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Abstract

In numerous real-world applications, it is quite common that
sample information is partially available for some views due
to machine breakdown or sensor failure, causing the problem
of incomplete multi-view clustering (IMVC). While several
IMVC approaches using view-shared anchors have success-
fully achieved pleasing performance improvement, (1) they
generally construct anchors with only one dimension, which
could deteriorate the multi-view diversity, bringing about se-
rious information loss; (2) the constructed anchors are typi-
cally with a single size, which could not sufficiently charac-
terize the distribution of the whole samples, leading to limited
clustering performance. For generating view-shared anchors
with multi-dimension and multi-size for IMVC, we design a
novel framework called Diverse View-Shared Anchors based
Incomplete multi-view clustering (DVSAI). Concretely, we
associate each partial view with several potential spaces. In
each space, we enable anchors to communicate among views
and generate the view-shared anchors with space-specific di-
mension and size. Consequently, spaces with various scales
make the generated view-shared anchors enjoy diverse di-
mensions and sizes. Subsequently, we devise an integration
scheme with linear computational and memory expenditures
to integrate the outputted multi-scale unified anchor graphs
such that running spectral algorithm generates the spectral
embedding. Afterwards, we theoretically demonstrate that
DVSAI owns linear time and space costs, thus well-suited
for tackling large-size datasets. Finally, comprehensive exper-
iments confirm the effectiveness and advantages of DVSAI.

Introduction
As a technology for effectively grouping multi-view data
without requiring any priori labels, multi-view clustering has
drawn widespread concerns recently (Li et al. 2022b; Wang
et al. 2022a; Yu et al. 2023a). However, their performance
is heavily dependent on the completeness of sample infor-
mation. In many situations, the sample information could
be missing in some views, bringing about partial multi-view
data (Yang et al. 2021a; Yu et al. 2023b; Xia et al. 2022a).
For example, in medical data, patients typically choose to do
some types of examinations rather than all types of them; In
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web-page data, some webs may include audio, video and hy-
perlink simultaneously, and yet others may have one or two
types (Zhang et al. 2019; Liang et al. 2023; Fu et al. 2023).
The unpaired sample absence in respective view causes it to
be quite difficult to capture the consensus representation, re-
sulting in serious performance degradation. This induces the
problem of incomplete multi-view clustering (IMVC).

For effectively tackling IMVC issues, numerous algo-
rithms have been devised, like (Li, Jiang, and Zhou 2014;
Fang et al. 2020; Wang et al. 2019a; Yang et al. 2021b;
Wen et al. 2021). Li, Jiang, and Zhou (2014) adopt NMF
scheme to handle partial views and seek to build the latent
subspace such that similar samples reside tightly. Wang et al.
(2019a) build up the connection between IMVC and per-
turbation theory, and learn the consensus characteristics by
minimizing the perturbation risk. These methods receive the
desirable clustering results, however, they usually take cu-
bic time and/or square memory overheads. This causes them
unable to tackle large-size datasets, greatly impeding the
model’s scalability. Recently, anchor strategy (Kang et al.
2020; Qiang et al. 2021; Xia et al. 2022b), a promising tech-
nology for decreasing the overheads, has captured increasing
interest. Instead of constructing the relationship between all
samples, it first chooses a small number of landmarks as an-
chors and then generates the relationship between anchors
and all samples. Accordingly, the graph with size n × n is
reduced to one with m× n where m ≪ n.

IMVC algorithms based on anchors have made extraordi-
nary progress in increasing both the efficiency and the clus-
tering results (Wang et al. 2022b; Li et al. 2022a; Liu et al.
2022b), nevertheless, the view-shared anchors constructed
by existing methods are generally with only one dimension,
which could deteriorate the diversity between views, lead-
ing to severe information loss. This is mainly because ev-
ery view normally has exclusive features and one common
dimension may not be competent to characterize all views.
In addition to this, the constructed view-shared anchors are
typically with a single size, which could be unfavorable for
deeply exploiting heterogeneous representations since only
one size could not adequately reflect the actual distribution
of the whole samples, resulting in less discriminative an-
chors. The clustering performance is also largely dependent
on the choice of dimension and size of anchors, which to
some extent limits the flexibility of the model.
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Figure 1: Illustration of the devised DVSAI. We utilize matrices {Pv,t}Tt=1 to build up T potential spaces for every partial
view v. In each space, we enable anchors to communicate among views, and jointly learn across views to produce unified
anchor graph and view-shared anchors with space-specific dimension and size. In such ways, spaces with diverse scales make
the learned view-shared anchors enjoy multi-dimension and multi-size. Subsequently, these unified anchor graphs with various
scales generated in all potential spaces are integrated together within linear computation and memory expenditures.

