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Abstract

Multi-view graph clustering (MVGC) derives encouraging
grouping results by seamlessly integrating abundant infor-
mation inside heterogeneous data, and has captured surging
focus recently. Nevertheless, the majority of current MVGC
works involve at least one hyper-parameter, which not only
requires additional efforts for tuning, but also leads to a com-
plicated solving procedure, largely harming the flexibility and
scalability of corresponding algorithms. To this end, in the ar-
ticle we are devoted to getting rid of hyper-parameters, and
devise a non-parametric graph clustering (NpGC) framework
to more practically partition multi-view data. To be specific,
we hold that hyper-parameters play a role in balancing er-
ror item and regularization item so as to form high-quality
clustering representations. Therefore, under without the assis-
tance of hyper-parameters, how to acquire high-quality rep-
resentations becomes the key. Inspired by this, we adopt two
types of anchors, view-related and view-unrelated, to concur-
rently mine exclusive characteristics and common character-
istics among views. Then, all anchors’ information is gath-
ered together via a consensus bipartite graph. By such ways,
NpGC extracts both complementary and consistent multi-
view features, thereby obtaining superior clustering results.
Also, linear complexities enable it to handle datasets with
over 120000 samples. Numerous experiments reveal NpGC’s
strong points compared to lots of classical approaches.

Introduction
Along with the advance of information age, multi-view data
which generally comes from heterogeneous modalities or
various channels of the same instances is growingly ubiqui-
tous (Yang et al. 2021b; Wan et al. 2022; Liang et al. 2023b;
Fu et al. 2023; Yu et al. 2023b; Wang et al. 2022a; Liang
et al. 2023a; Wan et al. 2023; Fu et al. 2022; Xia et al. 2023).
Correspondingly, how to comprehensively exploit the infor-
mation hidden into these data is becoming a research high-
light. Multi-view clustering (MVC), a representative unsu-
pervised learning technique, is deemed as a strong instru-
ment to effectively mine the intrinsic structure and is popu-
larly employed in drug discovery, protein prediction, med-
ical image analysis, etc (Xia et al. 2021b; Yu et al. 2023a;
Wen et al. 2022). Co-training, kernel, matrix factorization,
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graph and neural network are five common types of solu-
tions for MVC problems. Co-training approaches (Nie, Shi,
and Li 2020; Kumar, Rai, and Daume 2011; Huang et al.
2020; Du et al. 2021) alternatively exchange the clustering
results on each view and try to reach agreement between
views. Kernel approaches (Li et al. 2022a; Kang et al. 2018;
Liu et al. 2021; Wang et al. 2021) jointly optimize a set of
preset kernels and try to generate a consistent optimal kernel.
Matrix factorization approaches (Zhang et al. 2021; Huang,
Kang, and Xu 2020; Luong et al. 2022; Yang et al. 2020)
decrease the data dimension and try to seek the unified po-
tential features in low-dimensional space. Graph approaches
(Khan and Maji 2021; Wang, Yang, and Liu 2020; Liu et al.
2022; Yang et al. 2022a; Shi et al. 2021) make use of graph
structure to characterize the pair-wise affinities and try to
construct the unified similarity graph for all views. Neural
network approaches (Qin et al. 2021; Xia et al. 2021a; Tu
et al. 2021; Yang et al. 2022b; Wen et al. 2023) capture ad-
vanced features by ingenious architectures and try to learn
the common high-level characteristics.

Despite appreciable results, the majority of them suffer
from at least one hyper-parameter, which not only brings
extra tuning overheads but also results in overly-complex
solution process, heavily limiting their further deployment
in numerous scenarios. Besides, how to set the appropriate
value range is also an intractable problem. Consequently, de-
signing non-parametric methods becomes an urgent need.
To meet this need, in the paper we first investigate the role
of hyper-parameters. Taking the classical MVGC framework
for example,

min
Q(r),Q

∥∥∥X(r) −B(r)Q(r)
∥∥∥2
F
+ λ

∥∥∥Q−Q(r)
∥∥∥2
F

s.t.
(
Q(r)

)⊤
1 = 1,Q(r) ≥ 0,Q⊤1 = 1,Q ≥ 0,

(1)

where X(r), B(r), Q(r) and Q represent the data, anchor
matrix, bipartite graph on view r and the merged bipar-
tite graph respectively, we know that λ aims at balancing∥∥X(r) −B(r)Q(r)

∥∥2
F

and
∥∥Q−Q(r)

∥∥2
F

so that the gener-
ated Q is favorable for clustering. Especially, we present Q
and its complete graph learned on a synthetic dataset that
is with 500 samples, 2 views and 5 clusters, as shown in
Figure 1. As seen, λ can influence the sample-anchor simi-
larity structure of the merged bipartite graph Q, and thereby

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16558



(a) λ = 10, Q (ACC=72.24%) (b) λ = 103, Q (ACC=85.28%)

