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Abstract

Estimating treatment effects from observational data suffers
from the issue of confounding bias, which is induced by the
imbalanced confounder distributions between the treated and
control groups. As an effective approach, re-weighting learns
a group of sample weights to balance the confounder distri-
butions. Existing methods of re-weighting highly rely on a
propensity score model or moment alignment. However, for
complex real-world data, it is difficult to obtain an accurate
propensity score prediction. Although moment alignment is
free of learning a propensity score model, accurate estima-
tion for high-order moments is computationally difficult and
still remains an open challenge, and first and second-order
moments are insufficient to align the distributions and easy to
be misled by outliers. In this paper, we exploit geometry to
capture the intrinsic structure involved in data for balancing
the confounder distributions, so that confounding bias can be
reduced even with outliers. To achieve this, we construct a
connection between treatment effect estimation and optimal
transport, a powerful tool to capture geometric information.
After that, we propose an optimal transport model to learn
sample weights by extracting geometry from confounders,
in which geometric information between groups and within
groups is leveraged for better confounder balancing. A pro-
jected mirror descent algorithm is employed to solve the de-
rived optimization problem. Experimental studies on both
synthetic and real-world datasets demonstrate the effective-
ness of our proposed method.

Introduction
Treatment effect estimation aims to predict the effect of a
treatment and has been widely used in real-world applica-
tions, such as public health (Glass et al. 2013) and adver-
tisement (Li et al. 2016). The ideal approach for estimating
treatment effect is to perform Randomized Controlled Trials
(RCTs), which means that samples are randomly assigned to
the treated group and the control group, and the treatment ef-
fect can be evaluated by comparing the outcomes of the two
groups. Nevertheless, RCTs are usually expensive or even
unethical. Therefore, it is more feasible to estimate the treat-
ment effect from observational data.

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Far Away Outliers

Figure 1: An example with 1-D confounders. First and sec-
ond moment-based methods are misled by outliers and tend
to assign large weights to them for distribution balancing.

The major issue in the observational study is the con-
founding bias (Yao et al. 2021), which is induced by the im-
balanced confounder distributions between the treated and
control groups due to the fact that the treatment is affected
by the confounder instead of randomly assigned. For exam-
ple, the decision on medical treatment is usually affected by
age, resulting in different age distributions between different
groups. Re-weighting is an effective approach for overcom-
ing confounding bias, which creates a pseudo-population
with learned sample weights so that confounder distributions
between the treated and control groups are balanced.

As a classic method of re-weighting, propensity score-
based method (Rosenbaum and Rubin 1983) heavily de-
pends on the correct model specification on treatment as-
signment, which is difficult to obtain from complex real-
world data. In order to avoid learning a propensity score
model, moment-based methods (Hainmueller 2012) opti-
mize weights directly by minimizing the difference between
the confounder moments of two groups. However, estima-
tion for high-order moments is computationally difficult and
still remains an open challenge. As a result, researchers usu-
ally adopt only the first and second moments in practice,
which are insufficient to balance the complex distributions
of real data and are easy to be misled by outliers.

Fig. 1 shows an example where first and second moment-
based methods are misled by outliers, whose weights should
be reduced since their unreliable covariates and outcomes
can negatively affect the treatment effect estimation. How-
ever, to achieve distribution balancing, the outliers in the
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control group will be assigned large weights, since they are
helpful for reducing the difference between these two dsitri-
butions in terms of the mean and variance.

In this paper, we propose a novel re-weighting method for
balancing the complex confounder distributions by exploit-
ing geometric information, which capture the intrinsic struc-
ture of confounders to balance distributions and recognize
outliers. In specific, we explore both inter and intra-group
geometric information. The inter-group geometry captures
distances between control and treated samples, and a sam-
ple with a smaller inter-group distance tends to be assigned
a larger weight since it contributes to the distribution bal-
ancing. The intra-group geometry captures the internal sim-
ilarity within one group, which leverages metric information
for further distribution balancing and also helps reduce the
weights of outliers, since the outliers are far away from other
samples and have different internal similarity properties.

Motivated by this, we propose an optimal transport model
to learn sample weights by extracting geometric information
from confounders, which is also theoretically supported by
our finding that the estimation error of the treatment effect
can be upper bounded by the objective of optimal transport.
In specific, we model the problem of confounder balanc-
ing as a semi-relaxed optimal transport model, which learns
weights by minimizing the distribution discrepancy mea-
sured by the transport cost from control samples to treated
samples. We leverage Wasserstein and Gromov-Wassersein
discrepancies to extract inter and intra-group geometric in-
formation, respectively. Furthermore, in order to encourage
more samples to be transported for improving the data effi-
ciency, we employ a negative entropic regularization on the
sample weights, which is modeled as the empirical marginal
distribution in optimal transport. We develop a projected
mirror descent algorithm equipped with the Kull-Leibler
(KL) divergence to solve the derived optimization problem.

