pZ;θ(Y = y|D =
d). This definition corresponds to the enforcing demo-
graphic parity by constraining the selection rates across
groups D = d to be equal to the overall selection rate. How-
ever, unlike Calmon et al. (2017) who defined J(p, q) as
|pq −1|, we define J as the subsequent symmetric probability
ratio measure:

J(p, q) = max
{

p
q − 1, q

p − 1
}

. (3)

We believe our definition is more practical and theoretically
sound because it is symmetric with respect to p and q. We
note that the two definitions are equivalent when p > q and
similar when p is not much smaller than q.

Our proposed approach FairWASP finds integer weights
{θi}i∈[n] via solving the following optimization problem:

min
θ∈In∩∆n

Wc(pZ;θ, pZ;e)

s.t. J (pZ;θ(y|d), pY (y)) ≤ ϵ, ∀ d ∈ D, y ∈ Y,
(4)

where In is the set of integer vectors in Rn, and ∆n is the
set of valid weights {θ ∈ Rn

+ :
∑n

i=1 θi = n}. The use
of integer weights can be understood simply as duplicating
or eliminating samples in the original datasets. This is in
contrast with other approaches such as Kamiran and Calders
(2012) and Bachem, Lucic, and Krause (2017), in which the
sample-level weights are real-valued. The problem of solv-
ing the optimal real-valued weights is instead as follows:

min
θ∈∆n

Wc(pZ;θ, pZ;e)

s.t. J (pZ;θ(y|d), pY (y)) ≤ ϵ, ∀ d ∈ D, y ∈ Y.
(5)

Note that (5) is in fact an LP relaxation of (4). In practice,
using real-valued weights requires either (i) resampling each
sample proportionally to its weight, which introduces sta-
tistical noise in the reweighted distribution, or (ii) includ-
ing sample weights in the loss function during the learning
process. Using integer weights, however, ensures the con-
structed dataset has exactly the optimal reweighted distribu-
tion (in the sense of (4) and (5)), and the reweighted dataset
can be fed into any classification method, not just methods
which accept sample weights. In addition, Theorem 3 and
Lemma 4 show that using integer weights achieves the op-
timal value of the objective in the optimization problem for
real-valued weights, i.e., the optimal solution of (4) is also
an optimal solution for (5).

Reformulations of the Optimization Problem
In this section, we provide a computationally tractable
equivalent formulation of (4). In Step 1, we reformulate (4)
as a mixed-integer program (MIP). However, directly solv-
ing this problem is infeasible due to its scale. In Step 2, we
demonstrate that, through specific reformulations, the dual
of the LP relaxation becomes more computationally man-
ageable. In Step 3, we prove that the solution of the dual
problem can lead to an optimal solution of (4).

Step 1: Reformulating (4) as a MIP
First, we show that the constraint (2) can be reformulated as
linear constraints on θ of the form Aθ ≥ 0. The conditional
probability in constraint (2) can be rewritten as

pZ;θ(y|d) =
∑

i∈[n]:di=d,yi=y θi∑
i∈[n]:di=d θi

.

By substituting the definition of the distance J(·, ·) from
(3), the fairness constraints equivalently become linear con-
straints on {θi}ni=1 (via inverting a fractional linear transfor-
mation), taking the following form for all d ∈ D, y ∈ Y:∑

i∈[n]:di=d,yi=y θi ≤ (1 + ϵ) · pY (y) ·
∑

i∈[n]:di=d θi ,∑
i∈[n]:di=d,yi=y θi ≥

1
1+ϵ · pY (y) ·

∑
i∈[n]:di=d θi .

(6)
In total, (6) defines 2|Y||D| linear constraints on θ in the
format of Aθ ≥ 0, where A is a 2|Y||D|-row matrix1.

