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Abstract
We observe a high level of imbalance in the accuracy of dif-
ferent classes in the same old task for the first time. This in-
triguing phenomenon, discovered in replay-based Class In-
cremental Learning (CIL), highlights the imbalanced forget-
ting of learned classes, as their accuracy is similar before the
occurrence of catastrophic forgetting. This discovery remains
previously unidentified due to the reliance on average incre-
mental accuracy as the measurement for CIL, which assumes
that the accuracy of classes within the same task is similar.
However, this assumption is invalid in the face of catastrophic
forgetting. Further empirical studies indicate that this imbal-
anced forgetting is caused by conflicts in representation be-
tween semantically similar old and new classes. These con-
flicts are rooted in the data imbalance present in replay-based
CIL methods. Building on these insights, we propose CLass-
Aware Disentanglement (CLAD) to predict the old classes
that are more likely to be forgotten and enhance their accu-
racy. Importantly, CLAD can be seamlessly integrated into
existing CIL methods. Extensive experiments demonstrate
that CLAD consistently improves current replay-based meth-
ods, resulting in performance gains of up to 2.56%.

Introduction
In typical image recognition tasks, the data is assumed to
follow the independently and identically distributed (i.i.d.)
assumption. A good classification model is expected to have
similar and high accuracy across different classes. But in the
real world, the data is non-stationary. To address this issue,
Class Incremental Learning allows the model to continually
learn new classes without forgetting the previously learned
ones (Van de Ven and Tolias 2019). However, when sequen-
tial fine-tuning is performed on new classes without the pres-
ence of old data, there is a dramatic drop in accuracy for the
learned tasks, known as catastrophic forgetting (McCloskey
and Cohen 1989).

As the accuracy between the old and new classes is highly
imbalanced in CIL, numerous approaches have been pro-
posed. Among them, exemplar replay has been proven to be
a simple yet effective strategy (Robins 1995; Rebuffi et al.
2017; Riemer et al. 2018; Buzzega et al. 2020). In exem-
plar replay, a subset of each class is selected and stored in a
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Figure 1: Demonstration of imbalanced forgetting. Visual-
ization of the accuracy of each class in the first task ob-
tained by joint training and LUCIR (Hou et al. 2019). The
class indexes are sorted according to the result from LUCIR
for better visualization.More illustrations of the above phe-
nomenon with other methods can be found in the supple-
mentary material.

buffer. During the training of subsequent tasks, these exem-
plars are reused in various ways to help preserve the learned
knowledge, such as joint training (Robins 1995; Riemer
et al. 2018), knowledge distillation (Hou et al. 2019; Re-
buffi et al. 2017), gradient projection (Lopez-Paz and Ran-
zato 2017; Saha, Garg, and Roy 2021; Deng et al. 2021),
and bias correction (Hou et al. 2019; Wu et al. 2019; Zhao
et al. 2020; Prabhu, Torr, and Dokania 2020). It is important
to note that all these efforts primarily focus on tackling the
accuracy imbalance between old and new classes. However,
we argue that these efforts alone are insufficient to meet the
expectations of a classification model.

For the first time, we observed that the accuracy between
classes of the same old task is also highly imbalanced. It is
evident that imbalanced forgetting occurs during the learn-
ing of a new task, as their accuracy is similar just after
learning (as shown in Fig. 1 JOINT). This phenomenon re-
mains undiscovered because the average incremental accu-
racy used for measuring CIL approaches assumes that the
accuracy of the classes within the same task is uniform.
Fig. 1 provides an example where the model is trained us-
ing a CIL setting that splits CIFAR-100 (Krizhevsky et al.
2009) into six tasks, with 50 classes in the first task and
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Figure 2: An overview of (a) existing replay-based methods and (b) our proposed CLAD. In existing replay-based methods,
different old classes 1,2, and 3 have different accuracy because of the different similarities with the new class. The limited
exemplars are not sufficient to preserve the boundary of the test set (low accuracy of classes 2 and 3 in (a)). Our proposed
CLAD consists of two parts: Forgetting Prediction (FP) and Representation Disentanglement (RD). FP aims to find the classes
that might be forgotten during the learning of new classes (classes 2 and 3). Based on the similarity information from FP, RD
encourages the representation of new classes to stay away from similar old ones.

