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Abstract
Clustering is one of the most fundamental problems in ma-
chine learning and data mining, and many algorithms have
been proposed in the past decades. Among them, subspace
clustering and spectral clustering are the most famous ap-
proaches. In this paper, we provide an explanation for sub-
space clustering and spectral clustering from the perspec-
tive of optimal transport. Optimal transport studies how to
move samples from one distribution to another distribution
with minimal transport cost, and has shown a powerful abil-
ity to extract geometric information. By considering a self
optimal transport model with only one group of samples, we
observe that both subspace clustering and spectral clustering
can be explained in the framework of optimal transport, and
the optimal transport matrix bridges the spaces of features
and spectral embeddings. Inspired by this connection, we pro-
pose a spectral optimal transport barycenter model, which
learns spectral embeddings by solving a barycenter problem
equipped with an optimal transport discrepancy and guidance
of data. Based on our proposed model, we take advantage
of optimal transport to exploit both feature and metric infor-
mation involved in data for learning coupled spectral embed-
dings and affinity matrix in a unified model. We develop an
alternating optimization algorithm to solve the resultant prob-
lems, and conduct experiments in different settings to evalu-
ate the performance of our proposed methods.

Introduction
Clustering aims to partition data samples into different clus-
ters so that similar samples are grouped together (Xu and
Wunsch 2005). As one of the most fundamental problems in
machine learning and data mining, clustering has been ap-
plied in many real-world applications, from image cluster-
ing (Yang et al. 2010) to text analysis (Liu et al. 2015), and
many clustering methods have been proposed in the litera-
ture. Among them, subspace clustering and spectral cluster-
ing are important approaches being studied extensively (Nie
et al. 2016; Bai and Liang 2020; Wang et al. 2022).

Over the past decades, spectral clustering and subspace
clustering methods have been widely investigated due to
their promising performance. Spectral clustering first con-
structs an affinity matrix to capture the similarities of sam-

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ples, and then adopts the eigenvectors with the first k small-
est eigenvalues of the Laplacian matrix as the new repre-
sentations of data (Ng, Jordan, and Weiss 2001). After that,
K-means is conducted on the new representations to par-
tition samples into clusters. Usually, the affinity matrix is
based on the Gaussian kernel or learned from data accord-
ing to the pairwise distance (Bai and Liang 2020). For in-
stance, to learn a better affinity matrix, subspace clustering
assumes that samples approximately lie in linear subspaces.
Based on this, a coefficient matrix is learned by considering
self-expressiveness, i.e., each sample can be represented as
a linear combination of other samples in the same subspace,
and the affinity matrix is constructed based on the coefficient
matrix (Lu et al. 2018). Under this paradigm, different reg-
ularizers are applied to the learning model of the coefficient
matrix (Lu et al. 2012; Elhamifar and Vidal 2013; Liu, Lin,
and Yu 2010; Lu et al. 2018).

In this paper, we provide an explanation for subspace
clustering and spectral clustering from the perspective of
optimal transport, which studies how to move a set of sam-
ples from one distribution to another with the minimal trans-
port cost (Peyré and Cuturi 2017). Optimal transport is first
proposed by Monge in (Monge 1781) and then extended by
Kantorovich in (Kantorovitch 1958). Optimal transport de-
velops a powerful computational tool to capture geometric
information involved in data (Benamou et al. 2015; An et al.
2022) and has been widely applied for estimating the dis-
crepancy between two probability distributions (Courty, Fla-
mary, and Tuia 2014; Courty et al. 2017b,a; Yan et al. 2018;
Flamary et al. 2018). However, the connection between op-
timal transport and clustering has not been well investigated
in the literature.

To fill this gap, we consider a self optimal transport model
involving only one group of samples, and present the con-
nection from optimal transport to subspace clustering and
spectral clustering. We find that both subspace clustering
and spectral clustering can be explained in the framework
of optimal transport. In specific, the optimal transport ma-
trix bridges the original feature space and the spectral em-
bedding space, and spectral clustering can be interpreted as
finding spectral embeddings in the Stiefel manifold with a
consistent affinity matrix to the original features.

Based on this connection, we model spectral clustering
as a special optimal transport barycenter problem, and pro-
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pose a model named Spectral Optimal Transport bArycenter
(SOTA), which is a unified model to learn coupled spectral
embeddings and the affinity matrix. On the strength of opti-
mal transport, we propose to exploit both feature and metric
information of data for spectral clustering, which is achieved
by leveraging the Wasserstein and Gromov-Wasserstein dis-
crepancies in the theory of optimal transport. In specific, we
develop two spectral clustering algorithms, one considers a
fixed marginal distribution for samples, and the other one
considers an unfixed marginal distribution with an ability to
recognize outliers during clustering. We adopt an alternat-
ing strategy to optimize the resultant problems, and analyze
the convergence property of the algorithms. Experiments are
conducted on simulation data and benchmark datasets to
evaluate the performance of our proposed methods.