(c) λ = 10, C (ACC=72.24%) (d) λ = 103, C (ACC=85.28%)

Figure 1: The role of hyper-parameter λ. Different λ val-
ues bring different graph structures and clustering results.
Complete graph C of the graph Q is restored by setting
C = Q⊤∆−1Q where the diagonal matrix ∆ is with
∆i,i =

∑n
j=1 Qi,j . Clearer sample-anchor structure of Q

or block diagonal structure of C indicates preferable results.

brings different clustering results. Moreover, Q with more
distinct structure (equivalently, its complete graph C has
clearer block diagonal structure) generates more preferable
results. Therefore, how to acquire high-quality Q is the key
to design pleasing non-parametric clustering algorithms.

Inspired by the above analysis, we design a NpGC frame-
work to form desirable Q, as shown in Figure 2. To be
specific, in addition to the view-related anchor matrices
{B(r)}vr=1, we introduce a view-unrelated anchor matrix B.
{B(r)}vr=1 and B are utilized to concurrently mine view-
exclusive characteristics and view-common characteristics.
{S(r)}vr=1 are a group of projections, which aim at finding
the common representation space for all views. Furthermore,
orthogonal to constructing Q by merging all {Q(r)}vr=1, we
directly construct Q based on {B(r)}vr=1 and B. One posi-
tive is that this can decrease the computational expenditure
by avoiding the generation of {Q(r)}vr=1. Another is that
this relieves the information loss caused by the mergence
operation. Most importantly, Q extracts heterogeneous rep-
resentations directly at anchor level rather than at bipartite
graph level, which can maintain original diversity informa-
tion and improve Q’s richness. Also, it acts as a bridge for
{B(r)}vr=1 and B to make them able to mutually negoti-
ate such that the produced anchors are more distinctive. By
such ways, Q contains both complementary and consistent
multi-view features, thereby achieving superior clustering
results. Owing to not involving the mergence operation in
our framework, we rename Q consensus bipartite graph. Be-
yond these, NpGC is demonstrated to have linear complex-
ities, which enables it to efficiently tackle the datasets with
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Figure 2: Our NpGC framework. {X(r)}3r=1: multi-view
data; {B(r)}3r=1: view-related anchor matrices; B: view-
unrelated anchor matrix; {S(r)}3r=1: view-related projec-
tions; Q: consensus bipartite graph. Q is directly con-
structed via {B(r)}3r=1 and B, thus gathering exclusive
characteristics and common characteristics among views.
{B(r)}3r=1, B, Q and {S(r)}3r=1 are learned in a mutual en-
hancement way to progress towards higher-quality outputs.

over 120000 instances. Interestingly, when there is only one
view data, NpGC still works properly by simply setting v
as 1. Therefore, it can be extended to single-view clustering
problems. A series of experiments give evidence of NpGC’s
strong points against 17 prominent approaches.

Proposed Model and Solution
Our NpGC is formulated as

min
B(r),B,S(r),Q

v∑
r=1

∥∥∥X(r) −B(r)Q
∥∥∥2
F
+
∥∥∥S(r)X(r) −BQ

∥∥∥2
F

s.t. Q⊤1 = 1,Q ≥ 0,S(r)
(
S(r)

)⊤
= Ik,

(2)
where X(r) ∈ Rdr×n, B(r) ∈ Rdr×k, Q ∈ Rk×n, S(r) ∈
Rk×dr and B ∈ Rk×k. dr, n and k are the data dimension
on view r, the sample number and the cluster number.

Solution
Due to the objective (2) being non-convex, we generate the
solutions by splitting it into different sub-problems:

B(r) Sub-problem Keeping B, S(r) and Q constant, min-
imizing the objective (2) is equivalent to solving

min
B(r)

∥∥∥X(r) −B(r)Q
∥∥∥2
F
. (3)

This is an optimization problem without any constraints, and
the optimal solution can be acquired by setting its derivative
to zero. That is, (

X(r) −B(r)Q
)
Q⊤ = 0. (4)

Since the rank of bipartite graph Q is k, QQ⊤ ∈ Rk×k is
reversible. Therefore, we have

B(r) = X(r)Q⊤ (QQ⊤)−1
. (5)
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B Sub-problem For B, we need to optimize

min
B

v∑
r=1

∥∥∥S(r)X(r) −BQ
∥∥∥2
F
. (6)

It also is an optimization problem without any constraints,
and thus the optimal solution is

B =
1

v

(
v∑

r=1

S(r)X(r)

)
Q⊤ (QQ⊤)−1

. (7)

S(r) Sub-problem During updating Sr, the objective (2)
is equivalently formed as

min
S(r)

∥∥∥S(r)X(r) −BQ
∥∥∥2
F

s.t. S(r)
(
S(r)

)⊤
= Ik, (8)

which is an optimization problem with the orthogonal con-
straint.