We summarize our principal contributions as follows:
• We propose a semi-relaxed fused Gromov-Wasserstein

discrepancy model with regularized marginal distribution
to learn weights for samples, which extracts both inter
and intra-group geometries to reduce confounding bias.

• We develop a projected mirror descent algorithm to solve
the resultant optimization problem, which learns coupled
sample weights and a transport plan to balance the con-
founder distributions.

• We conduct extensive experiments on both synthetic and
real-world data sets to demonstrate the advantages of our
proposed method in terms of treatment effect estimation
and robustness to outliers.

Related Works
Causal Effect Estimation
Re-weighting is an effective class of methods to overcome
confounding bias. Inverse Propensity Weighting (IPW)
treats the inverse of propensity scores as weights, which can
be estimated via regression algorithms (Rosenbaum and Ru-
bin 1983; McCaffrey, Ridgeway, and Morral 2004; Westre-
ich, Lessler, and Funk 2010; Zhao 2019). Various meth-
ods then have been proposed to make IPW more robust

via combining outcome regression (Robins, Rotnitzky, and
Zhao 1994) or exploiting dual characteristics of propen-
sity score (Imai and Ratkovic 2014). However, these meth-
ods still heavily depend on the correct specification of the
propensity or outcome regression models.

Recently, researchers propose to learn weights directly.
(Hainmueller 2012) proposes to maximize the entropy of
the weights while aligning the moments between treated and
control groups. (Kuang et al. 2017) learns weights by align-
ing moments while distinguishing confounders. In practice,
researchers usually align only the first and second moments,
because accurate estimation for high-order moments is com-
putationally difficult. However, the first and second mo-
ments are insufficient to balance the complex distribution
of real data and are easy to be misled by outliers. (Ar-
bour, Dimmery, and Sondhi 2021) learns weights using a
standard binary classifier. Different from these methods, our
method exploit both inter and intra-group geometric infor-
mation via optimal transport, resulting in outstanding per-
formance while being robust to outliers.

Optimal Transport
Optimal transport seeks to find an optimal plan for mov-
ing mass from one distribution to another with the mini-
mal transport cost (Monge 1781; Kantorovitch 1958; Vil-
lani 2008). Recently, optimal transport has shown power-
ful ability in different kinds of applications (Peyré, Cuturi
et al. 2019; Yan et al. 2019; Zhao and Zhou 2018). For com-
puter vision, the Earth Mover’s Distance, which is calculated
based on the solution to the optimal transport problem, is
used as a metric for image retrieval (Rubner, Tomasi, and
Guibas 2000). For transfer learning, data from one distribu-
tion is transported to another distribution based on the op-
timal transport plan for label information transfer (Courty,
Flamary, and Tuia 2014; Courty et al. 2017b,a). For gen-
erative modeling, the Wasserstein distance derived by op-
timal transport is minimized to train deep generative mod-
els (Tolstikhin et al. 2018; Arjovsky, Chintala, and Bot-
tou 2017). For structured data, Wasserstein (Maretic et al.
2022), Gromov-Wasserstein (Xu 2020) and Fused Gromov-
Wasserstein (Titouan et al. 2019) are applied for graph data
analysis.

There are also some researchers trying to introduce op-
timal transport into causal inference. (Gunsilius and Xu
2021) employs unbalanced optimal transport for matching.
(Torous, Gunsilius, and Rigollet 2021) generalizes Changes-
in-Changes (CiC) to high-dimensional setting based on op-
timal transport. (Li et al. 2021) proposes to infer counter-
factual outcome via transporting factual distribution to the
counterfactual distribution. (Dunipace 2021) applies optimal
transport to achieve distribution balance by finding a inter-
mediate distribution with learned weights. Compared with
them, our contributions lie in two aspects. First, we establish
a connection between treatment effect estimation and opti-
mal transport, providing theoretical support for our method
that learns weights via optimal transport. Second, we further
explore the property that optimal transport can leverage ge-
ometric information, and then propose to extract both inter
and intra-group geometries to remove confounding bias.
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Problem Statement and Notations
We consider the Rubin-Neyman potential outcome frame-
work (Rubin 1974; Splawa-Neyman, Dabrowska, and Speed
1990) with n observational samples {(xi, ti, yi)}ni=1 and bi-
nary treatment, i.e., ti ∈ {0, 1}. xi ∈ Rd is a feature vector,
and yi ∈ R is the observational outcome, where d is the di-
mension of features. Given the potential outcomes Y0(·) and
Y1(·), the observational outcome is yi = tiY1(xi) + (1 −
ti)Y0(xi). In specific, the observational data set includes a
control group {(xc

i , t
c
i , y

c
i )}

nc
i=1 with tci = 0, and a treated

group {(xt
j , t

t
j , y

t
j)}

nt
j=1 with ttj = 1, where n = nc + nt.