We summarize our major contributions as follows:

• We provide optimal transport explanations for subspace
clustering and spectral clustering by considering a self
optimal transport model.

• We model spectral clustering as an optimal transport
barycenter problem equipped with an underlying optimal
transport discrepancy.

• We develop spectral clustering algorithms based on our
proposed model considering both feature and metric in-
formation involved in data.

From Optimal Transport to Clustering
In this section, we first present the notations used in the pa-
per, and then show the connection between optimal transport
and clustering.

Notations
In clustering, we are given a data matrix X ∈ Rn×d, where
n is the number of samples, and d is the number of features.
xi ∈ Rd is the i-th samples and also the transpose of the i-th
row of X. Clustering aims to partition these samples into k
clusters to minimize distances between samples within clus-
ters.

Throughout the paper, [n] denotes a set including the ele-
ments {1, . . . , n}. 1n denotes a vector in the space Rn with
all the elements being 1. For a matrix A, the (i, j)-th element
of A is denoted as Aij , and A⊤ is the transpose of A. The
trace of a square matrix A is defined as tr(A) =

∑
i Aii.

Given two matrices A and B with the same size, the inner
product of them is defined as

⟨A,B⟩ =
∑
i

∑
j

AijBij = tr(A⊤B) = tr(AB⊤). (1)

For a vector v, diag(v) represents a diagonal matrix with the
diagonal elements being v.

Entropic Optimal Transport
Optimal transport studies how to transport mass from a
group of samples to another group with the minimal cost
(Peyré and Cuturi 2017), where the minimal transport cost
can be used to measure the distribution discrepancy between
these two groups. In specific, given two groups of samples

{xi}ni=1 and {x̃j}mj=1, the corresponding empirical distribu-
tions are µ and µ̃ with the simplex constraint, i.e., µ ∈ Σn,
µ̃ ∈ Σm, where Σn = {v ∈ Rn | vi ≥ 0 ∀i ∈ [n], ∥v∥1 =
1}. A transport plan is denoted as a matrix T, which is also
a joint distribution of µ and µ̃. The domain of the definition
of T is given as follows:

T (µ, µ̃) = {T ∈ (R+)n×m | T1m = µ,T⊤1n = µ̃}, (2)

where Tij indicates how many masses are transported from
xi to x̃j . For the transport cost from xi to x̃j , the squared
Euclidean distance is commonly used in the existing works:

CX
ij = ∥xi − x̃j∥22. (3)

Based on this, the squared Wasserstein distance W2
2 (Courty

et al. 2017b) can be defined as

W2
2 (C

X ,µ, µ̃) = min
T∈T (µ,µ̃)

⟨CX ,T⟩. (4)

In order to obtain a smooth solution and speed up the op-
timization, (Cuturi 2013) introduces a negative entropic reg-
ularization on T as

Ω(T) =
n∑

i=1

m∑
j=1

Tij log Tij − Tij , (5)

which induces an entropic Wasserstein discrepancy

Wϵ(C
X ,µ, µ̃) = min

T∈T (µ,µ̃)
⟨CX ,T⟩+ ϵΩ(T), (6)

which is an approximation to the squared Wasserstein dis-
tance W2

2 (Peyré and Cuturi 2017).

Self Entropic Optimal Transport
In this part, we present a self entropic optimal transport
model to move a group of samples to itself. This model
is used in the following discussions regarding the connec-
tion between optimal transport and clustering. In specific,
our self entropic optimal transport considers one group of
samples, and aims to move samples to samples except them-
selves with the minimal transport cost, which is formalized
as follows:

Ws
ϵ (C

X ,µ,µ) = min
T

⟨CX ,T⟩+ ϵΩ(T)

s.t. T ∈ T (µ,µ), Tii = 0 ∀i ∈ [n]. (7)

It is worth mentioning that self transport here refers to trans-
port a group to itself instead of transporting a sample to it-
self. We name Ws

ϵ (C
X ,µ,µ) as self entropic Wasserstein

discrepancy. Actually, the optimal transport matrix T re-
flects the similarity relationships between samples. If two
samples xi and xj are far away from each other, the trans-
port cost CX

ij between them will be large, resulting in a
small transport mass Tij . As a result, most of the mass will
be transported between two samples with a small distance,
i.e., large similarity. In this sense, the total transport cost
Ws

ϵ (C
X ,µ,µ) reflects the density degree of the samples.