For solving it, we first introduce the column-orthogonal
matrix Hr ∈ Rdr×k, and the problem (8) is equivalent to

min
H(r)

∥∥∥∥(H(r)
)⊤

X(r) −BQ

∥∥∥∥2
F

s.t.
(
H(r)

)⊤
H(r) = Ik.

(9)
Afterwards, we have∥∥∥∥(H(r)

)⊤
X(r) −BQ

∥∥∥∥2
F

≤
∥∥∥∥(H(r)

)⊤∥∥∥∥2
F

∥∥∥X(r) −H(r)BQ
∥∥∥2
F

= k
∥∥∥X(r) −H(r)BQ

∥∥∥2
F
.

(10)
Therefore, we can solve the problem (8) by minimizing its
upper bound. Furthermore, we have

min
H(r)

∥∥∥X(r) −H(r)BQ
∥∥∥2
F
= TRACE

((
X(r)

)⊤
X(r)

−2
(
X(r)

)⊤
H(r)BQ+Q⊤B⊤

(
H(r)

)⊤
H(r)BQ

)
⇔ max

H(r)
TRACE

(
H(r)BQ

(
X(r)

)⊤)
,

(11)
where TRACE(·) is the trance operation.

Let the single value decomposition of BQ
(
X(r)

)⊤
be

UΣV⊤, and we obtain

TRACE

(
H(r)BQ

(
X(r)

)⊤)
= TRACE (ΣD) , (12)

where D = V⊤H(r)U. Additionally, given D⊤D =

U⊤ (H(r)
)⊤

VV⊤H(r)U = I and the non-negativeness of
Σ, we have

TRACE (ΣD) ≤ TRACE (Σ) , (13)

where the equality holds when the diagonal elements of D
take 1. So, the optimal H(r) is the product of V and U⊤.
S(r) is obtained by setting it as the transport of H(r).

Algorithm 1: Solution to the problem (2)

Input: Multi-view data {X(r)}vr=1.
Output: Q.
Initialize: B(r),B,S(r),Q.

1: Let t = 1, fobj(0) = 1020.
2: while

[
(fobj(t)− fobj(t− 1))/fobj(t) ≤ 10−4

]
do

3: Update B(r) via (5).
4: Update B via (7).
5: Update S(r) via (8).
6: Update Q via (16).
7: t = t+ 1.
8: end while

Q Sub-problem When solving Q, it is equivalent to

min
Q

v∑
r=1

∥∥∥X(r) −B(r)Q
∥∥∥2
F
+
∥∥∥S(r)X(r) −BQ

∥∥∥2
F

s.t. Q⊤1 = 1,Q ≥ 0.

(14)

After unfolding F -norm terms, the problem (14) equals to

min
Q

TRACE

(
Q⊤

(
v∑

r=1

(
B(r)

)⊤
B(r) +

v∑
r=1

B⊤B

)
Q

−2

(
v∑

r=1

(
B(r)

)⊤
X(r) +

v∑
r=1

B⊤S(r)X(r)

)
Q⊤

)
s.t. Q⊤1 = 1,Q ≥ 0.

(15)
It can be split into n sub-problems according to the feasible
region:

min
Q:,j

1

2
Q⊤

:,j

(
v∑

r=1

(
B(r)

)⊤
B(r) +

v∑
r=1

B⊤B

)
Q:,j

−

( v∑
r=1

(
B(r)

)⊤
X(r) +

v∑
r=1

B⊤S(r)X(r)

)
:,j

⊤

Q:,j

s.t. Q⊤
:,j1 = 1,Q:,j ≥ 0, j = 1, 2, 3, . . . , n,

(16)
which is a quadratic programming (QP) task and can be
solved in O(k3) time cost.

The whole solution to the problem (2) is summarized in
Algorithm 1. fobj(t) is the objective value at t-th iteration.

Algorithm Analysis
Convergence: Algorithm 1 decomposes the problem (2) into
four sub-problems, and each sub-problem can obtain its op-
timal solution. Therefore, the objective value is monotoni-
cally non-ascending during solving each sub-problem. Be-
sides, the objective (2) has the lower bound, like 0. Given
the alternating optimization theory (Bezdek and Hathaway
2003), Algorithm 1 is convergent.

Space Complexity: During the optimization process for
the problem (2), storing matrices B(r), B, S(r) and Q, r =
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1, 2, · · · , n, consumes O(dk), O(k2), O(kd) and O(kn)
spaces respectively. d and k are constants, and generally are
smaller than n. Therefore, the space complexity of Algo-
rithm 1 is O(kn). Apparently, it is linear to n.