In this paper, we assume that the standard strong ignor-
ability assumption is satisfied: t ⊥ (Y1(x), Y0(x))|x and
0 < p(t = 1|x) < 1 for all x. Strong ignorability is a suf-
ficient condition for causal identification (Rosenbaum and
Rubin 1983; Imbens and Wooldridge 2009).

We focus on estimating the Average Treatment effect on
the Treated group (ATT), which is the average difference
between the potential outcomes under treated and control
situation on the treated group. ATT is defined as

ATT = E[Y1(xi)|ti = 1]− E[Y0(xi)|ti = 1]. (1)

The first term E[Y1(xi)|ti = 1] can be easily estimated
based on the observational data by 1

nt

∑nt

i=1 y
t
i . However,

the second term E[Y0(xi)|ti = 1] involves unobservational
potential outcomes Y0(xi) on the treated group. Under the
strong ignorability assumption, the second term can be esti-
mated by removing the confounding bias, which is usually
achieved by the re-weighting approach (Kuang et al. 2017).
In specific, re-weighting aims to learn weights {wj}nc

j=1 for
the control samples {xc

j}
nc
j=1, so that the distributions of con-

trol and treated groups are aligned and the confounding bias
is reduced. With the learned weights ATT can be estimated
by

ÂTT =
1

nt

nt∑
j=1

ytj −
nc∑
i=1

wiy
c
i . (2)

Throughout the paper, [n] denotes a set including the ele-
ments {1, . . . , n}. 1n denotes a vector in the space Rn with
all the elements being 1. For a matrix A, the (i, j)-th element
of A is denoted as Aij , and A⊤ is the transpose of A. The
trace of a square matrix A is denoted as tr(A). Given two
matrices A and B with the same size, the inner product of
them is denoted as ⟨A,B⟩. The Hadamard product between
A and B is denoted as A⊙B, i.e., (A⊙B)ij = AijBij .

Learning Model
In this section, we first describe the key concepts of optimal
transport, then connect it to the ATT estimation problem via
the dual form of optimal transport. After that, we propose
our learning model for ATT via optimal transport.

Connection between Optimal Transport and ATT
Optimal transport seeks an transport plan to move mass from
one distribution to another with the minimal transport cost.
Among the rich theory of optimal transport, we focus on
the Kantorovich Problem. Consider two distributions µ ∈

P (X ), ν ∈ P (Y) and a cost function c : X × Y → R,
the Kantorovich problem seeks a transport plan π(x, y) via
optimizing the following problem:

(KP ) = inf
π∈Π(µ,ν)

∫
c(x, y)dπ(x, y), (3)

where Π(µ, ν) denotes the set of all joint probability cou-
plings whose first and second marginals are µ and ν, respec-
tively. Kantorovich also provided a Dual Problem, known as
the Kantorovich duality ((Villani 2021), Theorem 1.3):

(DP ) = sup
f(x)+g(y)≤c(x,y)

∫
f(x)dµ(x) +

∫
g(y)dν(y).

(4)

We now turn our attention to the ATT estimation problem.
We first decompose its estimation error as follow, in terms
of mt(x) = E[Yt(x)|x], t ∈ {0, 1}, as discussed in (Ben-
Michael et al. 2021):

ÂTT − ATT

= (
1

nt

nt∑
j=1

ytj −
nc∑
i=1

wiy
c
i )−

1

nt

nt∑
j=1

(m1(xj)−m0(xj))

=
1

nt

nt∑
j=1

m0(xj) +
1

nt

nt∑
j=1

(ytj −m1(xj))−
nc∑
i=1

wiy
c
i

= −
nc∑
i=1

wim0(xi) +
1

nt

nt∑
j=1

m0(xj) (5)

+
1

nt

nt∑
j=1

(ytj −m1(xj)) +

nc∑
i=1

wi(m0(xi)− yci ). (6)

The term (5) is the imbalance between treated and control
groups, and the term (6) means randomness of y in these
two groups, which is zero under expectation. Moreover, the
term (6) → 0 as n → ∞ under mild regularity conditions
(Kong et al. 2023). Therefore, the estimation error of ATT
depends on the term (5), which allows us to link the ATT
estimation problem to the Kantorovich problem, as stated in
the following proposition.