Regarding the objective, the Wasserstein distance can be
equivalently formulated as a linear program with n2 vari-
ables (Peyré, Cuturi et al. 2019). Let C ∈ Rn×n rep-
resent the matrix formed by the transportation costs, i.e.,
Cij = c(zi, zj). Then, according to definition (1), the ob-
jective function Wc(pZ;θ, pZ;e) is given by the optimal ob-
jective of the following problem:

min
P∈Rn×n

⟨C,P ⟩ s.t. Pe = e, P⊤e = θ, P ≥ 0n×n (7)

where ⟨·, ·⟩ is the Frobenius inner product and recall that
e = 1 is the vector of ones. Hence, the integer-weight opti-

1Note that when Y is binary, e.g., Y = {0, 1}, half of the linear
constraints induced by (2) are redundant and can be removed.
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mization problem in (4) is equivalent to the following MIP:
min

θ∈Rn,P∈Rn×n
⟨C,P ⟩

s.t. Pe = e, P⊤e = θ, P ≥ 0n×n

θ ∈ In ∩∆n, Aθ ≥ 0

(8)

Similarly, the real-valued weights problem in (5) is equiva-
lent to the following LP:

min
θ∈Rn,P∈Rn×n

⟨C,P ⟩

s.t. Pe = e, P⊤e = θ, P ≥ 0n×n

θ ∈ ∆n, Aθ ≥ 0

(9)

Note that (9) is actually also the LP relaxation of (8). How-
ever, this reformulation is not yet practically useful as prob-
lem (9) involves O(n2) variables, which poses a challenge
for both conventional LP algorithms and state-of-the-art
MIP methods, such as the LP based branch-and-bound meth-
ods (Gurobi Optimization, LLC 2023).

Step 2: Dual Problem of the LP Relaxation
In this step, we propose a solution of the LP relaxation (9)
by considering its dual problem.

First, note that some constraints are currently redundant.
For any feasible (θ, P ), θ already lies in ∆n; given a feasible
P , we have (i) θ = P⊤e, (ii) e⊤e = n and (iii) Pe = e, so
it follows that θ⊤e = e⊤Pe = e⊤e = n. Consequently, we
can replace θ with Pe and reformulate (9) equivalently as:

min
P∈Rn×n

⟨C,P ⟩ s.t. Pe = e, P ≥ 0n×n, AP
⊤e ≥ 0 . (P)

Therefore, the optimal θ⋆ of (9) can be reconstructed from
the optimal P ⋆ of (P) using θ⋆ = (P ⋆)⊤e.

Second, we use a property of LP problems to reformulate
(P). When the feasible set of the LP problem (P) is nonempty
and the optimal solution P ⋆ exists, P ⋆ is part of a saddle
point of the saddle-point problem on the Lagrangian,

min
P∈Sn

max
λ∈Rm

+

L(P, λ)
def.
= ⟨C,P ⟩ − λ⊤AP⊤e (PD)

where Sn
def.
= {P ∈ Rn×n : Pe = e, P ≥

0n×n}. Since L(·, ·) is bilinear, the minimax theorem (Du
and Pardalos 1995) guarantees that (PD) is equivalent to
maxλ∈Rm

+
minP∈Sn

L(P, λ). This is then equal to the dual:

max
λ≥0

−F (λ), where F (λ)
def.
= max

P∈Sn

〈
C̄, P

〉
(D)

where C̄ =
∑m

j=1 λjea
⊤
j − C and a⊤j is the j-th row of A.

Unlike the problem in (9), the dual problem (D) can be
directly solved, as we show in Lemma 1 below.

Lemma 1. For function G(C̄)
def.
= maxP∈Sn

⟨C̄, P ⟩, it is
a convex function of C̄ in Rn×n. It has the following func-
tion value and subgradient. For each i ∈ [n], let c̄ij⋆i denote
a largest component on the i-th row of C̄, then G(C̄) =∑n

i=1 cij⋆i . Define the components of of P ⋆ ∈ Rn×n as

pij =

{
0 , if j ̸= j⋆i
1 , if j = j⋆i

(10)

and then P ⋆ ∈ argmaxP∈Sn⟨C̄, P ⟩ and P ⋆ ∈ ∂G(C̄).

Proof Sketch. The proof directly uses the convexity of the
maximium LP’s optimal objective on the cost function. The
problem can be divided into independent separate smaller
LP on simplexes, each having a closed-form maximizer.