Time Complexity: It consumes O(k2n + k3) time ex-
penditure to construct Q⊤ (QQ⊤)−1

. Accordingly, con-
structing X(r)Q⊤ (QQ⊤)−1

costs O(drnk + k2n + k3).
Therefore, solving the sub-problem Br consumes O(dnk+
k2n + k3) expenditure. Then, it costs O(kdn) complex-
ity to compute

∑v
r=1 S

(r)X(r). The multiplication between∑v
r=1 S

(r)X(r) and Q⊤ (QQ⊤)−1
costs O(k2n). Since

Q⊤ (QQ⊤)−1
has been constructed when solving B(r), it

will cost O(kdn + k2n) expenditure to obtain the optimal
B. Subsequently, constructing X(r)Q⊤B⊤ and performing
singular value decomposition on it cost O(drnk + nk2)
and O(drk

2) respectively. Since k is largely smaller than
n, generating the optimal S(r) costs O(drnk + nk2). Thus,
solving the sub-problem S(r) costs O(dnk + nk2) expendi-
ture. Afterwards, constructing

∑v
r=1

(
B(r)

)⊤
B(r), B⊤B,∑v

r=1

(
B(r)

)⊤
X(r) and B⊤∑v

r=1 S
(r)X(r) cost O(k2d),

O(k3), O(kdn) and O(k2n + kdn) respectively. Each col-
umn of Q is optimized by solving a QP problem, which
costs O(k3) time expenditure. So, solving the sub-problem
Q costs O(k2d+k3+kdn+k2n+nk3). Based on the above
analysis, we obtain that Algorithm 1 has O(dnk+nk3) time
complexity, which is linear to n.

Compared Methods and Datasets
Compared Methods
For sufficiently showing NpGC’s strong points, the follow-
ing 17 classical algorithms are selected for comparison:
1. MVSC (Gao et al. 2015). It concurrently clusters the

subspace representation of each view, and ensures the in-
stances in different views to be grouped into the same
cluster by using the common indicator.

2. AMGL (Nie, Li, and Li 2016). It automatically learns
a group of weights for all graphs so as to maintain the
diversity, and guarantees the objective to be convex by
reformulating the standard spectral clustering process.

3. MLRSSC (Brbić and Kopriva 2018). It learns the
joint subspace representation by building up a single sim-
ilarity matrix, and takes advantages of the sparsity and
low-rank constraints to alleviate the noise affect.

4. MSCIAS (Wang et al. 2019). It establishes an
intactness-aware affinity in the intact space to alleviate
the information loss of unbalanced views, and adopts
HSIC criterion instead of spectral clustering to increase
its discrimination.

5. BMVC (Zhang et al. 2019). It alternatively learns the
binary cluster structures and collaborative codes of multi-
view data, and improves the efficiency by employing the
code balance constraints on the cluster center.

6. FMR (Li et al. 2019). It maps the sample features into
kernel space to exploit the non-linear dependence rela-

tionships, and generates the potential representation via
the kernel correlation measure.

7. mPAC (Kang et al. 2019). It leverages multi-view rep-
resentations in partition space rather than in data space,
and aligns every partition through the rotation matrix to
construct a unified indicator matrix.

8. MCLES (Chen et al. 2020). It clusters data in a learn-
able potential embedding space rather than in the original
space, and jointly learns the global structure and indica-
tor matrix to integrate the complementary information.

9. PMSC (Kang et al. 2020). It makes use of multiview
data information in partition level instead of at graph gen-
eration stage to highlight the representation ability, and
directly combines partitions into one to explore the clus-
ter structure.

10. PFSC (Lv et al. 2021). It fuses multiple view-partitions
as a substitute for the single graph to relieve the inconsis-
tencies between heterogeneous representations, and uti-
lizes the intrinsic interactions among subtasks to enhance
the individual partition’s discrimination.

11. FMCNOF (Yang et al. 2021a). It combines graph
method and matrix factorization strategy together to
boost the efficiency, and skips the post-processing stage
of cluster label assignment by directly factoring the indi-
cator matrix.

12. FPMVS (Wang et al. 2022b). It explores the consis-
tent potential data distribution by mapping consensus
landmarks into original data space, and introduces view-
related coefficient to adaptively measure the importance
between views.

13. SFMC (Li et al. 2022b). It fuses view-wise graphs in a
self-supervised weighting manner rather than by regular-
izing them, and directly outputs the clusters by imposing
a connectivity constraint on the joint graph.

14. MSGL (Kang et al. 2022). It introduces a view-specific
weighting scheme to highlight the contributions of differ-
ent views, and explicitly exploits the cluster structure of
learned graph through a Laplacian matrix constraint.

15. PGSC (Wu et al. 2023). It constructs pure graphs by
searching the optimal neighbors to achieve the connectiv-
ity and sparsity concurrently, and unifies the graph gen-
eration and label allocation to dispel the adverse impact
of separated graphs on the clustering results.

16. UDBGL (Fang et al. 2023). It boosts the distinction
of learned representations by jointly solving single-view
and consensus-view graphs, and breaks down the k-
means step’s impact by directly producing the discrete
clusters using one rank constraint.