For overcoming these limitations, we develop an inno-
vative framework named DVSAI, as described in Fig. 1.
Specifically, we integrate anchor generation and anchor
graph construction into a joint learning IMVC framework,
and associate each partial view with T potential spaces.
In each space, we enable anchors to communicate among
views and learn across views to generate the view-shared
anchors with space-specific dimension and size. Accord-
ingly, spaces enjoying various scales guarantee the gener-
ated view-shared anchors to be with both multi-dimension
and multi-size. Subsequently, it is essential to integrate the
outputted unified anchor graphs with diverse scales together
so as to generate the spectral embedding. Nevertheless, how
to integrate graphs with different scales has not been well
researched. For alleviating this problem, we develop an inte-
gration scheme enjoying linear computational and memory
expenditures by avoiding building up the complete affinity
of each anchor graph. Afterwards, for optimizing the resul-
tant objective function, we devise a four variable alterna-
tive approach. In conjunction with it, our DVSAI is proven
to be with linear time and space complexities, thus winning
the ability to handle large-size datasets. By conducting com-
prehensive experiments on six common multi-view datasets,
DVSAI’s effectiveness and advantages are both verified. Our
main contributions are summarized as follows:

• We generate view-shared anchors with multi-dimension
and multi-size for IMVC so as to aggregate heteroge-
neous features more sufficiently.

• We offer an integration scheme with linear computational
and storage expenditures to combine together the anchor
graphs with diverse scales.

• We design an iterative method involving four variables,
which owns linear time and space complexities, to opti-
mize the resultant IMVC objective function. Reasonable
experiments are implemented to validate our advantages.

Related Work
View-shared Anchor Clustering
Anchor strategy selects a few number of landmarks to ap-
proximately represent the overall samples, and then builds
up the relation with original samples to generate graphs with
small size (Kang et al. 2020; Li et al. 2023; Chen et al. 2022;
Li et al. 2022c). The basic framework is defined as:

min
Gv≥0,G⊤

v 1=1

V∑
v=1

∥Xv −AvGv∥2F + β ∥Gv∥2F , (1)

where Xv ∈ Rdv×n,Av ∈ Rdv×m,Gv ∈ Rm×n repre-
sent the sample matrix, anchors and anchor graph of the v-th
view. Usually, the number of anchors, m, is much smaller
than the number of samples, n. On this foundation, the
framework using view-shared anchors can be formulated as:

min
G≥0,G⊤1=1

V∑
v=1

∥WvXv −AG∥2F + β ∥G∥2F , (2)

where Wv ∈ Rl×dv , A ∈ Rl×m, G ∈ Rm×n represent
the compression matrix for view v, view-shared anchors and
unified anchor graph respectively. l and m denote the di-
mension and size of view-shared anchors. Following this
line, Sun et al. (2021) utilize learning strategy instead of ran-
dom sampling to produce anchors. Wang et al. (2022c) of-
fer a framework without additional parameters, and generate
the unified anchor graph with low-rank property. Liu et al.
(2022c) directly output the clustering labels by construct-
ing the unified anchor graph with k-connected components.
Wang et al. (2022b) provide a flexible fusion framework to
tackle any view incompleteness. Despite impressive results,
the view-shared anchors generated by current methods are
generally with only one dimension and a single size, which
could deteriorate the data diversity and not well characterize
the whole samples, limiting the clustering performance.
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Formulation
Framework
We first measure the incompleteness of multi-view data via
the given indicator vectors {wv ∈ Rnv}Vv=1, where nv repre-
sents the number of the observed samples in view v. Specif-
ically, for each partial view, we associate an index matrix Sv

consisting of element [Sv]i,j ,

[Sv]i,j =

{
1 if [wv]j = i ∀j = 1, 2, · · · , nv.