Now we briefly discuss how to solve Problem (7) to ob-
tain T. First, without considering the constraints Tii = 0,
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based on the Sinkhorn algorithm in (Cuturi 2013), we can
construct a matrix

K = exp(−CX
/
ϵ), (8)

and the optimal transport matrix T can be calculated as

T = diag(u)Kdiag(u), (9)

where u can be obtained by the Sinkhorn-Knopp algorithm.
The optimization details can be found in (Cuturi 2013).

The constraints Tii = 0 are non-trivial to address. In prac-
tice, we can punish the transport cost from a sample to itself
by assigning a large value to the diagonal elements CX

ii , By
doing this, the diagonal elements Tii will be close to 0.

It is obvious that the matrix in Eq. (8) is exactly the Gaus-
sian kernel of the samples in X, and Eq. (9) is a normaliza-
tion operation to make the sum of the i-th row (or i-th col-
umn, since T is symmetric here) be µi. Therefore, T learned
by the self entropic optimal transport model (7) is a normal-
ized affinity matrix that can be used in spectral clustering.

A similar result has also been presented in (Landa, Coif-
man, and Kluger 2021), which constructs a kernel matrix
similar to Eq. (8) except that the diagonal elements being 0,
equivalent to our trick that assigns a large value to CX

ii . Eq.
(9) is similar to doubly stochastic normalization of the Gaus-
sian kernel with zero main diagonal in (Landa, Coifman, and
Kluger 2021).

Connection with Subspace Clustering
Now we show the connections between optimal transport
with two versions of subspace clustering, respectively.

Subspace clustering aims to learn an affinity matrix S for
data reconstruction, which is formalized as follows:

min
S

ℓ(X,SX) + γR(S)

s.t. S = S⊤,S ≥ 0, diag(S) = 0, (10)

where γ is the trade-off parameter, R(S) is a regulariza-
tion term that can be set as a low-rank term, or the nega-
tive entropy in Eq. (5), as shown in (Bai and Liang 2020).
Next, we consider two implementations for the loss function
ℓ(X,SX), which is used for data reconstruction.

Squared Loss Function For the loss function ℓ(X,SX),
one common choice is the self-expressive loss, which is de-
fined as

ℓse(X,SX) = ∥X− SX∥2F . (11)

We show that this loss function can be derived based on the
Wasserstein barycenter defined in optimal transport.

According to the above subsection, T obtained by the
self optimal tranport model in Problem (7) is a normal-
ized affinity matrix. To apply T to reconstruct X, we use
Λ = diag(µ)−1 to scale the transport matrix T, which
makes the sum of each row of ΛT be 1. As a result, Eq.
(11) based on T can be rewritten as ∥X−ΛTX∥2F .

Inspired by the discussion in (Courty et al. 2017b), for
two distributions, based on the optimal transport matrix T,
we can move samples from one distribution (i.e., source

distribution) to the other distribution (i.e., target distribu-
tion). These transported samples can be constructed based
on Wasserstein barycenter and follow a similar distribution
to the target distribution (Courty et al. 2017b). Based on
the squared Euclidean distance defined in Eq. (3), the trans-
ported samples can be obtained by solving the following
barycentric mapping

x̂i = arg min
x∈Rd

∑
j

Tij∥x− xj∥22, (12)

and the closed-form solution is

X̂ = ΛTX. (13)

Remind that the transport in Problem (7) is performed from
the samples X to X, i.e., data of both source and target dis-
tributions are X. Therefore, the transported samples X̂ fol-
lows the similar distribution of X, which means that X̂ is
expected to be close to X, i.e., ∥X−X̂∥2F = ∥X−ΛTX∥2F
is approximately minimized.

Linear Loss Function Another implementation of
ℓ(X,SX) is proposed in (Bai and Liang 2020), in which
ℓ(X,SX) is assumed to be a linear function of S, i.e.,

ℓ(X,SX) =
n∑

i=1

n∑
j=1

AijSij +Bij . (14)

Based on the self-expressive condition X = SX and the
constraints S1n = 1n, (Bai and Liang 2020) presents that
the objective function of subspace clustering in Problem (10)
with the loss function in Eq. (14) and an entropic term on S
can be rewritten as

n∑
i=1

n∑
j=1

∥xi − xj∥22Sij + γ

n∑
i=1

n∑
j=1

Sij logSij , (15)

which is almost the objective function of self entropic op-
timal transport in Problem (7), except that S is a scaled T.
When µ is a uniform distribution, we have ΛT = nT, and
the objective functions in Eqs. (7) and (15) are equivalent.