17. EEOMVC (Wang et al. 2023). It mitigates the noise
and redundancy by aggregating potential information at
graph partition stage instead of at similarity stage, and
decreases the risk of subsequent discrete procedure in
virtue of the binary indicators.

Multi-view Datasets
All experiments are conducted on the following popular
datasets, with sample sizes ranging from 512 to 126054:
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1. Calte101view3 1: This dataset contains 512 image ob-
jects, including elephant, camera, aircraft and etc. It is
with 11 classes and 3 views, and the data dimensions are
254, 512 and 36 respectively.

2. CCV2: This video dataset is collected under diverse il-
lumination and imaging circumstances, and is composed
of 6773 samples from 20 categories. The data dimensions
on 3 views are all 20.

3. STL103: This is a object recognition dataset including
car, horse, ship and etc, and consists of 13000 samples
from 10 different categories. The data dimensions on 3
views are 1024, 512 and 2048 respectively.

4. VGGFace1004: This dataset consists of 36287 faces with
various profession, illumination, pose, ethnicity and age.
The number of classes is 100, and the data dimensions on
4 views are 944, 576, 512 and 640 respectively.

5. YTF205: These are 63896 heterogeneous face identifica-
tion samples extracted from YouTube, and they are with
20 clusters. The data dimensions on 4 views are 944, 576,
512 and 640 respectively.

6. YTF506: There are 126054 face video samples from 50
different categories. Their data dimensions on 4 views
are 944, 576, 512 and 640 respectively.

Experiments
Results and Analysis
We first display the graph structure learned on the synthetic
dataset. As seen in Figure 3, NpGC learns clearer sample-
anchor structure and block diagonal structure than those in
Figure 1, which illustrates that it can capture higher-quality
clustering representations. Then, we report the clustering re-
sults on 6 real datasets in Table 1 and 2. Several observations
could be drawn from these tables:

1. NpGC in most situations is able to generate the most
satisfactory results in comparison with existing remark-
able methods. For instance, it achieves the improvements
of 0.64%, 0.23%, 4.66%, 1.18%, 2.03% and 2.05% in
terms of Precision than the Rank-2 counterparts like
PFSC, mPAC, UDBGL, EEOMVC and BMVC
respectively.

2. NpGC is with smaller standard deviation compared to
several stronger competitors like PFSC, FPMVS and
MSCIAS, which indicates that NpGC’s performance
is relatively stable. Methods mPAC, FMCNOF,
SFMC, MSGL and so on have 0 deviation value. This
is mainly because they directly output the clustering la-
bel rather than performing post-processing operations on
the representations. Despite very stable, these methods
typically have sub-optimal results than ours.

1https://www.vision.caltech.edu/datasets/
2https://www.ee.columbia.edu/ln/dvmm/CCV/
3https://cs.stanford.edu/∼acoates/stl10/
4https://www.robots.ox.ac.uk/∼vgg/data/vgg face2/
5https://www.micc.unifi.it/resources/datasets/e-ytf/
6https://www.micc.unifi.it/resources/datasets/e-ytf/

(a) Q (ACC=93.02%) (b) C (ACC=93.02%)

Figure 3: The learned graph structure on synthetic dataset.

3. NpGC receives a few second-best results on STL10,
YTF20 and YTF50 against BMVC and UDBGL, the
reasons of which could be that BMVC and UDBGL
introduce some view adjustment policies to balance the
contributions or importance of different views.

4. NpGC can consistently generate worth-having results
on these datasets with sample size from 512 to 126054,
which gives evidence that NpGC is resource-economical
and practical in handling various MVC problems.

5. Methods MVSC, AMGL, MLRSSC, MSCIAS,
SFMC, PGSC, EEOMVC and so on can not prop-
erly run on YTF20 and YTF50, which suggests that they
encounter limited applicability and are incapable of cop-
ing with the MVC problems with large scale samples.
Orthogonal to them, NpGC can get rid of this dilemma.

6. Methods FMCNOF, FPMVS and MSGL properly
run on all datasets, and yet usually output the inferior re-
sults compared with NpGC. The reasons are possibly
that they aggregate multi-view representations by merg-
ing graphs generated by single-level anchors. Although
consuming fewer storage space, this results in the diver-
sity information being weakened.

7. Methods AMGL, FPMVS and SFMC also do not
involve hyper-parameters, and however all of them pro-
vide poorer results with significant margins than our
NpGC. For instance, on Calte101view3, they are lower
than ours by 14.94%, 9.08% and 12.89% respectively in
terms of ACC. Therefore, our non-parametric framework
NpGC is more desirable.

8. Methods MSCIAS and BMVC are with four hyper-
parameters, and nevertheless even with the help of so
many hyper-parameters, they still do not outperform us
in terms of any one metric, which once again highlights
our NpGC’s superiority.