0 otherwise.
(3)

Then, XvSv ∈ Rdv×nv represents the samples available in
view v. Afterwards, we make view-shared anchors learnable
and jointly optimize view-shared anchors and unified anchor
graph in one framework:

min
A,G

V∑
v=1

∥XvSv −PvAGSv∥2F + β ∥G∥2F

s.t. A⊤A = Im,G ≥ 0,G⊤1 = 1.

(4)

Further, to generate the view-shared anchors with multi-
dimension and multi-size, we assign several potential spaces
with diverse scales to each partial view, and learn across
views in all spaces so as to make view-shared anchors en-
joy space-specific dimension and size:

min
Pv,t,At,Gt

V∑
v=1

T∑
t=1

∥XvSv −Pv,tAtGtSv∥2F + β ∥Gt∥2F

s.t. P⊤
v,tPv,t = Ilt ,A

⊤
t At = Imt ,Gt ≥ 0,G⊤

t 1 = 1,
(5)

where {Pv,t ∈ Rdv×lt}Tt=1 represent T potential spaces in-
troduced for view v, and At ∈ Rlt×mt represents the pro-
duced view-shared anchors in space t. lt and mt represent
the dimension and size of view-shared anchors in space t re-
spectively. The orthogonal constraints guarantee the learned
view-shared anchors and potential spaces to be more dis-
criminative. Pv,t, At and Gt are iteratively updated into one
framework, which makes them boost each other.

Additionally, considering that At could have different
contributions in spaces {Pv,t}Vv=1, we offer a group of
weight variables for each space to adaptively balance the
contributions of view-shared anchors. Finally, we design the
DVSAI framework as

min
Pv,t,At,Gt,α

V∑
v=1

T∑
t=1

α2
v,t

(
∥XvSv −Pv,tAtGtSv∥2F +

β ∥Gt∥2F
)
+ γ ∥α∥2F

s.t. P⊤
v,tPv,t = Ilt ,A

⊤
t At = Imt ,

Gt ≥ 0,G⊤
t 1 = 1,α ≥ 0,α⊤1 = 1.

(6)
In this manner, besides successfully generating view-

shared anchors with diverse dimensions and sizes for IMVC,
it is also able to automatically adjust the importance of view-
shared anchors so as to better characterize partial multi-
view data, increasing the model’s expression. Moreover,

the generated multi-scale unified anchor graphs {Gt ∈
Rmt×n]}Tt=1 have more strong ability to capture the simi-
larity relationship with samples, and thereby bring inspiring
clustering performance improvement.

Solver
We solve Eq. (6) by the following four steps alternatively.

Step-1: Optimize {Pv,t}V ,T
v=1,t=1. Fixing {At}, {Gt}

and α, the optimization w.r.t. each Pv,t in Eq. (6) is

min
Pv,t

∥XvSv −Pv,tAtGtSv∥2F s.t. P⊤
v,tPv,t = Ilt . (7)

After expanding F -norm and deleting the irrelevant terms,
Eq. (7) equivalently becomes

max
Pv,t

Tr
(
P⊤

v,tXvSvS
⊤
v G

⊤
t A

⊤
t

)
s.t. P⊤

v,tPv,t = Ilt . (8)

Denote the SVD of XvSvS
⊤
v G

⊤
t A

⊤
t as UΣV⊤. Accord-

ing to the theorem in (Wang et al. 2019b), we have that the
optimal Pv,t is UV⊤.

Considering that the multiplication of Xv and SvS
⊤
v costs

O(dvn
2) complexity, directly performing SVD is relatively

time-consuming. In particular, when the number of samples
n is larger, this will bring about expensive time overhead,
causing the inability to handling large-size tasks.

For improving the efficiency, we notice that

SvS
⊤
v = diag(fv,1, fv,2, · · · , fv,n), (9)

where fv,i =
∑nv

j=1[Sv]i,j , i = 1, · · · , n. That is, the diag-
onal element is the row sum of Sv . Hence, we have

XvSvS
⊤
v =

[
fv,1[Xv]:,1, fv,2[Xv]:,2, · · · , fv,n[Xv]:,n

]
.

(10)
Further, Eq. (10) can be reformulated as

XvSvS
⊤
v = Xv ⊙ Fv, (11)

where Fv = 1dv×1 · [fv,1, fv,2, · · · , fv,n]1×n. Hadamard
product Xv ⊙ Fv costs O(dvn) complexity. Therefore, we
run SVD on (Xv ⊙Fv)G

⊤
t A

⊤
t to acquire the optimal Pv,t.