Proposition 1 Let µ, ν be the distribution of weighted con-
trol and treated groups respectively. Suppose −m0 ∈
f,m0 ∈ g, and assume there exists a cost function such that
m0(y)−m0(x) ≤ c(x, y). We have:

ÂTT − ATT ≤ (DP ) ≤ (KP ). (7)

The first inequality holds because (DP) is the worst-case
of the imbalance term (5) under the assumptions in Proposi-
tion 1, which controls the estimation error of ATT. The sec-
ond inequality holds because the property of the dual prob-
lem. For the conditions when the strong duality holds so that
the bound is tight, please refer to (Villani 2008, 2021).

Proposition 1 shows that the estimation error of ATT is
bounded by the Kantorovich problem, which theoretically
supports that ATT estimation error can be minimized by
learning sample weights via optimal transport. We present
our learning model to achieve this in the following.
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Inter-group Geometric Information
Supported by Proposition 1, we propose to learn weights
via solving the Kantorovich problem, which leverages inter-
group geometric information to minimize ATT estimation
error. Overall, we achieve distribution balancing between
control and treated groups by minimizing the transport cost
with estimated weights for the control samples.

For discrete samples, we consider a semi-relaxed opti-
mal transport model with empirical distributions. In specific,
let C be the cost matrix, and the element Cij measures the
transport cost from xc

i to xt
j and can be defined as

Cij = ∥xc
i − xt

j∥22. (8)

The transport plan is represented by the matrix T with the
element Tij being the transport mass from the i-th con-
trol sample to the j-th treated sample. µt = T⊤1 =
[ 1
nt
, . . . , 1

nt
]⊤ is the fixed marginal distribution of the treated

group, which is the weights of uniform distribution used
in Eq. (2) for treated samples. µc = T1 is the esti-
mated marginal distribution of the control group used for
re-weighting. Based on these, we leverage the Wasserstein
discrepancy to learn weights for control group by the fol-
lowing semi-relaxed optimal transport model:

min
µc

min
T

⟨C,T⟩

s.t. T1nt = µc,T⊤1nc = µt, Tij ∈ [0, 1]. (9)

The above optimal transport model usually induces a
sparse solution, which means only a limited number of
control samples are transported (Blondel, Seguy, and Rolet
2018; Vincent-Cuaz et al. 2022), suffering from low data ef-
ficiency (Kaddour et al. 2021). To tackle this issue, we ap-
ply a negative entropy regularization on the marginal distri-
butions µc to encourage more control samples to be trans-
ported, which is defined as

Ω(T) =

nc∑
i=1

Ti·(log Ti· − 1), (10)

where Ti· is the sum of the i-th row of T, i.e.,

Ti· =

nt∑
j=1

Tij . (11)

In addition, we constrain T to belong to the following do-
main of the definition

T = {T | T⊤1nc
= µt, Tij ∈ [0, 1]}, (12)

which does not consider the constraint T1nt
= µc since µc

are also parameters to be optimized. Based on this, our semi-
relaxed optimal transport model with a regularized marginal
distribution with respect to T is given as follows:

min
T

⟨C,T⟩+ γcΩ(T) s.t. T ∈ T , (13)

where γc is the trade-off parameter.

Intra-group Geometric Information
Besides inter-group geometric information, we further em-
ploy optimal transport to exploit the intra-group geometric
information in control and treated groups to re-weight con-
trol samples. To this end, we construct the metric matrices
Mc and Mt, where either a similarity or a distance met-
ric can be adopted. The elements M c

ii′ (resp., M t
jj′ ) rep-

resents the metric between xc
i and xc

i′ (resp., xt
j and xt

j′ ).
Based on these, we leverage the Gromov-Wasserstein dis-
crepancy to minimize the transport cost between a control
pair (xc

i ,x
c
i′) to a treatment pair (xt

j ,x
t
j′). Here, the trans-

port cost between two pairs is measured by the difference
between the metrics M c

ii′ and M t
jj′ , which is defined as

ℓ(ii′)(jj′) = 1
2 (M

c
ii′ − M t

jj′)
2, so that metric information

is also incorporated for distribution balancing. According to
Proposition 1 in (Peyré, Cuturi, and Solomon 2016), the total
transport cost can be rewritten as

nc∑
i=1

nt∑
j=1

nc∑
i′=1

nt∑
j′=1

ℓ(ii′)(jj′)TijTi′j′

=

nc∑
i=1

nt∑
j=1

( nc∑
i′=1

nt∑
j′=1

ℓ(ii′)(jj′)Ti′j′

)
Tij

= ⟨(Mc ⊙Mc)T1nt
1⊤
nt

− 2McT(Mt)⊤,T⟩
+ tr(µt(µt)⊤(Mt ⊙Mt)⊤), (14)

where the first term is related to T, and the second term is
constant. For simplicity, we define the matrix G as