Running Time
In this subsection we aggregate the running time of all
compared approaches to emphasize NpGC’s advantages
in time expenditure. The comparisons are displayed in Fig-
ure 4. According to these results, we can get the conclusions:
1. With the sample size increasing, the running time of

all methods gradually increases. These methods can
all normally run on Calte101view3. For datasets with
medium scale like CCV and STL10, methods MVSC,
MCLES, PMSC, PFSC and etc become ineffective.
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Dataset Method Number of
Parameters

Metric
ACC NMI Purity Fscore Precision

Calte101view3

MVSC 3 26.02±1.86 15.68±1.29 28.55±1.53 16.47±1.14 15.62±1.00
AMGL 0 20.61±0.59 12.92±0.78 21.37±0.53 13.59±0.44 10.53±0.28

MLRSSC 3 17.77±0.00 4.37±0.05 17.77±0.00 16.44±0.02 10.41±0.01
MSCIAS 4 33.96±1.90 27.42±1.26 38.13±1.52 22.87±1.36 22.22±1.51
BMVC 4 24.41±0.00 14.42±0.00 27.15±0.00 14.73±0.00 14.56±0.00
FMR 2 25.45±1.81 16.79±1.45 28.83±1.36 16.02±1.21 16.14±1.22
mPAC 3 26.95±0.00 16.76±0.00 30.27±0.00 16.28±0.00 17.42±0.00

MCLES 3 28.05±0.91 17.11±1.10 29.48±1.04 18.07±0.71 15.87±0.77
PMSC 3 16.42±0.56 4.98±0.36 17.99±0.56 10.85±0.32 9.46±0.12
PFSC 2 35.41±2.08 26.40±1.46 37.94±1.85 23.72±1.62 24.07±1.65

FMCNOF 1 21.09±0.00 11.61±0.00 23.24±0.00 16.97±0.00 12.18±0.00
FPMVS 0 26.47±0.57 19.89±0.75 30.79±0.63 18.40±0.21 14.38±0.15
SFMC 0 22.66±0.00 15.32±0.00 24.02±0.00 18.63±0.00 11.43±0.00
MSGL 3 21.29±0.00 10.19±0.00 22.27±0.00 14.96±0.00 10.52±0.00
PGSC 2 15.93±0.27 8.16±0.38 17.20±0.46 15.79±0.17 9.38±0.03

UDBGL 3 34.77±0.00 27.90±0.00 37.30±0.00 23.70±0.00 21.87±0.00
EEOMVC 2 35.16±0.00 24.89±0.00 36.91±0.00 23.25±0.00 22.58±0.00

Ours 0 35.55±2.25 28.12±1.30 38.55±1.80 24.29±1.18 24.71±1.22

Dataset Method Number of
Parameters

Metric
ACC NMI Purity Fscore Precision

CCV

MVSC 3 N/A
AMGL 0 13.60±0.39 12.45±0.58 13.98±0.40 11.12±0.42 7.47±0.29

MLRSSC 3 11.19±0.86 2.20±0.26 11.46±0.65 10.81±0.21 5.93±0.19
MSCIAS 4 22.55±0.96 19.11±0.40 26.25±0.75 13.34±0.30 13.03±0.51
BMVC 4 15.84±0.00 11.46±0.00 17.73±0.00 11.84±0.00 9.54±0.00
FMR 2 15.95±0.61 12.80±0.23 20.53±0.42 9.75±0.19 10.18±0.18
mPAC 3 22.72±0.00 16.74±0.00 26.66±0.00 13.25±0.00 13.95±0.00

MCLES 3 N/A
PMSC 3 N/A
PFSC 2 N/A

FMCNOF 1 14.60±0.00 10.12±0.00 16.36±0.00 11.29±0.00 7.62±0.00
FPMVS 0 22.39±0.87 16.02±1.01 24.29±1.05 13.21±0.31 11.69±0.57
SFMC 0 11.03±0.00 2.15±0.00 11.18±0.00 10.84±0.00 5.75±0.00
MSGL 3 15.70±0.00 11.07±0.00 18.54±0.00 10.71±0.00 7.86±0.00
PGSC 2 10.57±0.00 0.56±0.00 10.70±0.00 10.84±0.00 5.73±0.00

UDBGL 3 20.74±0.00 17.34±0.00 22.84±0.00 13.25±0.00 10.14±0.00
EEOMVC 2 18.12±0.00 13.30±0.00 19.80±0.00 11.65±0.00 8.56±0.00

Ours 0 23.39±0.96 19.19±0.39 26.85±0.80 13.53±0.27 14.18±0.32

Dataset Method Number of
Parameters

Metric
ACC NMI Purity Fscore Precision

STL10

MVSC 3 N/A
AMGL 0 10.75±0.11 0.20±0.02 10.78±0.11 15.69±0.35 10.00±0.00

MLRSSC 3 N/A
MSCIAS 4 72.33±7.23 73.00±3.47 75.31±5.30 65.39±5.25 61.73±6.72
BMVC 4 62.06±0.00 63.93±0.00 64.22±0.00 55.69±0.00 51.97±0.00
FMR 2 N/A
mPAC 3 N/A