Step-2: Optimize {At}Tt=1. Fixing {Pv,t}, {Gt} and α,
the optimization w.r.t. each At in Eq. (6) is

min
A⊤

t At=Imt

V∑
v=1

α2
v,t ∥XvSv −Pv,tAtGtSv∥2F . (12)

Deleting irrelevant items, Eq. (12) is transformed as

max
A⊤

t At=Imt

Tr

(
A⊤

t

(
V∑

v=1

α2
v,tP

⊤
v,t (Xv ⊙ Fv)G

⊤
t

))
(13)

The optimal At is UV⊤ where U and V are the SVD matri-
ces of the term

∑V
v=1 α

2
v,tP

⊤
v,t (Xv ⊙ Fv)G

⊤
t respectively.

Step-3: Optimize {Gt}Tt=1. Fixing {Pv,t}, {At} and α,
the optimization w.r.t. each Gt in Eq. (6) is

min
Gt

V∑
v=1

α2
v,t

(
∥XvSv −Pv,tAtGtSv∥2F + β ∥Gt∥2F

)
s.t. Gt ≥ 0,G⊤

t 1 = 1.
(14)
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Given that the feasible region is aimed at the column of Gt,
hence, we can update Gt by column:

min
[Gt]:,j

[G⊤
t ]j,:[Gt]:,j

(
V∑

v=1

α2
v,t (fv,j + β)

)

− 2[G⊤
t ]j,:

(
V∑

v=1

α2
v,tA

⊤
t P

⊤
v,tXv ⊙ Fv

)
:,j

s.t. [Gt]:,j ≥ 0, [Gt]
⊤
:,j1 = 1.

(15)

Note that the term
∑V

v=1 α
2
v,t (fv,j + β) is a scalar, and

hence we can equivalently rewrite Eq. (15) as

min
[Gt]:,j

∥[Gt]:,j − qj∥2F s.t. [Gt]:,j ≥ 0, [Gt]
⊤
:,j1 = 1, (16)

where qj =
(
∑V

v=1 α2
v,tA

⊤
t P⊤

v,tXv⊙Fv)
:,j∑V

v=1 α2
v,t(fv,j+β)

. For solving

Eq. (16), we formulate the Lagrangian function as

L ([Gt]:,j ,Φ, φ) =
1

2
∥[Gt]:,j − qj∥2F − Φ⊤[Gt]:,j

− φ
(
[Gt]

⊤
:,j1− 1

)
.

(17)

Using KKT conditions, we can get

[Gt]:,j − qj − Φ− φ1 = 0, Φ⊤[Gt]:,j = 0. (18)

Further, in conjunction with [Gt]
⊤
:,j1 = 1, we can get

[Gt]:,j = max (qj + φ1, 0) , φ = (1− q⊤j 1)/mt. (19)

Step-4: Optimize α. Fixing {Pv,t}, {At} and {Gt}, the
optimization w.r.t. α in Eq. (6) is

min
α

V∑
v=1

T∑
t=1

α2
v,thv,t s.t. α ≥ 0,α⊤1 = 1, (20)

where hv,t = ∥XvSv −Pv,tAtGtSv∥2F + β ∥Gt∥2F + γ.
For any given v and t, hv,t is a constant. Thus, we have

αv,t =

1
hv,t∑V

v=1
1

hv,t

. (21)

Integration
We need to integrate the generated multi-scale unified an-
chor graphs {Gt ∈ Rmt×n]}Tt=1 together such that running
spectral algorithm generates the spectral embedding.

According to Ref. (Chen and Cai 2011), we have that the
complete affinity Ot of Gt can be recovered by setting Ot =

Ĝ⊤
t Ĝt, where Ĝt = M

−1/2
t Gt. The matrix Mt ∈ Rmt×mt

is diagonal, and the element [Mt]i,i is set as
∑n

j=1[Gt]i,j ,
i = 1, 2, · · · ,mt. Therefore, the affinity between all views
can be calculated as

O =
V∑

v=1

T∑
t=1

α2
v,tOt. (22)

Subsequently, the spectral embedding can be acquired by
performing spectral algorithm on O.