G = (Mc ⊙Mc)T1nt
1⊤
nt

− 2McT(Mt)⊤, (15)

and achieve the semi-relaxed fused Gromov-Wasserstein
model with an entropic regularization on the marginal dis-
tribution as follows:

min
T

α⟨C,T⟩+ (1− α)⟨G,T⟩+ γcΩ(T)

s.t. T ∈ T , (16)

where α ∈ [0, 1] is a trade-off parameter between inter and
intra geometric terms. The first term in Eq. (16) leverages
inter-group geometry to achieve distribution balancing by
assigning small weights (small Ti·) to control samples which
are far from treated group, since they have large transport
costs Cij . The second term further leverages intra-group ge-
ometry for balancing since it prefers to transport pairs with
similar metrics (i.e., M c

ii′ and M t
jj′ ). In addition, the outliers

can be recognized based on their different metric property,
which results from their large distances to other samples.

The optimization algorithm is given in next section. After
obtaining the solution T, the estimated marginal distribu-
tion {Ti·}nc

i=1 can be calculated by Eq. (11) and taken as the
weights for control samples, and ATT can be estimated by

ÂTT =
1

nt

nt∑
j=1

ytj −
nc∑
i=1

Ti·y
c
i . (17)

Optimization
In this section, we develop a projected mirror descent (Ne-
mirovskij and Yudin 1983; Raskutti and Mukherjee 2015)
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based on the Kullback-Leibler (KL) divergence to solve
Problem (16), which is non-trivial to address because of the
equality constrints. For simplicity, we define the objective
function in Problem (16) as

F (T) = α⟨C,T⟩+ (1− α)⟨G,T⟩+ γcΩ(T). (18)

With the symmetric Mc and Mt, the (i, j)-th element of the
gradient ∇F (T) is denoted by ∇ij , which is calculated as

∇ij = αCij + 2(1− α)Gij + γc log Ti·. (19)

At each iteration, we solve the following problem

Tk+1 = arg min
T∈T

η⟨∇F (Tk),T⟩+D(T||Tk), (20)

which firstly performs proximal gradient descent with the
Bregman divergence (Banerjee et al. 2005) and the stepsize
η, and then obtains a feasible solution in the set T by pro-
jection. Next, we present the details of these two operations.

Proximal Gradient Descent
Let Υk be the solution to Problem (20) without considering
the constraint T ∈ T , i.e.,

Υk = argmin
T

η⟨∇F (Tk),T⟩+D(T||Tk). (21)

We adopt the KL divergence between two distributions T
and Tk as the Bregman divergence D(T||Tk), which is de-
fined as

D(T||Tk) =

nc∑
i=1

nt∑
j=1

Tij log(
Tij

T k
ij

)− Tij + T k
ij . (22)

Then the closed-form solution to Problem (21) is given as

Υk = Tk ⊙ exp(−η∇F (Tk)). (23)

Projection Operation To make sure Tk+1 satisfies the
constraints in Eq. (12), we update Tk+1 by finding T ∈ T
which is most close to Υk under the KL metric. This is
achieved by solving the following projection problem

min
T

D(T||Υk) :=

nc∑
i=1

nt∑
j=1

Tij log(
Tij

Υk
ij

)− Tij +Υk
ij

s.t. T⊤1nc
= µt. (24)

In the following, we provide the closed-form solution to the
problem (24), and show that the box constraints Tij ∈ [0, 1]
can be safely removed.

By introducing the Lagrangian multipliers λ =
[λ1, . . . , λnt

]⊤ for the equality constraint T⊤1nc
= µt, we

obtain the Lagrangian L(T,λ) as follows

L(T,λ) =

nc∑
i=1

nt∑
j=1

Tij log(
Tij

Υk
ij

)− Tij +Υk
ij

+λ⊤(T⊤1nc − µt). (25)

Next, we take the partial derivative of L(T,λ) with re-
spect to Tij to zero

∂L(T,λ)

∂Tij
= log(

Tij

Υk
ij

) + Tij

Υk
ij

Tij

1

Υk
ij

− 1 + λj = 0,

Algorithm 1: Optimal Transport for Causal Inference.