MCLES 3 N/A
PMSC 3 N/A
PFSC 2 N/A

FMCNOF 1 23.14±0.00 13.32±0.00 24.30±0.00 15.89±0.00 14.55±0.00
FPMVS 0 72.49±5.99 69.31±2.58 72.53±5.97 66.31±4.96 57.29±7.44
SFMC 0 10.06±0.00 0.16±0.00 10.08±0.00 18.17±0.00 9.99±0.00
MSGL 3 14.18±0.00 1.41±0.00 14.21±0.00 15.81±0.00 10.35±0.00
PGSC 2 10.05±0.00 0.14±0.00 10.07±0.00 18.17±0.00 9.99±0.00

UDBGL 3 83.29±0.00 88.99±0.00 87.66±0.00 83.87±0.00 78.30±0.00
EEOMVC 2 79.11±0.00 59.56±0.00 79.11±0.00 63.15±0.00 63.06±0.00

Ours 0 87.46±8.26 88.53±2.90 90.20±5.79 86.23±6.50 82.96±9.33

Table 1: Clustering results on real datasets Calte101view3, CCV and STL10 (mean±std). N/A represents that algorithm can
not normally work on this dataset.
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Dataset Method Number of
Parameters

Metric
ACC NMI Purity Fscore Precision

VGGFace100

MVSC 3 N/A
AMGL 0 N/A

MLRSSC 3 N/A
MSCIAS 4 N/A
BMVC 4 6.17±0.00 14.26±0.00 7.15±0.00 2.77±0.00 2.66±0.00
FMR 2 N/A
mPAC 3 N/A

MCLES 3 N/A
PMSC 3 N/A
PFSC 2 N/A

FMCNOF 1 3.17±0.00 5.80±0.00 3.25±0.00 2.38±0.00 1.27±0.00
FPMVS 0 4.93±0.13 9.71±0.25 5.07±0.14 2.82±0.01 1.58±0.01
SFMC 0 N/A
MSGL 3 4.70±0.00 9.32±0.00 5.22±0.00 2.10±0.00 1.35±0.00
PGSC 2 N/A

UDBGL 3 N/A
EEOMVC 2 7.68±0.00 14.04±0.00 8.54±0.00 3.11±0.00 2.71±0.00

Ours 0 9.28±0.32 16.95±0.33 10.25±0.31 3.84±0.13 3.89±0.13

Dataset Method Number of
Parameters

Metric
ACC NMI Purity Fscore Precision

YTF20

MVSC 3 N/A
AMGL 0 N/A

MLRSSC 3 N/A
MSCIAS 4 N/A
BMVC 4 57.39±0.00 70.65±0.00 62.76±0.00 49.04±0.00 47.13±0.00
FMR 2 N/A
mPAC 3 N/A

MCLES 3 N/A
PMSC 3 N/A
PFSC 2 N/A

FMCNOF 1 39.56±0.00 48.49±0.00 45.68±0.00 29.35±0.00 24.26±0.00
FPMVS 0 61.12±3.46 72.58±2.23 63.92±3.83 54.37±4.76 46.84±6.53
SFMC 0 N/A
MSGL 3 60.05±0.00 69.15±0.00 64.25±0.00 42.89±0.00 33.38±0.00
PGSC 2 N/A

UDBGL 3 68.98±0.00 78.66±0.00 74.02±0.00 61.40±0.00 56.19±0.00
EEOMVC 2 N/A

Ours 0 65.76±5.13 77.09±1.90 72.53±3.43 60.64±4.68 58.22±5.64

Dataset Method Number of
Parameters

Metric
ACC NMI Purity Fscore Precision

YTF50

MVSC 3 N/A
AMGL 0 N/A

MLRSSC 3 N/A
MSCIAS 4 N/A
BMVC 4 65.99±0.00 81.87±0.00 73.64±0.00 57.08±0.00 53.44±0.00
FMR 2 N/A
mPAC 3 N/A

MCLES 3 N/A
PMSC 3 N/A
PFSC 2 N/A

FMCNOF 1 26.53±0.00 44.98±0.00 27.82±0.00 16.04±0.00 10.44±0.00
FPMVS 0 62.56±2.57 80.32±1.05 64.34±2.43 54.86±3.38 44.93±4.23
SFMC 0 N/A
MSGL 3 44.33±0.00 61.61±0.00 51.24±0.00 24.74±0.00 17.03±0.00
PGSC 2 N/A

UDBGL 3 64.11±0.00 80.73±0.00 70.71±0.00 54.36±0.00 48.44±0.00
EEOMVC 2 N/A

Ours 0 66.13±3.01 83.08±0.87 73.36±2.00 59.60±2.94 55.49±3.74

Table 2: Clustering results on real datasets VGGFace100, YTF20 and YTF50 (mean±std). N/A represents that algorithm can
not normally work on this dataset.
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Figure 4: Running time of 18 algorithms.