Due to the chain rule, Lemma 1 shows that F (λ) is con-
vex and the function values and subgradients of F (λ) =
G(

∑m
j=1 λjea

⊤
j −C) can be computed as well. This implies

(D) is equivalent to

min
λ∈Rm

+

F (λ) , (D-2)

whose objective function F (·) is a convex function of λ (see
Lemma 1). Here m is the number of rows in matrix A, which
as shown before is at most 2|Y||D| ≪ n. Reformulation
(D-2) is important as it makes it possible to use methods that
need only subgradients of the dual problem (D), such as the
subgradient descent method and the cutting plane method
(Nesterov 2018), as we show below in Section .

Finally, we consider the implications for the uniqueness
of the primal optimal solution P ⋆.
Assumption 1. The problem minP∈Sn⟨C −∑m

j=1 λ
⋆
jea

⊤
j , P ⟩ has a unique minimizer for the opti-

mal solution λ⋆ for (D).
Corollary 2. Under Assumption 1, the primal optimal so-
lution P ⋆ given by Lemma 1 is the unique maximizer of
maxP∈Sn⟨C̄, P ⟩.

Proof. Once the optimal λ⋆ of (D) is computed, us-
ing Assumption 1 the optimal solution P ⋆ of (P)
then lies in argminP∈Sn

L(P, λ⋆), or equivalently
argmaxP∈Sn

⟨
∑m

j=1 λ
⋆
jea

⊤
j − C,P ⟩.

Assumption 1 ensures there are no ties when calculat-
ing the row-wise max in the C̄ matrix. Ties occur only
for C̄ in a set of measure zero, as the set of C̄ such that
maxP∈Sn

⟨C̄, P ⟩ has multiple maximizers is the C̄ with a
row containing two or more largest components, which is of
a strictly smaller dimension than the full space and thus zero
measure. In practice, Assumption 1 holds almost always due
to rounding errors and the termination tolerance when com-
puting the optimal solution λ⋆.

Step 3: Using the Dual Solution to Solve the
Original MIP
In this section, we show how to recover the optimal P ⋆ and
θ⋆ of (9) given the optimal solution λ⋆ of (D). The following
theorem demonstrates that the optimal solution (θ⋆, P ⋆) of
the LP (9) recovered in this manner is also optimal for the
MIP (8).
Theorem 3. Let λ⋆ be an optimal dual solution of (D) and
let Assumption 1 hold. P ⋆ is an optimal primal solution ob-
tained through Lemma 1 using the form of (10). Then it
holds that θ⋆ = (P ⋆)⊤e and P ⋆ are optimal solutions for
both the LP (9) and the MIP (8).

Proof Sketch. The proof uses the fact that problems (9) and
(8) have the same objective function while the feasible set of
(8) is smaller than that of (9), so if an optimal solution of (9)
is also feasible for (8), then it is optimal for (8) as well.
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Algorithm 1: General Cutting Plane Method for (D-2)

1: Choose a bounded set E0 containing an optimal solution
2: for k from 0 to n do
3: Choose λk from Ek

4: Compute g ∈ Rm such that

g⊤λk ≥ g⊤λ⋆ for any λ⋆ ∈ Λ⋆

5: Choose Ek+1 ⊇ {λ ∈ Ek : g⊤λ ≤ g⊤λk}
6: end for

Theorem 3 shows that once (9) is solved by the dual prob-
lem (D), then (8) can be solved immediately. Finally, we can
then also conclude that the solutions found by FairWASP are
optimal even among real-valued weights.

Lemma 4. When Assumption 1 holds, the optimal integer-
weight solution of (4) is as good as the optimal real-valued-
weight solution of (5).

Cutting Plane Method for the Reformulated
Problem

The cutting plane method (Khachiyan 1980) is a class of
methods for convex problems in settings where the separa-
tion oracle is accessible. For any λ ∈ Rm in problem (D-2),
a separation oracle is an operator that returns a vector g such
that g⊤λ ≥ g⊤λ⋆ for any λ⋆ ∈ Λ⋆, where Λ⋆ denotes the
set of optimal solutions. The cutting plane method iteratively
makes use of the separation oracle to restrict the feasible
sets until convergence2. Algorithm 1 shows a pseudo-code
breakdown of the cutting plane algorithm; variants of the
cutting plane methods differ in the implementation of lines
3 and 5 (see Nesterov 2018 for more details).

For the problem (D-2), a separation oracle (line 4 in Al-
gorithm 1) can be obtained from the subgradients, which are
efficiently accessible according to Lemma 1. Corollary 5 be-
low provides an analysis of both time and space complexity;
see Supplementary Material A for more details on the sepa-
ration oracle, implementation, and the proof.