10 classes per subsequent task. The accuracy of each class
in the first task is reported. From the perspective of rep-
resentation learning, the low accuracy of some classes in
joint training results from their semantic similarity. In the
context of CIL, the forgetting of old classes occurs due to
the introduction of similar new classes (Ramasesh, Dyer,
and Raghu 2020). This explains why imbalanced forgetting
occurs. For example, let’s consider there are two classes,
{male, dog} in the first task, and the model learns a new
class, female. The male class tends to forget more easily
due to representation interference.

The above observations provide insight into the potential
for improvement in average accuracy lying in the classes
that are easy to forget. From a methodological perspective,
the key is to minimize interference with the representations
of those old vulnerable classes when new tasks arise. This
raises two questions: 1) how to identify the vulnerable old
classes and 2) how to mitigate conflicts between the repre-
sentations of old and new classes. Regarding the first ques-
tion, a positive relationship between inter-class similarity
and class-level forgetting is established in conventional CIL
settings. Therefore, it is possible to predict the forgetting
level of old classes based on their similarity with the new
classes. Building on this, a novel framework called CLass-
Aware Disentanglement (CLAD) is proposed to address the
second question. As illustrated in Fig. 2 (b), CLAD consists
of two phases: Forgetting Prediction (FP) and Representa-
tion Disentanglement (RD). In the FP phase, a subset of the
old classes is identified as vulnerable ones, where conflicts
are likely to occur with new classes. Empirical demonstra-

tions and statistical analyses indicate a strong relationship
between the conflict classes identified by FP and the degree
of forgetting (see Fig. 3). During training for the new task,
RD is introduced to constrain the similarity between the rep-
resentations of samples in the new classes and the exemplars
of their corresponding conflict classes. CLAD is formulated
as a regularization term, which can be incorporated as a plu-
gin for existing replay-based methods.

Extensive experiments on CIFAR-100 (Krizhevsky et al.
2009) and ImageNet (Deng et al. 2009) indicate that CLAD
provides a consistent and impressive performance improve-
ment over existing methods. Besides, comprehensive abla-
tion studies are performed to show how the components in
CLAD, including the conflict classes selection, regulariza-
tion coefficient, and buffer size, influence its performance.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to reveal
the imbalanced forgetting between the learned classes.

• Experiments and statistical analysis are conducted to
demonstrate that imbalanced forgetting results from
varying semantic similarity between inter-task classes.

• CLass-Aware Disentanglement (CLAD) is proposed to
improve the accuracy of vulnerable old classes, which
can be used as a plugin for replay-based CIL methods.

• Extensive experiments on several challenging bench-
marks demonstrate that CLAD can provide consistent
improvements over existing methods.
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Related Work
Typically, since only the data of the current task is avail-
able in each training phase, the main challenge of CIL is
performance deterioration for old classes, i.e. catastrophic
forgetting (McCloskey and Cohen 1989). An intuitive way
is using a buffer to save some exemplars of each old class,
and training the exemplars along with new data to mimic the
i.i.d. joint training, named Experience Replay (Robins 1995;
Riemer et al. 2018). However, this strategy leads to a severe
imbalance between current and old classes, and the bias to-
wards new classes still exists (Hou et al. 2019; Wu et al.
2019; Zhao et al. 2020; Prabhu, Torr, and Dokania 2020).