In conclusion, the optimal transport matrix T in Problem
(7) can be used as an affinity matrix, which can be used for
spectral clustering.

Connection with Spectral Clustering
Given a symmetric affinity matrix S and its Laplacian ma-
trix L = diag(S1) − S, spectral clustering aims to learn a
spectral embedding H by solving the following problem

min
H∈Mn

k

tr(H⊤LH), (16)

where Mn
k is a Stiefel manifold defined as

Mn
k = {H ∈ Rn×k | H⊤H = I}. (17)

A common choice of S is the Gaussian kernel, i.e.,

Sij = exp
(
− ∥xi − xj∥22/σ

)
. (18)
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According to Eqs. (8) and (9), the Gaussian kernel used in
spectral clustering is the solution to our self entropic optimal
transport model in Problem (7).

Besides, given the affinity matrix T obtained by Problem
(7) and its Laplacian matrix L = diag(T1) −T, the objec-
tive function of spectral clustering can be rewritten as

tr(H⊤LH) =
1

2

∑
ij

Tij∥hi − hj∥22,=
1

2
⟨CH ,T⟩, (19)

where CH is the squared Euclidean distance matrix with
CH

ij = ∥hi − hj∥22, hi is the spectral embedding of xi and
also the transpose of the i-th row in H. From this model,
spectral clustering is to find spectral embeddings H ∈ Mn

k
which share the affinity matrix T with X. In other words,
the similarity relationship is modeled as a transport matrix T
learned from features X, and then applied in the Stiefel man-
ifold Mn

k to learn spectral embeddings H. This observation
inspires us to learn the affinity matrix and spectral embed-
dings simultaneously, as shown in (Wang et al. 2022), while
in which the optimal transport explanation has not been es-
tablished.

Now we provide an explanation for spectral clustering
from the view of Wasserstein barycenter. According to (Cu-
turi and Doucet 2014), a Wasserstein barycenter of multi-
ple distributions is a group of samples {x̂i} and its corre-
sponding empirical probability distribution µ̂ whose average
Wasserstein distance to the distributions is minimized. Here,
we consider a special barycenter problem considering self
entropic Wasserstein discrepancy Ws

ϵ in Eq. (7) in the spec-
tral embedding space Mn

k with fixed distribution µ, which
is modeled as follows:

min
H∈Mn

k

Ws
ϵ (C

H ,µ,µ). (20)

This model aims to find H ∈ Mn
k such that total trans-

port cost is minimized by an optimal plan T found in
Ws

ϵ (C
H ,µ,µ), in which the transport cost between two

samples is measured by their squared Euclidean distance.
Different from the model in Eq. (19) where the affinity

matrix T is learned from X and applied to learn H, Prob-
lem (20) is lack of information since the features X are not
involved. In order to obtain meaningful spectral embeddings
for clustering, information from data X should be intro-
duced. In the next section, we enrich this model by consider-
ing X, and propose our spectral optimal transport barycenter
model to learn H for spectral clustering.

Spectral Optimal Transport Barycenter
To learn an effective H for clustering with the data X, we in-
troduce X to construct the cost matrix CX,H relying on both
X and H, which will be implemented in the next section,
and propose the following model called spectral Wasser-
sterin barycenter:

min
H∈Mn

k

Ws
ϵ (C

X,H ,µ,µ), (21)

which finds H ∈ Mn
k with guidance from X such that

Ws
ϵ (C

X,H ,µ,µ) considering both original features X and
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Figure 1: Illustration of the connection between optimal
transport and spectral clustering. The self transport matrix
T bridges the feature space and spectral embedding space.
Different colors indicate different clusters.

spectral embeddings H is minimized. The solution to this
model can be interpreted as a barycenter with the fixed prob-
ability distribution µ and the underlying optimal transport
discrepancy Ws

ϵ , and at the same time, satisfying the con-
straints that a part of representations is given as X in the
original feature space Rn×d while the other part is found in
the spectral embedding space Mn

k . The transport matrix T
is the bridge between these two spaces and optimized in the
inner optimal transport problem, as shown in Figure 1.