Corollary 5. With efficient computation and space manage-
ment, the cutting plane method is able to solve the prob-
lem (D-2) within Õ

(
n2 + |D|2|Y|2n · log(R/ε)

)
flops and

O(n|D||Y|) space.3

Comparison with Other LP Algorithms Table 1 com-
pares theoretical complexities and convergence rates of our
cutting plane method implementation with the traditional
simplex method and interior point method, as well as a
recently proposed practical first-order method (Applegate
et al. 2022, 2021) based on the primal-dual hybrid gradient
(PDHG). Other LP algorithms, such as (Wang et al. 2022),
are only for problems with special structures. Note that the

2In our case, convergence is achieved when the gap between the
primal and dual problems is lower than a given tolerance.

3We use the notation Õ(·) to hide m, n, |D|, and |Y| in the log-
arithm function. Here R denotes the maximum norm of the optimal
solutions of (D-2)

Method Conv. Time SpaceInit. Per Iter.
Ours Fast O(n2) O(n|D||Y|) O(n|D||Y|)

Simplex Slow O(n2) O(n3) O(n2)
IPM Fast O(n2) O(n3) O(n2)

PDHG Slow O(n2) O(n2) O(n2)

Table 1: Convergence speeds and complexity of different LP
algorithms.

original LP problem (9) has O(n) constraints and O(n2)
nonnegative variables, which scale badly with large values
of n. Table 1 has already considered the benefit of sparse
matrix multiplication; see Section for an empirical com-
parison of the computational efficiency of our cutting plane
algorithm against existing commercial solvers, and Supple-
mentary Material A for more details on the comparison.

FairWASP-PW: Extension to Pairwise
Demographic Parity Constraints

As pointed out in Calmon et al. (2017), demographic parity
can be expressed in multiple equivalent forms. In particular,
we can rewrite (2) to constrain the selection rates to be (ap-
proximately) equal across groups D = d, rather than con-
straining them to be equal to the marginal distribution of Y
in the original dataset:

J (pZ;θ(y|d1), pZ;θ(y|d2)) ≤ ϵ, ∀d1, d2 ∈ D, y ∈ Y .
(11)

This turns the optimization problem in (4) into:

min
θ∈In∩∆n

Wc(pZ;θ, pZ;e)

s.t. J (pZ;θ(y|d1), pZ;θ(y|d2)) ≤ ϵ, ∀d1, d2 ∈ D, y ∈ Y .
(12)

This section introduces FairWASP-PW, which extends Fair-
WASP to constraints (11). We show how to solve (12) by (i)
pointing out a connection between constraints (2) and (11),
(ii) reformulating problem (12) and connecting it to prob-
lem (4) ,and (iii) solving (12) via zero-th order optimization.

(1) Connection between constraints (2) and (11). For
any |Y|-vector t ∈ [0, 1]|Y| denoting the marginal distri-
bution pY (y) in (2), let Θϵ;t denote the θ that satisfies the
fairness constraint (2):

Θϵ;t
def.
= {θ ∈ ∆n : J (pZ;θ(y|d), t) ≤ ϵ, ∀ d ∈ D, y ∈ Y}.

(13)
Hence, the feasible sets of (4) under constraint (2) is In ∩
Θϵ;t̄, where t̄y = pY (y). As for the feasible set of prob-
lem (12) under constraint (11), define

Θϵ
def.
=

{
θ ∈ ∆n :

J (pZ;θ(y|d1), pZ;θ(y|d2)) ≤ ϵ,
∀ d1, d2 ∈ D, y ∈ Y

}
,

(14)
obtaining In ∩Θϵ as the corresponding feasible set.

The following lemma shows how the feasible set for prob-
lem (4) is a subset of problem (12)’s feasible set. More
specifically, Θϵ is equal to the union of Θϵ̄;t̄ for all t̄ ∈
[0, 1]Y and a certain ϵ̄.
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Lemma 6. Let Θϵ;t and Θϵ be defined as (13) and (14),
then it holds that for any ϵ ∈ [0, 1), Θϵ =

⋃
t∈[0,1]Y Θϵ̄;t, in

which ϵ̄ =
√
1 + ϵ− 1.