Many approaches were proposed to further utilize the ex-
emplars in recent years (Li and Hoiem 2017; Hou et al.
2019; Rebuffi et al. 2017; Douillard et al. 2020; Lopez-Paz
and Ranzato 2017; Chaudhry et al. 2018; Farajtabar et al.
2020; Saha, Garg, and Roy 2021; Wu et al. 2019; Prabhu,
Torr, and Dokania 2020), which can be split into three cat-
egories, knowledge distillation (Li and Hoiem 2017; Hou
et al. 2019; Rebuffi et al. 2017; Douillard et al. 2020), gra-
dient projection (Lopez-Paz and Ranzato 2017; Chaudhry
et al. 2018; Farajtabar et al. 2020; Saha, Garg, and Roy 2021;
Deng et al. 2021), and bias correction (Hou et al. 2019;
Wu et al. 2019; Zhao et al. 2020; Prabhu, Torr, and Doka-
nia 2020), respectively. Knowledge distillation is a train-
ing strategy first proposed by (Hinton et al. 2015) to trans-
fer the knowledge from the teacher model to the student
model. LwF (Li and Hoiem 2017) uses this technology to
preserve the knowledge of the old model (teacher model)
during the new task training for the first time. Subsequent
methods (Hou et al. 2019; Rebuffi et al. 2017; Douillard
et al. 2020) further involve the replay buffer and multiple
distillation loss in CIL. Gradient projection methods try to
keep the gradient of new tasks from interfering with old ones
through projection, represented by GEM (Lopez-Paz and
Ranzato 2017), A-GEM (Chaudhry et al. 2018), GPM (Saha,
Garg, and Roy 2021), FSDGPM (Deng et al. 2021), and
OGD (Farajtabar et al. 2020). Inspired by the similarity be-
tween class imbalanced learning and CIL with exemplar re-
play (He, Wang, and Chen 2021), BiC (Wu et al. 2019) and
WA (Zhao et al. 2020) demonstrate that the bias occurs in
the weights of classifier, and attempt to correct the bias by
post-processing the weights. However, bias also exists in the
backbone of the network. GDumb (Prabhu, Torr, and Doka-
nia 2020) tackles this imbalance by constructing balanced
data during training.

Besides the end-to-end methods (Li and Hoiem 2017;
Hou et al. 2019; Douillard et al. 2020; Wu et al. 2019), sev-
eral plugin methods emerging recently for CIL are based on
the observation of the i.i.d. training process or results (Shi
et al. 2022; Ashok, Joseph, and Balasubramanian 2022;
Liu, Schiele, and Sun 2021). CwD (Shi et al. 2022) en-
forces the data representations to be more uniformly scat-
tered at the first task, which mimics the representation ex-
tracted by the model trained with all classes (oracle model).
CSCCT (Ashok, Joseph, and Balasubramanian 2022) pro-
poses two regularization terms to cluster and distillate the
class features, and encourage new classes to be situated op-
timally in the feature space. AANet (Liu, Schiele, and Sun

2021) proposes to use a new branch for stable knowledge
learning, which is effective but needs more memory.
Discussion. Most of the methods treat all the old classes
equally and attempt to provide end-to-end methods to over-
come the catastrophic forgetting problem. Differently, we
try to mitigate the class-level representation interference in
a class-aware way, which is inspired by our observation that
the forgetting of different old classes is severely imbalanced.
A similar effort has been made by LUCIR (Hou et al. 2019),
which adopts a margin ranking loss to encourage a large
margin between the logits of old and new classes. How-
ever, it calculates the similarity for each sample, which will
lead to inconsistent class-level similarity prediction. And it
is not conducive to clustering together the representations of
the same class. Our proposed Class-Aware Disentanglement
(CLAD) measures the representation interference with co-
sine similarity and calculates the class similarity at the class
level, which is more robust for CIL.

Methodology
Preliminary
Formally, the sequentially trained model is denoted by
f(·) = g(ϕ(·)), which consists of a feature extractor ϕ(·)
followed by a classification layer g(·). f(·) is trained on se-
quential tasks T = [D1,D2, . . . ,DT ] with non-overlapping
classes. At the t-th training task, the model after training on
the (t− 1)-th task is denoted by ft−1 and will be incremen-
tally trained on the new dataset D = Dt ∪ B. The buffer
B ⊂ [D1,D2, . . . ,Dt−1] keeps only several exemplars of
each old class. Under this setting, the standard cross-entropy
loss of replay-based CIL methods is formulated as:

Lce = − 1

| D |

|D|∑
k=1

yk log(σ(f(xk))), (1)

where (xk, yk) is an image and its label in D.
However, as the training data is highly imbalanced, Lce

is not a good approximation of standard joint training clas-
sification loss at the t-th task. Therefore, various additional
constraints are proposed to help CIL methods better approx-
imate the ideal loss during incremental training, such as
knowledge distillation (Li and Hoiem 2017; Rebuffi et al.
2017; Hou et al. 2019), re-sampling (Prabhu, Torr, and
Dokania 2020; Wu et al. 2019; Zhao et al. 2020), and gradi-
ent projection (Saha, Garg, and Roy 2021; Chaudhry et al.
2018; Deng et al. 2021). In general, denote these additional
constraints by Lad, the complete loss function Lreplay of
replay-based methods is formulated as:

Lreplay = Lce + λLad, (2)

where λ stands for the adjustable weight of Lad.

What Causes Imbalanced Forgetting?
In this section, we try to reveal the relationship between
inter-class similarity and class-level forgetting. Intuitively,
semantically similar classes are more likely to be misclas-
sified from each other in standard model training with i.i.d.
data. In the CIL setting with replay buffer, we can further
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Figure 3: Illustration of the relative class forgetting and average similarity with latter classes for each old one. There is a positive
correlation between the maximum similarity forgetting in different settings and methods. The first row gives the experiments
that begin with 50 classes and 10 classes for each latter task, and the number of classes in the latter tasks in the second and third
rows is 5 and 2, respectively.

infer that given a class the in old task, if there are classes
very similar to it in the latter tasks, it is more likely to suffer
performance degradation and vice versa.

To verify this hypothesis, three task sequences with differ-
ent lengths are constructed using CIFAR-100 (Krizhevsky
et al. 2009). All three sequences begin with a base task con-
taining 50 classes, and the number of classes in the subse-
quent tasks is 10, 5, and 2, respectively. Then 12 models
are trained on the above three tasks with four representa-
tive CIL methods: naive replay with loss function defined
in Eq. 1, LUCIR (Hou et al. 2019), BiC (Wu et al. 2019),
and iCaRL (Rebuffi et al. 2017). The hyperparameters of all
the experiments are consistent with the original papers, and
the number of exemplars for each class is 20 as the common
practice in (Rebuffi et al. 2017; Hou et al. 2019; Liu, Schiele,
and Sun 2021; Douillard et al. 2020). The accuracy of each
class after learning each task is recorded. Formally, we de-
note the accuracy of class i after training on the base task
by Ai

base and that after training on the all tasks is denoted
as Ai

all. As Ai
base is different for each class i, the class-level

forgetting δi is defined by normalized accuracy drop:

δi =
Ai

base −Ai
all

Ai
base

. (3)

To explore the relationship between the class-level forget-
ting δi and inter-class similarity, a reasonable approach is
needed to measure the similarities between class i and the
latter 50 classes. A straightforward way is to train an oracle
model on all the classes or even larger datasets, then use the

features extracted by it to calculate inter-class cosine sim-
ilarity (Shi et al. 2022). Although this pipeline is standard
and widely used in other fields like image retrieval (Chen
et al. 2021) and multi-modal learning (Baltruaitis, Ahuja,
and Morency 2017), two flaws limit its use in the CIL:
• In the CIL setting, an oracle model is unavailable even

after seeing all the classes.
• The representation space of the oracle model obtained by

joint training is highly different from the changing one in
incremental learning.

To address the above limitations, we opt to use the model
trained on the first 50 classes (denoted by f1) instead of
the oracle model for similarity calculation. The model f1 is
available after training of the first task, and the feature space
aligns well with all the learned 50 classes naturally. Further-
more, the logits of the latter 50 classes obtained by f1 are
used as the similarity between old and new classes, which is
essentially equivalent to the cosine similarity without nor-
malization but much simpler in terms of calculation and
implementation. Formally, the inter-class similarity level of
each old class is defined as S = Mean(f1(C)), where C
indicates a given new class. The inter-class similarity for old
class i and class C is denoted by Si = S[i]. The functional
equivalence between cosine similarity and logits similarity
is shown in Tab. 3.