Dataset Metric ACC NMI Purity Fscore Precision

Calte101view3
VR 33.96±1.50 27.44±1.13 37.42±1.23 23.45±0.81 23.89±0.89

VUR 32.95±3.37 26.00±1.07 35.82±2.49 22.26±3.51 22.56±4.43
Ours 35.55±2.25 28.12±1.30 38.55±1.80 24.29±1.18 24.71±1.22

CCV
VR 22.81±0.92 19.05±0.40 25.90±0.74 13.34±0.30 13.99±0.32

VUR 23.01±0.75 19.01±0.38 25.95±0.66 13.18±0.28 13.88±0.32
Ours 23.39±0.96 19.19±0.39 26.85±0.80 13.53±0.27 14.18±0.32

STL10
VR 83.99±7.66 86.97±2.79 87.97±5.43 84.38±6.05 79.61±8.46

VUR 86.13±3.91 73.62±2.07 87.22±3.08 77.16±3.09 76.79±3.98
Ours 87.46±8.26 88.53±2.90 90.20±5.79 86.23±6.50 82.96±9.33

VGGFace100
VR 9.01±0.41 16.52±0.35 9.96±0.38 3.23±0.16 3.28±0.16

VUR 8.44±0.31 16.18±0.28 9.29±0.34 3.03±0.10 3.16±0.10
Ours 9.28±0.32 16.95±0.33 10.25±0.31 3.84±0.13 3.89±0.13

YTF20
VR 64.97±5.22 76.05±1.89 71.66±3.62 59.57±4.79 57.32±5.70

VUR 64.32±5.33 75.98±1.70 71.23±3.26 59.09±4.33 57.17±5.14
Ours 65.76±5.13 77.09±1.90 72.53±3.43 60.64±4.68 58.22±5.64

YTF50
VR 65.32±3.37 81.39±1.07 72.00±2.49 58.31±3.51 54.36±4.43

VUR 64.99±3.19 81.10±0.96 71.80±2.14 57.94±3.46 53.79±4.29
Ours 66.13±3.01 83.08±0.87 73.36±2.00 59.60±2.94 55.49±3.74

Table 3: Ablation results for only using {B(r)}vr=1 or B.

2. PFSC is the most sensitive to the sample size, which
is mainly caused by its quartic time and square space
complexities. Cubic computational overhead also leads
to MVSC, AMGL, MLRSSC, FMR, PMSC and
etc encountering a relatively slow running speed.

3. Methods MVSC,MLRSSC,FMR,mPAC,PMSC,
MCLES and etc are generally slower than FPMVS,
SFMC, FMCNOF, EEOMVC, UDBGL and
ours. This is mainly because the formers adopt a sub-
space strategy to establish the similarity relationship,
and generally need to construct the full graph.

4. NpGC typically works well on these multi-view
datasets within an acceptable time range, including
datasets with small, middle, and large scales respectively.
This indicates that NpGC is with wider applicability.

5. Compared to large-scale oriented methods BMVC,
FPMVS, MSGL, FMCNOF, UDBGL and etc,
NpGC can provide competitive running speed. Spe-
cially, NpGC needs less time than MSGL consistently.

6. Although BMVC and FMCNOF are slightly faster
than ours, the plain code and random sampling opera-
tions they adopted are not conducive to sufficiently ex-
ploiting consistency and complementarity among hetero-
geneous data, producing sub-optimal results.

Ablation Study

In the paper we employ two types of anchors, view-related
{B(r)}vr=1 and view-unrelated B, to concurrently explore
exclusive and common characteristics among views so as
to form high-quality representations. To reveal the effec-
tiveness of each part, we organize some ablation studies, as
shown in Table 3 where VR and VUR are the results using
only {B(r)}vr=1 and B respectively. As seen, we can com-
bine B(r) and B’s information to achieve better results.

Concluding Remarks
We proposed a non-parametric framework NpGC to deal
with multi-view clustering problems more practically. It
adopts two kinds of anchors to simultaneously mine exclu-
sive and common characteristics among views. Unlike previ-
ous algorithms integrating multi-view information at graph
level, it learns directly at anchor level, which allows the orig-
inal diversity to be well maintained. Also, the consensus bi-
partite graph directly links these two kinds of anchors so
that they can negotiate mutually to improve their discrimi-
nation. Experiments have shown that it produces competi-
tive results, even on the dataset with over 120000 samples.
In the future, we will strive to design appropriate weighting
schemes for anchors to further increase the performance.
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