Based on the above connection between optimal transport
and spectral clustering, we propose a generalized learning
problem from the theory of optimal transport for spectral
clustering. Remind that the barycenter problem in (21) is
based on the entropic Wasserstein discrepancy in Eq. (6),
which approximates the squared Wasserstein distance in Eq.
(4). By generalizing this underlying metric to a general opti-
mal transport discrepancy, we propose the following optimal
transport model for spectral clustering:

min
H∈Mn

k

OTDs(X,H,µ), (22)

where OTDs(X,H,µ) is a self optimal transport discrep-
ancy with the constraint that the involving transport ma-
trix T has zero diagonal elements. OTDs(X,H,µ) in-
volves the original features X, the corresponding proba-
bility distribution µ and the spectral embeddings H. This
generalized model allows us to implement it by adopt-
ing a discrepancy in the theory of optimal transport,
such as the entropic Wasserstein discrepancy or the en-
tropic Gromov-Wasserstein discrepancy (Peyré, Cuturi, and
Solomon 2016). When adopting the discrepancy defined in
Eq. (6) considering both X and H, Problem (22) is imple-
mented as Problem (21).

In addition, for a barycenter problem, the probability dis-
tribution µ can also be learnable (Cuturi and Doucet 2014).
µ indicates the masses each sample has, and can be taken as
a weight vector reflecting the contribution of each sample in
a specific application (Yan et al. 2019). By optimizing both
spectral embeddings H and the weights µ, we further pro-
pose the following model named Spectral Optimal Transport
bArycenter (SOTA):

min
H∈Mn

k ,µ∈Σn

OTDs(X,H,µ). (23)

On the strength of optimal transport, in the following, we
consider one implementation of this model by incorporating
structure information in the metric space.
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Implementation Based on Metric Information
Besides transport in the feature space, we also exploit struc-
ture information in the metric space to learn the affinity
matrix T and spectral embeddings H. This is achieved by
further considering the Gromov-Wasserstein discrepancy,
which considers metrics M and M̃ (similarity or distance)
constructed on two groups of samples X and X̃ with proba-
bility distributions µ and µ̃, respectively. And the transport
is conducted from a pair (xi,xi′) to a pair (x̃j , x̃j′) inducing
a 4-order transport cost tensor

L(M, M̃) =
1

2
(Mii′ − M̃jj′)

2
ii′jj′ , (24)

and the transport cost from xi to x̃j is calculated by the
following tensor-matrix multiplication (Peyré, Cuturi, and
Solomon 2016)

L(M, M̃)⊗T =
(∑

i′j′

Lii′jj′Ti′j′
)
ij
. (25)

Based on this, the entropic fused Gromov-Wasserstein
discrepancy considering both Wasserstein and Gromov-
Wasserstein is defined as (Titouan et al. 2019)

FGW ϵ(C,M, M̃,µ, µ̃)

= min
T∈T (µ,µ̃)

α⟨C,T⟩+ (1− α)⟨L(M, M̃)⊗T,T⟩

+ ϵΩ(T), (26)

where C is the transport cost matrix from X to X̃ based
on the squared Euclidean distance. FGW ϵ leverages met-
ric information for learning the transport matrix T in both
the feature and the metric spaces. Based on this, we define
the FGW s

ϵ on X and H under the situation of self optimal
transport as

FGW s
ϵ(C

X,H ,MX,H ,MX,H ,µ,µ)

= min
T

α⟨CX,H ,T⟩

+ (1− α)⟨L(MX,H ,MX,H)⊗T,T⟩+ ϵΩ(T)

s.t. T ∈ T (µ,µ), Tii = 0 ∀i ∈ [n], (27)
which can be adopted as the objective function of Problem
(23). As a result, the model in Problem (23) can be imple-
mented based on FGW s

ϵ as follows:
min

H∈Mn
k ,µ∈Σn

FGW s
ϵ(C

X,H ,MX,H ,MX,H ,µ,µ), (28)

which we called Spectral Fused Gromov-Wasserstein model
(SFGW).

We also consider a simplified situation where the prob-
ability distribution µ is fixed, e.g., a uniform distribution.
Formally, this situation is modeled as

min
H∈Mn

k

FGW s
ϵ(C

X,H ,MX,H ,MX,H ,µ,µ), (29)

which we called SFGWH since it learns H with a fixed µ.
In the following, we provide the implementation details

for Problems (29) and (28). We first develop an algorithm for
SFGWH with a uniform distribution µ, which can be viewed
as a spectral clustering problem learning coupled T and H.
Next, we develop an algorithm for SFGW with a learnable
µ, which adaptively assigns weights for samples and can be
used to recognize outliers during spectral clustering.

Algorithms
In this section, we first rewrite Problems (28) and (29) with
more computational details, and then provide the optimiza-
tion algorithms for them.

In specific, we calculate CX and CH based on the
squared Euclidean distance defined in Eq. (3), and then con-
struct CX,H as CX,H = CX + λCH , where λ control the
effects of CX and CH . We also assign a sufficiently large
value to the diagonal elements of CX to make the diagonal
elements in the affinity matrix T be close to zero.