With the above preparation, the relationship between
inter-class similarity Si and class-level forgetting δi could
be established. As shown in Fig. 3, there is an obvious pos-
itive correlation between the two variables under different
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settings and baselines. Concretely, the Pearson correlation
of them reached 0.6 with high confidence (p-value=0.00).
This reveals that in the replay-based method, the represen-
tation of the class in the previous task might clash with the
class representation in the new task similar to it, resulting
in more pronounced forgetting. We would like to emphasize
again that the purpose of this subsection is to establish the
relationship to find a method or a metric to predict where
forgetting will happen.

Class-Aware Disentanglement
Motivated by the above observations and (Ramasesh, Dyer,
and Raghu 2020), given a new class from the current task,
encouraging its representation to keep distance from the old
similar classes is beneficial to alleviate the forgetting of the
corresponding old classes. To achieve this, two issues need
to be addressed. First, how to predict classes that are most
likely to be forgotten in the task sequence. Second, how to
effectively separate the representations of the corresponding
classes during the training process. In the subsequent con-
tent, the above two questions will be answered in turn. And
the overview of the proposed CLAD is shown in Fig. 2 (b).
Forgetting Prediction (FP). As stated above, we could pre-
dict which old classes in the first task are more likely to be
forgotten with the model f1. Extending this idea to the whole
task sequence, the learned classes that are vulnerable to for-
getting after the (t − 1)-th task can be predicted by model
ft−1. Formally, for a new class C in task t, the similarity
between it and all the old classes is formulated as:

S(C) =
1

| C |

|C|∑
k=1

ft−1(xk), (4)

where S(C) is the mean logit vector of class C obtained
by the model ft−1. |C| indicates the number of samples in
class C and xk is the k-th sample in class C. By sorting the
S(C), we can predict which old classes are most likely to
forget when learning new class C.
Representation Disentanglement (RD). Equipped with FP,
for a new class, we can locate which old classes are most
likely to be forgotten. Naturally, forgetting can be mitigated
by disentangling the learned representation of the new class
and that of the corresponding old classes.

Denoting the number of learned classes by N , a fixed pro-
portion of the old classes are selected for new class C as
the conflict classes. This proportion P is defined as the con-
flict proportion. Given a sample x from class C, the conflict
classes are obtained by selecting the indexes of old classes
that have the Top-(P ∗N) largest values in S(C).

Now the conflict between the new classes and old classes
can be mitigated by disentangling their representations. The
new task is trained on joint data D = Dt ∪ B with replay-
based methods. In each iteration, the data batch contains
both new and old classes. Based on this, a novel class-aware
disentanglement regularization is proposed. Considering the
representation distribution of the old classes is shifting dur-
ing the new task training, the representation conflict is disen-
tangled in both online and offline ways. In online disentan-
glement, new class representations are encouraged to be sep-

arated from the online representations of the conflict classes
in the same batch. In offline disentanglement, the representa-
tions of class C are encouraged to keep their distance from
the old representations of all conflict classes in the buffer.
Given a sample x and its conflict samples Xo in the same
batch and Xb in the buffer, the CLAD loss is formulated as:

Lon(x) =
1

| Xb |
∑

xb∈Xb

(1 + cos(ϕ(x), ϕ(xb))), (5)

Loff (x) =
1

| Xo |
∑

xo∈Xo

(1 + cos(ϕ(x), ϕt−1(xo))), (6)

where cos(·, ·) indicates the cosine similarity. Thus the ob-
jective of CLAD is:

LCLAD =
1

| C |
∑
x∈C

(Lon(x) + Loff(x)). (7)

Accordingly, the overall loss function is written as:

L = Lreplay + ηLCLAD, (8)

where η is the coefficient of CLAD loss.