Proof Sketch. Inclusion from both sides can be shown via
constructing an element of each set respectively.

Note that Θϵ is not convex, as the union of convex sets is
not necessarily convex, making problem (12) not convex.

(2) Reformulation of Problem (12). Using Lemma 6, we
can rewrite problem (12) as:

min
θ∈Rn

Wc(pZ;θ, pZ;e) s.t. θ ∈ In ∩ (∪t∈[0,1]YΘϵ̄;t) , (15)

which is in turn equivalent to the following problem that si-
multaneously optimizes over t:

min
θ∈Rn,t∈[0,1]Y

Wc(pZ;θ, pZ;e) s.t. θ ∈ In ∩Θϵ̄;t . (16)

Compared with problem (4), problem (16) has t as part of
the decision variables with pY (y) = t and ϵ = ϵ̄. In other
words, if we denote HI(t; ϵ̄) the optimal objective values for
the MIP in (4), then (16) is equal to:

min
t∈[0,1]Y

HI(t; ϵ̄). (17)

Once the optimal t⋆ of (17) is obtained, fixing t = t⋆ in (16)
and optimizing over θ yields the optimal weights θ⋆.

(3) Zero-th Order Optimization Methods for (17). We
propose to employ zero-th order optimization methods for
the minimization problem in (17). In our setting, this is a
particularly efficient choice, as:

• the value of HI(t; ϵ̄) can be computed via the dual prob-
lem (D), as discussed above. Since the cost matrix re-
mains unchanged, after solving (D) for the first time, the
complexity of solving the problem again with any differ-
ent t is only Õ(n|Y|2|D|2 log(R/ε));

• the problem in (17) is of dimension |Y|, so low-
dimensional, with only unit box constraints.

Many methods have shown fast convergence to stationary
points for very-low-dimensional problems in practice, such
as the multi-dimension golden search method (Chang 2009)
and the Nelder-Mead method (Gao and Han 2012). We opt
for the latter in our implementation.

Optimality of Integer Weights. Note that once the opti-
mal t⋆ of (17) is obtained, the problem (16) with t fixed as
t⋆ is an instance of problem (4) with pY (y) = t⋆ and ϵ = ϵ̄.
Hence, according to Theorem 3 and Lemma 4, the optimal-
ity of integer weights also carries over to problem (12).

Experiments
In this section, we use a synthetic dataset to provide an ef-
ficiency analysis of FairWASP against established state-of-
the-art commercial solvers. In addition, we show on vari-
ous real datasets how FairWASP achieves competitive per-
formance compared to existing methods in reducing dispar-
ities while preserving accuracy in downstream classification
settings.
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Figure 1: Speed comparison with commercial solvers. Fair-
WASP has significantly better runtime and scalability.

Synthetic dataset We generate a synthetic dataset in
which one of the features is highly correlated with the pro-
tected variable D, in order to induce a dependency of the
outcome on D. We generate a binary protected variable
D = {0, 1} and features X = [X1, X2] ∈ R2, such that
X1 is dependent on the value of D and X2 is not. More
specifically, X1 ∼ U [0, 10] · I(D = 1), where U indicates
the uniform distribution and I the indicator function, so that
X1 = 0 if D = 0, and X2 ∼ N (0, 25). The outcome Y is
binary and defined as Y = I(X1 +X2 + ε > mX), where
mX = E(X1 +X2) and ε ∼ N (0, 1) is random noise.

Figure 1 compares the runtime of the FairWASP and com-
mercial solvers, Gurobi and Mosek, in solving problem (9)
for the synthetic data with different number of samples n
(mean and standard deviation over 5 independent trails, with
n doubling from n = 100 up to n = 12, 800). The runtime
limit for all methods is set to 1 hour, which both commercial
solvers exceed when n > 10, 000. In contrast, FairWASP
has a significantly faster runtime than commercial solvers,
solving all optimization problems within 5 seconds. As the
commercial solvers are run with default settings, we show
that the solutions found by FairWASP are comparable to the
commercial solver solutions in Supplementary Material C.