To leverage metric information in X, we construct the
metric matrix MX,H based on a similarity or distance metric
on MX . Here we adopt cosine similarity as follows:

MX
ii′ = (x⊤

i xi′)
/(

∥xi∥∥xi′∥
)
. (30)

We do not consider a similar MH here since it brings an
extra challenge for solving H. Based on CX , CH and MX ,
we rewrite the SFGW model in Problem (28) as

min
H,µ,T

⟨αCX + αλCH,T⟩

+ (1− α)⟨L(MX ,MX)⊗T,T⟩+ ϵΩ(T)

s.t. H ∈ Mn
k ,µ ∈ Σn,T ∈ T (µ,µ). (31)

According to Proposition 1 in (Peyré, Cuturi, and
Solomon 2016), we have

⟨L(MX ,MX)⊗T,T⟩
=

〈
(MX ⊙MX)T1n1

⊤
n + 1n1

⊤
nT

⊤(MX ⊙MX)⊤

− 2MXT(MX)⊤,T
〉
. (32)

For simplicity, we define

G̃X =(MX ⊙MX)T1n1
⊤
n + 1n1

⊤
nT

⊤(MX ⊙MX)⊤

− 2MXT(MX)⊤, (33)

and achieve the following optimization problem

min
H,µ,T

⟨λXCX + λHCH + (1− λX)G̃X ,T⟩+ ϵΩ(T)

s.t. H ∈ Mn
k ,µ ∈ Σn,T ∈ T (µ,µ),T = T⊤, (34)

where λX = α, λH = αλ, and ϵ = 1 in our experiments.
The symmetric constraint is consider here since it is impor-
tant for affinity learning. The symmetric constraint is easy
to be satisfied in our optimization algorithm without an ad-
ditional operation T := (T + T⊤)/2, which is commonly
used in subspace clustering.

Problem with Fixed µ

For the SFGWH model with a fixed µ, based on the condi-
tion T1n = T⊤1n = µ, we can simplify ⟨G̃X ,T⟩ as

⟨G̃X ,T⟩
=

〈
(MX ⊙MX)T1n1

⊤
n + 1n1

⊤
nT

⊤(MX ⊙MX)⊤

− 2MXT(MX)⊤,T
〉

= 2tr
(
(MX ⊙MX)µµ⊤)− 2

〈
MXT(MX)⊤,T

〉
.
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Only the second term is related to T while the first term is
constant. Therefore, we can define

GX = −2MXT(MX)⊤, (35)

and simplify the model in (34) as follows:

min
H,T

⟨λXCX + λHCH + (1− λX)GX ,T⟩+ ϵΩ(T)

s.t. H ∈ Mn
k ,T ∈ T (µ,µ),T = T⊤. (36)

Problem with Unfixed µ

For the unfixed µ, we optimize T without considering the
constraints T1 = T⊤1 = µ, instead of explicitly optimiz-
ing µ. To this end, we define the following domain for T
with unfixed µ

T (Σn,Σn) = {T ∈ (R+)n×n |
n∑

i=1

n∑
j=1

Tij = 1}, (37)

which removes the equality constraints regarding the
marginal distribution µ, and only the total mass constraint∑

ij Tij = 1 is taken into consideration.
Here we consider a modification regarding the entropic

regularization term Ω(T). In Problem (36), the negative en-
tropy regularization is on the joint distribution T, which is
proposed in (Cuturi 2013) to induce a smooth solution and
speed up the optimization. For an unfixed probability distri-
bution µ, to encourage more samples to be involved in the
transport, we minimize the following negative entropy regu-
larization on the marginal distributions T1 and T⊤1 (which
are also µ) instead of the joint distribution T

Ω̃(T) = Ω(T1) + Ω(T⊤1)

=

n∑
i=1

Ti·(log Ti· − 1) +

n∑
j=1

T·j(log T·j − 1), (38)

where Ti· and T·j are defined as

Ti· =

n∑
j=1

Tij , T·j =

n∑
i=1

Tij . (39)

As a result, we optimize the following SFGW model

min
H,T

⟨λXCX + λHCH + (1− λX)GX ,T⟩+ ϵΩ̃(T)

s.t. H ∈ Mn
k ,T ∈ T (Σn,Σn),T = T⊤. (40)

This model relaxed the constraints of T regarding the
marginal distribution µ, and can adaptively assign weights
for samples, thus is robust to outliers since the outliers are
far away from other samples and will be assigned with little
mass due to large transport costs.