Experiments
Experimental Setup
Datasets and Protocols. Three commonly used bench-
marks (Hou et al. 2019) are selected to evaluate the pro-
posed method. CIFAR-100 (Krizhevsky et al. 2009) consists
of 600,000 images from 100 classes, and the image size is
32×32. ImageNet (Deng et al. 2009) contains about 1.2 mil-
lion 224 × 224 RGB images from 1000 classes. ImageNet-
100 (Rebuffi et al. 2017) is a subset of ImageNet (Deng et al.
2009), which is sampled as (Hou et al. 2019; Liu, Schiele,
and Sun 2021). To be consistent with the protocols of the
previous work (Hou et al. 2019; Rebuffi et al. 2017; Liu,
Schiele, and Sun 2021; Liu et al. 2020; Hu et al. 2021), all
the classes of each dataset are shuffled with seed 1993 before
splitting them into tasks. For CIFAR-100 and ImageNet-
100, half classes are selected for the first task to mimic the
pre-collected dataset in real-world (Hou et al. 2019), then
there are S = 10/5/2 classes for each latter task. For Im-
ageNet, 100 classes are selected for the first task, then the
model learns 100 or 50 classes per task incrementally.
Metrics. The average incremental accuracy (At) (Douillard
et al. 2020; Hu et al. 2021; Hou et al. 2019) is used to eval-
uate the performance of the baselines and our results. For-
mally, denote the test accuracy of the model after the training
of the i-th task as Ai, then the average incremental accuracy
after the t-th task is defined as At =

1
t

∑t
i=1 Ai.

Implementation details. Following the previous stud-
ies (Shi et al. 2022; Yan, Xie, and He 2021), we adopt
ResNet-18 (He et al. 2016) for all the experiments bellow.
Notably, for CIFAR-100 (Krizhevsky et al. 2009) the ker-
nel size of the first convolution layer is set to 3 × 3, and
the following maxpooling layer is removed for higher fea-
ture resolution (Shi et al. 2022). And SGD is used as the
optimizer. The learning rate is set to 0.1, the batch size is
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Method CIFAR-100 (B=50) ImageNet-100 (B=50) ImageNet (B=100)

S=10 5 2 10 5 2 100 50

LwF (Li and Hoiem 2017) 54.01 48.40 45.49 54.22 48.95 43.29 41.42 28.31
iCARL (Rebuffi et al. 2017) 67.16 60.54 54.50 72.03 68.23 59.54 49.88 42.52
BiC (Wu et al. 2019) 63.11 56.27 48.83 70.09 64.88 57.82 52.46 47.30

LUCIR (Hou et al. 2019) 66.16 60.43 52.22 70.40 67.19 62.86 52.47 47.55
+ CLAD 67.57+1.41 62.15+1.72 53.51+1.29 73.05+2.65 68.34+1.15 64.24+1.38 53.36+0.89 48.79+1.24

PODNet (Douillard et al. 2020) 68.56 65.57 62.95 75.90 72.41 65.28 56.86 53.68
+ CLAD 69.07+0.51 65.96+0.39 63.29+0.34 76.02+0.12 73.10+0.69 65.45+0.17 57.36+0.50 55.38+1.70

CwD (Shi et al. 2022) 66.81 61.86 56.41 71.43 68.92 65.06 52.56 47.88
+ CLAD 67.76+0.95 63.67+1.81 57.79+1.38 72.33+0.90 70.01+1.09 65.92+0.86 53.64+1.08 49.07+1.19

Table 1: The improvement achieved by adding CLAD to the SOTAs (Hou et al. 2019; Shi et al. 2022; Douillard et al. 2020) and
the comparison with three baselines (Li and Hoiem 2017; Wu et al. 2019; Rebuffi et al. 2017). B and S denote the number of
classes in the first task and the subsequent tasks. All the results are reproduced with the source code from (Shi et al. 2022).

set to 128, the momentum is set to 0.9, and the weight de-
cay is 5e-4. For CIFAR-100, all the methods are trained for
160 epochs for each task, and the learning rate is multi-
plied by 0.1 at the 80-th and 120-th epoch. For ImageNet
and ImageNet100, the models are trained for 90 epochs for
each task, and the learning rate is multiplied by 0.1 as the
30-th and 60-th epoch. Since we focus on the replay-based
methods, the Herding strategy is used to select the exem-
plars for replay after training each task (Rebuffi et al. 2017),
and the number of exemplars per class is 20, which is con-
sistent with (Hou et al. 2019; Shi et al. 2022). The conflict
proportion is set to 0.1 for all experiments empirically. The
CLAD coefficient is set to 4 for LUCIR and CwD, while the
value of it is 2 for PODNet. How to determine these values
is detailed in the supplementary material.