Real Datasets We consider the following four real
datasets widely used in the fairness literature (Fabris et al.
2022): (i) the Adult dataset (Becker and Kohavi 1996), (ii)
the Drug dataset (Fehrman et al. 2017), (iii) the Communi-
ties and Crime dataset (Redmond 2009) and (iv) the Ger-
man Credit dataset (Hofmann 1994). We compare the per-
formance of FairWASP and FairWASP-PW with the follow-
ing existing pre-processing approaches:
• DisparateImpactRemover (DIR, Feldman et al. 2015),

which transforms feature values in a rank-preserving
fashion,

• Learning fair representations (LFR, Zemel et al. 2013),
which identifies a latent representation uncorrelated with
the protected attributes,

• Reweighing (Kamiran and Calders 2012), which weights
each sample according to the respective (D,Y ) values,

• Optimized pre-processing (Calmon et al. 2017), which
learns a probabilistic transformation to be applied to the
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Figure 2: Downstream fairness-utility tradeoff, indicated by the demographic disparity and downstream classifier area under
the curve (AUC). The x-axis refers to the absolute difference in the mean classifier outcome for the two groups, with a value
of 0 corresponding to perfect demographic parity. Points and error bars correspond to averages plus/minus one standard devi-
ation, computed over 10 different train/test split. FairWASP and FairWASP-PW consistently provide one of the best tradeoffs,
significantly improving over using the original dataset as-is. See text and Supplementary Material C for more details.

dataset so that it satisfies group fairness, individual dis-
tortion and fidelity constraints.

We also include the Uniform approach, which corre-
sponds to the baseline of training on the dataset as-is. In all
methods, the pre-processed dataset (or the dataset with no
pre-processing, for the Uniform approach) is used to train
a multi-layer perceptron (MLP) classifier with one hidden
layer with 20 nodes and ReLu activation function. Figure 2
shows the fairness-utility tradeoff, indicated by the demo-
graphic disparity (defined in the caption) and the classifier
AUC, for the Adult dataset (top row), Communities & Crime
dataset (bottom left) and Drug dataset (bottom right). We
include the settings in which the protected variable D is in-
cluded among the features X or not; the latter corresponds to
the realistic scenario in, e.g., loan credit approvals, in which
the US Equal Credit Opportunity Act of 19744 prohibits the
use of such protected features. In all settings, FairWASP and
FairWASP-PW are consistently part of the so-called “Pareto
frontier” of the fairness utility tradeoff (Ge et al. 2022),
meaning they usually achieve either the best or among the
best fairness-utility tradeoffs (closest to the (0, 1) in the top
left corner), significantly improving over the empirical dis-
tribution (the Uniform approach). See Supplementary Mate-
rial C for more details on datasets, hyper-parameter settings
and downstream fairness-accuracy tradeoffs for all datasets.

4https://www.law.cornell.edu/uscode/text/15/1691

Conclusions
We propose FairWASP, a novel pre-processing algorithm
that returns sample-level weights for a classification dataset
without modifying the training data. FairWASP solves an
optimization problem that minimizes the Wasserstein dis-
tance between the original and the reweighted dataset while
satisfying demographic parity constraints. We solve the op-
timization problem by reformulating it as a mixed-integer
program, for which we propose a highly efficient algorithm
that we show to be significantly faster than existing commer-
cial solvers. FairWASP returns integer weights, which we
show to be optimal, and hence which can be understood as
eliminating or duplicating existing samples, making it com-
patible with any downstream classification algorithm. We
empirically show how FairWASP achieves competitive per-
formance with existing pre-processing methods in reducing
discrimination while maintaining accuracy in downstream
classification tasks.

For future work, we would like to (i) characterize the finite
sample properties of FairWASP for the downstream fairness-
utility tradeoff, (ii) explore the downstream effect of using
different distances in the calculation of the cost matrix C,
such as the Wasserstein transform (Memoli, Smith, and Wan
2019), and (iii) extend the proposed optimization framework
to non-linear fairness constraints as well as to general LPs
and MIPs with similar structures.
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Peyré, G.; Cuturi, M.; et al. 2019. Computational optimal
transport: With applications to data science. Foundations
and Trends® in Machine Learning, 11(5-6): 355–607.
Redmond, M. 2009. Communities and Crime.
UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C53W3X.
Salazar, T.; Santos, M. S.; Araújo, H.; and Abreu, P. H. 2021.
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