Input: Data matrices Xc, Xt. Metric matrices Mc, Mt.
The cost matrix C. Trade-off parameters α, γc.

1: Initialize T0 : T 0
ij =

1
ncnt

, ∀i, j. Set k = 1.
2: repeat
3: Calculate Υk according to Eq. (23).
4: Update Tk according to Eq. (28).
5: k := k + 1.
6: until Convergence.
7: Estimate ATT according to Eq. (17).

and then obtain the optimality condition as

log Tij = logΥk
ij − λj ⇒ Tij = Υk

ij exp(−λj). (26)

According to the equality constraint T⊤1nc
= µt, we

have
∑nc

i=1 Tij = 1
nt

. By combining the condition in Eq.
(26), we further obtain

nc∑
i=1

Tij =

nc∑
i=1

Υk
ij exp(−λj) = exp(−λj)

nc∑
i=1

Υk
ij =

1

nt

⇒ exp(−λj) =
1

nt

∑nc

i=1 Υ
k
ij

. (27)

By plugging Eq. (27) into (26), we finally achieve the
closed-form solution

Tij = Υk
ij

/(
nt

nc∑
i=1

Υk
ij

)
. (28)

For an initial value T 0
ij ≥ 0, given Υk

ij > 0 which is
guaranteed by the update rule in Eq. (23), it is obvious that
the solution obtained by Eq. (28) satisfies the box constraint
Tij ∈ [0, 1]. Therefore, Problem (24) does not consider this
constraint explicitly.

Algorithm 1 summarizes our proposed method.

Experiments
Compared Methods and Evaluation Metric
We compare OTCI with the following methods: (i) Methods
based on propensity score or outcome regression: inverse
propensity weighting IPW (Rosenbaum and Rubin 1983),
doubly robust estimator DR (Robins, Rotnitzky, and Zhao
1994), covariate balancing propensity score CSPS (Imai
and Ratkovic 2014), approximate residual balancing ARB
(Athey, Imbens, and Wager 2018). (ii) Methods based on
moment alignment: entropy balancing Ebal (Hainmueller
2012), differentiated confounder balancing DCB (Kuang
et al. 2017). (iii) Methods based on machine learning: BART
(Chipman, George, and McCulloch 2010) and CFR (Shalit,
Johansson, and Sontag 2017). (iv) Methods based on opti-
mal transport: optimal transport weights OTW (Dunipace
2021), causal optimal transport causalOT (Li et al. 2021).

We implement Ebal as Ebal(1) and Ebal(2), which cor-
respond to aligning only the first moment and aligning the
first and second moments, respectively. Similarly, we im-
plement DCB as DCB(X) considering original features for
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(a) Data (d) Result of OTCI(b) Result of OTCI𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (c) Result of OTCI𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Figure 2: A toy example with the presence of outliers. (a) shows all the treated and control samples (with 20 outliers); (b),
(c), (d) show all the treated samples and 100 control samples with the largest weights, which are learned by OTCI with only
inter-group geometry (OTCIinter), only intra-group geometry (OTCIintra), both inter and intra-group geometries (OTCI).

Ebal(1) Ebal(2) Inter Intra Both
#(≥ 10−2) 10 13 0 0 0

#(10−3, 10−2) 9 4 17 3 0
#(10−4, 10−3) 1 3 3 3 5

#(≤ 10−4) 0 0 0 14 15
MAE .473 .517 .407 .355 .347.347.347

Table 1: Results on a toy example.

the first moment alignment, and DCB(A) considering aug-
mented features for the first and second moments alignment.

We adopt the mean absolute errors (MAE) |ÂTT −ATT |
as the metric. We carry out the experiments 10 times and
report the mean and standard deviation.