Improvements over Baselines
We add our proposed CLAD to three strong CIL base-
lines: LUCIR (Hou et al. 2019), CwD (Shi et al. 2022) and
PODNet (Douillard et al. 2020). Tab. 1 shows the results
on CIFAR-100, ImageNet-100, and ImageNet. Our method
provides consistent improvement of average incremental ac-
curacy by around 0.5% and 2.5% on various datasets and
settings, e.g., on CIFAR-100, LUCIR with CLAD gains up
to 1.72% on accuracy while CwD with CLAD improves the
baseline by 1.81% at most. On ImageNet-100 when C = 10,
CLAD makes the LUCIR (Hou et al. 2019) even outperform
the stronger baseline CwD (Shi et al. 2022). CLAD also pro-
vides similar performance improvements on larger datasets
ImageNet, indicating that our method adapts well to larger
datasets. Besides, one may notice that the improvements on
PODNet (Douillard et al. 2020) are limited compared with
those on LUCIR and CwD. This phenomenon can be ex-
plained by the special design of PODNet, which conducts
feature distillation even for middle layers to help preserve
knowledge. However, our CLAD loss only disentangles the
features in the final layer, which is consistent with the dis-
tillation loss in LUCIR and CwD. Although distillation does
a good job of mitigating forgetting, the distillation with new
samples will enhance the representation conflict in the mid-
dle layer in PODNet (Chen et al. 2023).

Ablation Study
In this subsection, extensive ablation studies are conducted
to analyze the key components of CLAD. If not specified,
all the experiments are based on LUCIR (Hou et al. 2019)
under the protocol that split CIFAR-100 (Krizhevsky et al.
2009) into six tasks with 50 classes for the first task and 10
classes for the rest. The results are averaged over three runs.
Effectiveness of conflict prediction. Although we are com-
mitted to mitigating representation conflict between similar
old and new classes, it is doubtful that mitigating conflicts
between arbitrary old and new classes also help CIL. To dis-
pel this concern, apart from selecting the Top-PN largest
values in S(C) as old classes, we select the Top-PN small-
est values in S(C) and randomly select PN old classes for
comparison, named as Smallest and Random. As shown in
Fig. 4 (a), the latter two strategies are harmful no matter
what proportion of the old classes is chosen. Because the
CLAD loss constrains the feature distribution of the new
class to some extent. But the compromise of new classes
will not benefit the performance of the old class when there
is no representation conflict between them, which happens
in Smallest and Random strategies.
Proportion of conflict classes. In this part, we further inves-
tigate the impact of different proportions of chosen conflict
classes for each new class. In Fig. 4 (a), it is shown that
the improvement gained by CLAD is relatively small when
the proportion is extremely large or small, while CLAD
achieves the greatest performance gain with a proportion set
to 0.1. This observation is intuitive because too few con-
flict classes are not sufficient for mitigation and there can be
prediction errors. Too many conflicting classes will hurt the
performance of the new class more because some old classes
do not conflict with the new class.
Components in conflict mitigation. The proposed CLAD
loss has two components as stated above, now we ablate
each component of CLAD in Fig. 4 (c). Each of the com-
ponents can improve the average incremental accuracy of
the baseline, and the combination of both can further help
improve the performance.
Improvement with different exemplar numbers. We at-
tempt to verify the effectiveness of CLAD by testing it with

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16216



0.0 0.1 0.2 0.3 0.4 0.5

Proportion
64.0

64.5

65.0

65.5

66.0

66.5

67.0

67.5

68.0

A
ve

ra
ge

 in
cr

em
an

ta
l a

cc
ur

ac
y 

(%
)

LUCIR

(a)