Since the affinity matrix T and the spectral embedding
H are coupled in the optimization problems, we adopt an
iterative method to update T and H alternatively. Due to the
page limitation, we present the optimization algorithms for
Problems (36) and (40) in the appendix.

-5 0 5
-5

0

5

(a) Features X (b) Results of T

-5 0 5
-5

0

5

(c) Reconstructed X by nTX

-0.1 0 0.1
-0.1

-0.05

0

0.05

0.1

(d) Spectral embeddings H

Figure 2: Results on simulation data, where different col-
ors indicate different clusters. (a) shows two clusters and the
samples, which are connected based on the optimal transport
matrix T as shown in (b). (c) shows the reconstructed sam-
ples by T, and (d) shows the spectral embeddings learned
from T.

Experiments
Simulation Study
We conduct experiments on simulation data with two clus-
ters to evaluate the reconstruction property of the optimal
transport matrix T discussed in Eq. (13). Figure 2(a) shows
the original features X, and Figure 2(b) shows the samples
where the connected edges between samples are based on
T, which is obtained by solving Problem (7). Figure 2(c)
shows the reconstructed data calculated by Eq. (13), which
equals to X̂ = nTX here since µ is a uniform distribution
with the elements being 1

n . Figure 2(d) shows the spectral
embeddings learned from the affinity matrix T. We observe
that the optimal transport matrix T finds connections be-
tween samples in the same cluster. Although Problem (7)
does not explicitly consider a self-expressive term, nTX
approximately reconstructs X, which is consistent with our
discussion in the connection between optimal transport and
subspace clustering with a squared loss function.

Experimental Settings
Datasets. We conduct experiments on benchmark datasets
from UCI machine learning repository (Asuncion and New-
man 2007). The performance of SFGWH is evaluated on
datasets without outliers, and the performance of SFGW is
evaluated on datasets considering outliers. Following the set-
ting used in (Liu et al. 2019; Zhang et al. 2021), we take the
samples from the smallest clusters as outliers.

Compared Methods. For clustering without outliers, we
compare the performance of SFGWH with K-means, spec-
tral clustering (SC), and a state-of-the-art spectral clustering
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(a) Accuracy (b) NMI

Figure 3: Results of parameter sensitivity on the iris data.

Dataset K-means SC ERCAN SFGWH

ecoli 56.9(6.0) 56.2(0.7) 69.1(0.0) 73.7(1.1)
glass 53.1(2.0) 45.4(0.7) 51.4(0.0) 52.0(1.1)
iris 66.7(0.0) 90.7(0.0) 95.9(0.0) 96.7(0.0)

landsat 35.8(3.3) 32.8(0.5) 51.0(0.0) 68.3(1.2)
seeds 87.8(5.2) 64.2(0.4) 82.8(0.0) 87.8(0.9)
zoo 65.7(7.3) 62.4(0.0) 75.2(0.0) 68.9(0.0)

Table 1: Accuracy results without considering outliers.

method Entropy Regularization for unsupervised Clustering
with Adaptive Neighbors (ERCAN) (Wang et al. 2022). ER-
CAN simultaneously learns the spectral embeddings and the
affinity matrix with an entropic regularization.

For clustering considering outliers, we compare the per-
formance of SFGW with K-means, K-means– (Chawla and
Gionis 2013), Clustering with Outlier Removal (COR) (Liu
et al. 2019), and Fuzzy c-means (FCM) (Bezdek 2013). We
follow (Liu et al. 2019) to set the number of clusters as the
true number plus one for K-means, and the cluster with the
smallest size is regarded as the outlier set. K-means– ex-
tends K-means to carry out clustering and outlier detection.
COR employs Holoentropy to measure the compactness of
the clusters for outlier recognition. FCM allows samples to
belong to multiple clusters simultaneously with varying de-
grees of membership.

Evaluation Metrics. For the setting without outliers, we
follow (Wang et al. 2022) to adopt two metrics i.e., the ac-
curacy and the normalized mutual information (NMI). For
the settings considering outliers, we follow (Zhang et al.
2021) to adopt the outlier recall and NMI. For all the metrics,
the higher the better. We repeatedly conduct experiments 20
times and report the average results.

Dataset K-means SC ERCAN SFGWH

ecoli 53.8(3.2) 53.4(0.1) 68.0(0.0) 58.7(5.4)
glass 36.0(2.6) 25.2(1.6) 38.3(0.0) 39.0(1.4)
iris 72.0(0.0) 79.6(0.0) 87.0(0.0) 88.2(0.0)

landsat 17.0(1.6) 16.2(0.1) 39.8(0.0) 55.9(0.9)
seeds 68.2(6.5) 45.3(0.7) 58.4(0.0) 64.6(0.0)
zoo 52.2(5.3) 66.7(0.0) 76.9(0.0) 66.8(0.0)

Table 2: NMI results without considering outliers.