Experiments on Toy Example
We first design a 2D toy example with outliers. Specifi-
cally, we generate 500 samples for the treated and control
groups, respectively, as follows: xt ∼ N ([0, 0]⊤,Σ),xc ∼
N ([1.5, 0]⊤,Σ), where Σ = [[0.8, 0]; [0, 0.4]]. In addition,
we randomly generate 20 outliers in the control group. We
do not consider outliers in the treated group since the tar-
get is to estimate ATT, in which the weights of the treated
groups are fixed instead of learnable. The covariates are
visualized in Fig. 2a, and the outcomes are generated as
y = sin(w⊤

1 x) + cos(w⊤
2 (x ⊙ x)) + t + ϵ, where w1 =

[8.0, 1.5],w2 = [1.5, 2.0], and ϵ ∼ N (0, 0.1).
We compare OTCI with its two variants, OTCIinter

with only inter-group geometry, and OTCIintra with only
intra-group geometry, and the representative moment-based
method Ebal. Table 1 summarizes the weights of the 20 out-
liers learned by these methods and their estimation errors
of ATT. Figs. 2b, 2c, 2d visualize all the treated samples
and 100 control samples with the largest weights learned by
OTCI and its variants. We have the following observations:

• Table 1 indicates that Ebal(1) and Ebal(2) fail to correctly
identify the outliers, leading to large MAE. This issue
arises because Ebal assigns large weights to outliers if
they assist in achieving moment alignment.

• Fig. 2b and 2c show that OTCIinter performances well
on distribution alignment by allocating larger weights to

high-overlap regions. However, it lacks the capability to
detect those outliers that are close to the treated group,
which can be addressed by exploiting the metric informa-
tion between sample pairs. By integrating both inter and
intra-group geometries, OTCI not only performs well for
distribution alignment but also demonstrates robustness
to outliers, as shown in Fig. 2d and Table 1.

Experiments on Simulation Data
In this part, following similar protocols as in (Yao et al.
2018; Hatt and Feuerriegel 2021), we conduct experiments
on simulation data with two different settings:
• For Gaussian distribution, we generate 1500 treated sam-

ples from N (µ10×1
t , 0.5 × ΣtΣ

T
t ) and 1500 control

samples from N (µ10×1
c , 0.5 × ΣcΣ

T
c ), where Σ· ∼

U((0, µ·)
10×10). We fix µt = 0.5 and vary µc to gen-

erate data with different levels of confounding bias.
• For Non-Gaussian distribution, we use Gaussian mixture

distribution. We first generate two Gaussian distribution
N1 = N (0.510×1, 0.5×Σ1Σ

T
1 ),N2 = N (110×1, 0.5×

Σ2Σ
T
2 ) where Σ1 ∼ U((0, 0.5)10×10) and Σ2 ∼

U((0, 1)10×10), and then generate 1500 treated samples
as xt ∼ αtN1 + (1 − αt)N2 and 1500 control samples
as xc ∼ αcN1 + (1− αc)N2. We fix αt = 0.5 and vary
αc to generate data with different confounding bias.

• For the above two covariate distributions, the outcomes
are both generated as y = sin(w⊤

1 x)+cos(w⊤
2 (x⊙x))+

t+ ϵ, where w· ∼ U((0, 1)10×1) and ϵ ∼ N (0, 0.1).
Table 2 reports the results under different settings. IPW,

DR, CBPS, and ARB obtain limited performance since they
heavily depend on the correct specification of propensity or
regression models, which are difficult to be satisfied. Ebal
and DCB perform better when aligning the first and second
moments. Achieving better distribution alignment usually
requires higher-order moments, which are difficult to esti-
mate with limited samples. OTW and causalOT outperform
other baselines due to their usage of optimal transport. How-
ever, these two methods do not leverage intra-group geome-
try, which captures intrinsic structure in data. OTCI fully ex-
tracts geometric information from both inter and intra-group
via optimal transport, leading to significant improvements
over the compared methods in different settings.
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Gaussian Non-Gaussian
µc = 0.6 µc = 0.8 µc = 1.0 µc = 1.2 αc = 0.4 αc = 0.3 αc = 0.2 αc = 0.1

IPW .137±.055 .288±.062 .339±.079 .329±.108 .038±.025 .049±.035 .062±.045 .099±.054
DR .125±.056 .260±.072 .294±.102 .302±.095 .037±.024 .049±.034 .059±.042 .091±.054

CBPS .124±.053 .276±.058 .322±.082 .317±.102 .037±.025 .049±.035 .059±.044 .094±.056
ARB .134±.051 .282±.057 .334±.073 .341±.103 .037±.025 .049±.035 .062±.044 .094±.055

Ebal(1) .131±.067 .247±.111 .303±.098 .320±.083 .037±.025 .049±.035 .059±.044 .091±.058
Ebal(2) .117±.082 .196±.105 .249±.100 .281±.069 .037±.024 .045±.033 .053±.043 .085±.052
DCB(X) .138±.095 .234±.069 .236±.083 .248±.080 .035±.032 .056±.037 .078±.046 .081±.078
DCB(A) .124±.113 .212±.072 .216±.089 .220±.082 .035±.036 .043±.032 .071±.062 .081±.065