Largest Smallest Random

0 2 4 6 8

CLAD coefficient
66.0

66.2

66.4

66.6

66.8

67.0

67.2

67.4

67.6

A
ve

ra
ge

 in
cr

em
an

ta
l a

cc
ur

ac
y 

(%
)

(b)

LUCIR LUCIR+CLAD

50 60 70 80 90 100

Learned classes
55

60

65

70

75

80

A
cc

ur
ac

y 
af

te
r t

ra
in

in
g 

ea
ch

 ta
sk

(%
)

(c)

LUCIR
LUCIR+offline
LUCIR+online
LUCIR+CLAD

Figure 4: Ablation studies on the effectiveness of conflict prediction (a), the proportion of conflict classes (a), the impact of
coefficient of CLAD loss (b), and components in conflict mitigation (c). The average incremental accuracy is reported for each
experiment, which is averaged on three runs with different seeds.

R
S=10 S=5

LUCIR w/ CLAD ↑ LUCIR w/ CLAD ↑
5 55.65 58.22 2.57 52.46 56.09 3.63
10 63.28 65.49 2.21 56.80 59.33 2.53
20 66.16 67.57 1.41 60.43 62.15 1.72
30 67.62 68.57 0.95 62.96 63.87 0.91
40 68.58 69.07 0.49 63.51 64.32 0.81

Table 2: Ablation study on the number of exemplars. The
number of exemplars per class is denoted by R.

varying numbers of exemplars per class. The corresponding
results are listed in Tab. 2. Notably, our approach produces
increasingly significant performance gains as the number of
exemplars decreases. This phenomenon suggests that a re-
duced number of exemplars per class exacerbates the imbal-
ance of forgetting between old classes, making our approach
particularly effective in tackling this challenging scenario.
Measurements of conflict prediction. Various similar-
ity measurements for conflict prediction are available for
CLAD. But the logits-based similarity is sufficient for our
proposed CLAD. To be more convincing, we compare the
performance differences using different similarity measure-
ments in Tab. 3. It shows that there are no obvious differ-
ences in performance between the two measurements, and
our approach is more concise and efficient. Furthermore, we
experimentally prove that FP using the oracle model is inef-
fective, which supports our aforementioned analysis.
Impact of coefficient of CLAD loss. We demonstrate the
improvement with different coefficients of CLAD loss vary-
ing from 1.0 to 8.0 in Fig. 4 (b). Interestingly, our method is
not sensitive to this coefficient, especially when it is greater
than 4.0. This phenomenon indicates that when the current
class is dissimilar enough to the old classes in the buffer,
a larger coefficient will not have a more significant effect.
These results also reflect the robustness of CLAD.

Similarity LUCIR oracle logits cosine

A0.05(%) 66.16 65.84−0.32 67.06+0.90 67.22+1.06

A0.10(%) 66.16 65.90−0.26 67.57+1.38 67.45+1.29

Table 3: Ablation study on the different measurements for
forgetting prediction. A0.05 and A0.10 denote the average
incremental accuracy with conflict proportions of 0.05 and
0.10. logits is the adopted measurement and cosine is pro-
vided as an alternative. The result using an oracle model is
also given as oracle.

Conclusion
We analyze catastrophic forgetting by revealing imbalanced
forgetting in Class Incremental Learning (CIL). Extensive
empirical studies and analyses are conducted to establish the
connection between imbalanced forgetting and inter-class
similarity. Based on this, a forgetting prediction method and
a regularization term named CLAD are designed to disen-
tangle the representation interference of similar old and new
classes. The effectiveness of CLAD in improving existing
methods is demonstrated across multiple experimental set-
tings. Additionally, comprehensive ablation studies are con-
ducted to verify the rationality of our design. This work pro-
vides a novel perspective of imbalanced forgetting in CIL,
which might stimulate future research in this field.
Limitation. There are also limitations to our CLAD that are
worth further exploration. For example, other kinds of losses
and old class selection methods may need to be explored.
Numerous exemplar-free methods for CIL are not covered
in this research. We plan to include them in our future work.
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