Dataset K-means K-means– COR FCM SFGW

ecoli 43.1 59.9 34.0 50.9 55.6
glass 10.6 43.7 32.9 20.9 41.0

landsat 40.3 44.2 45.2 43.9 46.9
seeds 1.4 29.1 37.7 42.9 48.6
zoo 8.1 11.0 11.9 19.9 33.3

Table 3: Recall results with the smallest clusters as outliers.

Dataset K-means K-means– COR FCM SFGW

ecoli 58.7 60.0 57.1 44.6 61.0
glass 26.7 31.5 16.5 35.1 26.4

landsat 39.3 44.2 40.7 42.3 45.0
seeds 51.3 52.8 44.1 74.8 57.4
zoo 70.2 66.2 59.1 66.7 77.4

Table 4: NMI results with the smallest clusters as outliers.

Results and Discussions
We first conduct experiments on the iris data to evalu-
ate the performance of SFGWH with different values of
the parameters λX and λH , which are tuned in the set
{0.001, 0.002, 0.005, 0.01, 0.02, 0.05}. Figure 3 shows the
results of accuracy and NMI. We observe that the perfor-
mance of SFGWH is relatively stable with respect to λH ,
and λX has a larger effect on the performance. Similar ob-
servations can be drawn from the other datasets.

Tables 1 and 2 report the results of experiments without
outliers in terms of accuracy and NMI, respectively, where
the standard derivations are given in the brackets. In gen-
eral, ERCAN outperforms SC, which verifies the efficacy
of affinity matrix learning in spectral clustering. SFGWH
achieves promising performance on both accuracy and NMI
on the datasets, which demonstrates the effect of the optimal
transport matrix for spectral clustering. Tables 3 and 4 show
the results of experiments considering the smallest clusters
as outliers in terms of recall and NMI, respectively. SFGW
achieves the best or highly competitive performance com-
pared with the other methods, which demonstrates the effec-
tiveness of our proposed method for clustering with outliers.

Conclusion
In this paper, we provide explanations for subspace cluster-
ing and spectral clustering from the perspective of optimal
transport. Based on a self optimal transport model consider-
ing one distribution, we show that the optimal transport ma-
trix bridges the spaces of features and spectral embeddings,
and spectral clustering can be modeled as a barycenter prob-
lem with an underlying optimal transport discrepancy and
guidance of features. We propose a model to learn coupled
affinity matrix and spectral embeddings with the help of ge-
ometric information extracted by optimal transport, and de-
velop algorithms to optimize the derived problems. The pre-
sented connection allows us to employ powerful tools in op-
timal transport for clustering in the future.
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Peyré, G.; Cuturi, M.; and Solomon, J. 2016. Gromov-
Wasserstein averaging of kernel and distance matrices. In In-
ternational Conference on Machine Learning, 2664–2672.
Titouan, V.; Courty, N.; Tavenard, R.; and Flamary, R. 2019.
Optimal transport for structured data with application on
graphs. In International Conference on Machine Learning,
6275–6284. PMLR.
Wang, J.; Ma, Z.; Nie, F.; and Li, X. 2022. Entropy regular-
ization for unsupervised clustering with adaptive neighbors.
Pattern Recognition, 125: 108517.
Xu, R.; and Wunsch, D. 2005. Survey of clustering algo-
rithms. IEEE Transactions on neural networks, 16(3): 645–
678.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16288



Yan, Y.; Li, W.; Wu, H.; Min, H.; Tan, M.; and Wu, Q. 2018.
Semi-Supervised Optimal Transport for Heterogeneous Do-
main Adaptation. In International Joint Conference on Ar-
tificial Intelligence, 737–753.
Yan, Y.; Tan, M.; Xu, Y.; Cao, J.; Ng, M.; Min, H.; and
Wu, Q. 2019. Oversampling for imbalanced data via opti-
mal transport. In AAAI Conference on Artificial Intelligence,
volume 33, 5605–5612.
Yang, Y.; Xu, D.; Nie, F.; Yan, S.; and Zhuang, Y. 2010. Im-
age clustering using local discriminant models and global in-
tegration. IEEE Transactions on Image Processing, 19(10):
2761–2773.
Zhang, Z.; Feng, Q.; Huang, J.; Guo, Y.; Xu, J.; and Wang,
J. 2021. A local search algorithm for k-means with outliers.
Neurocomputing, 450: 230–241.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16289