OTW .141±.197 .192±.075 .272±.227 .266±.133 .033±.025 .041±.027 .048±.029 .051±.048
CausalOT .059±.029 .136±.043 .212±.052 .241±.060 .035±.032 .043±.030 .052±.031 .056±.031

OTCI .041±.022.041±.022.041±.022 .042±.040.042±.040.042±.040 .067±.039.067±.039.067±.039 .072±.051.072±.051.072±.051 .019±.023.019±.023.019±.023 .021±.018.021±.018.021±.018 .024±.013.024±.013.024±.013 .034±.023.034±.023.034±.023

Table 2: Results on simulation data in different settings. The mean and standard deviation of MAE for ATT are reported.

LaLonde Twins
IPW 853.513± 78.003 .009±.004
DR 555.262±243.713 .007±.004

CBPS 562.232±106.226 .007±.004
ARB 658.561±91.844 .005±.004

Ebal(1) 562.387±105.917 .009±.003
Ebal(2) 476.013±180.443 .008±.003
DCB(X) 533.172±268.699 .007±.004
DCB(A) 406.180±302.601 .006±.004
BART 532.578± 200.600 .008±.004
CFR 569.022± 250.001 .009±.004
OTW 289.689±198.828 .006±.006

CausalOT 382.277±107.453 .007±.006
OTCI 192.364±120.783192.364±120.783192.364±120.783 .003±.002.003±.002.003±.002

Table 3: Results on LaLonde and Twins datasets. The mean
and standard deviation of MAE about ATT is reported.

Experiments on Real-world Data Finally, we conduct
experiments on two real datasets for ATT estimation, includ-
ing LaLonde and Twins. LaLonde1 consists of two parts.
The first part comes from a RCT (NSW). In the second part,
as (Kuang et al. 2017) did, we replace the control group
in NSW with another control group from the observational
data (CPS). The treatment is whether the participant attend
the job training program, and the outcome is the earning
in 1978. The data contains 8 covariates. Twins is collected
from the twins born in USA between 1989-1991 (Almond,
Chay, and Lee 2005). Each twin pair has 30 covariates. For
each twin pair, we observe both the cases t = 0 (lighter)
and t = 1 (heavier). The outcome is the one-year mor-
tality. To simulate the confounding bias, we choose one of
the twins as follows: t ∼ Bern(sigmoid(w⊤x + b)) where
w ∼ U((−0.1, 1)30×1) and b ∼ N (0, 0.1).

The results are reported in Table 3. We have similar obser-
vations as in simulation data. The performance of IPW, DR,
DCB and ARB is relatively lower. Ebal and DCB obtain lim-
ited performance since the first and second moments are in-
sufficient to achieve good distribution alignment on complex
data in the real world. Benefiting from optimal transport,
OTW and causalOT achieve relatively good results. OTCI
achieves the best performance by exploiting both inter and

1https://users.nber.org/ rdehejia/data/.nswdata2.html
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Figure 3: Sensitivity analysis on LaLonde dataset

intra-group geometries to eliminate confounding bias.

Sensitivity Analysis
We take LaLonde as an example to evaluate the parameter
sensitivity of OTCI. We vary the parameters α and γc in Eq.
(16), and plot the results in Fig. 3. From Fig. 3a, MAE in-
creases when α becomes small or large, indicating that both
inter and intra-group geometric information play important
roles in removing confounding bias. From Fig. 3b, MAE in-
creases when γc is larger than 10−2, since a large γc will
push the learned weights close to the uniform distribution,
resulting in a failure of confounding bias elimination. Over-
all, when parameters 0.4 ≤ α ≤ 0.7 and γc ≤ 1 × 10−2,
OTCI achieves promising performance, which demonstrates
its stability to the trade-off parameters in a certain range.

Conclusion
In this paper, we exploit geometry to reduce confounding
bias in treatment effect estimation under the re-weighting
paradigm. To this end, the connection between the estima-
tion error of treatment effect and optimal transport is dis-
cussed, and inter as well as intra-group geometric informa-
tion is captured by optimal transport for confounder bal-
ancing. By doing this, the distributions of the control and
treated groups are balanced, and the negative effects of out-
liers can be reduced. We conducted experiments on syn-
thetic and real-world datasets to demonstrate the efficacy
of our method. We present an insight regarding the connec-
tion between treatment effect estimation and optimal trans-
port, which provides potential possibility to employ optimal
transport to address the problem of causal inference.
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