Algorithm 1: DVSAI
Input:Partial views {Xv}Vv=1, index matrices {Sv}Vv=1, pa-
rameters β, γ;
Initialize: {Pv,t}V ,T

v=1,t=1, {At}Tt=1, {Gt}Tt=1, α;
1: repeat
2: Solving every Pv,t by Eq. (8);
3: Solving every At by Eq. (13);
4: Solving every Gt by Eq. (15);
5: Solving α by Eq. (21);
6: until convergent
7: Integrating {Gt}Tt=1 by Eq. (24);
8: Generating U by running SVD on L;

Output: Clustering indicators by running k-means on U;

Considering that, however, O is with size n× n, it will
cost O(n2) memory expenditure and O(n3) computational
expenditure when producing the spectral embedding.

To decrease the complexity, we observe that

O = LL⊤, (23)

where

L =
[
α1,1Ĝ

⊤
1 , · · · , α1,T Ĝ

⊤
T , · · · , αV,1Ĝ

⊤
1 , · · · , αV,T Ĝ

⊤
T

]
.

(24)
Denote the SVD of matrix L ∈ Rn×(

∑T
t=1 mt)V as UΣV⊤.

We have
O = UΣ2U⊤, (25)

which illustrates that the matrix consisting of the eigen-
vectors of O equals to U. Therefore, U can be regarded
as the spectral embedding, and we can run k-means on
it to produce the discrete clustering indicators. Due to
V
∑T

t=1 mt ≪ n, integrating {Gt}Tt=1 as L takes O(n)
space cost, and performing SVD on L takes O(n) time cost.
As a result, the space and computational overheads of our
integration scheme are both linear w.r.t. n. The pipeline of
the devised DVSAI algorithm is presented in Algorithm 1.

Dataset Samples Feature Dimension
Caltech101-7 1474 48, 40, 254, 1984, 512, 928
Caltech101-20 2386 48, 40, 254, 1984, 512, 928

CCV 6773 20, 20, 20
SUNRGBD 10335 4096, 4096

NUSWIDEOBJ 30000 65, 226, 145, 74, 129
YoutubeFace Sel 101499 64, 512, 64, 647, 838

Table 1: Details of six benchmark datasets.

Complexity
Computational Complexity The time overhead is mainly
composed of updating the variables {Pv,t}, {At}, {Gt} and
α. When updating each Pv,t, calculating (Xv⊙Fv)G

⊤
t A

⊤
t

and running SVD on it take O(dvn + dvnmt + dvmtlt)
and O(dvl

2
t ) respectively. Hence, updating {Pv,t} takes

O(dn
∑T

t=1(mt)). When updating each At, calculating∑V
v=1 α

2
v,tP

⊤
v,t (Xv ⊙ Fv)G

⊤
t and running SVD on it take
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Data Methods 0.1 0.3 0.5 0.7
ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

C
al

te
ch

10
1-

7
BSV 54.90 30.14 72.57 54.57 20.05 68.45 54.66 10.26 61.98 54.57 14.08 64.85
MIC 44.02 31.80 78.09 40.70 28.88 74.24 34.50 25.10 70.72 34.95 21.12 68.85

MKKM-IK 34.95 30.11 77.71 34.64 29.41 77.84 41.02 35.45 77.17 39.36 33.12 77.00
UEAF 41.87 39.15 79.52 38.46 38.30 79.63 36.58 32.27 76.43 34.02 31.97 77.75

IK-MKC 33.11 30.36 77.49 43.72 28.52 77.14 49.04 28.07 77.05 40.64 29.17 76.17
FLSD 55.89 41.76 81.13 55.97 39.70 80.32 55.37 37.71 79.32 54.75 35.42 78.07

IMVC-CBG 48.57 43.60 80.35 46.67 43.62 81.59 46.60 40.59 81.05 43.76 42.33 79.86
LSIMVC 41.35 29.74 77.17 38.94 28.90 74.32 44.37 32.45 77.73 45.69 32.10 77.81

BGIMVSC 62.65 51.14 82.77 53.26 48.58 83.24 61.39 44.66 80.75 59.81 51.56 81.61
PIMVC 56.44 56.08 85.96 55.67 54.52 84.48 49.87 50.03 83.65 54.99 53.73 85.55
HCLS 62.22 59.78 85.31 60.75 50.43 85.35 60.02 48.42 84.94 61.30 47.81 84.46
Ours 62.73 62.02 87.90 59.48 60.69 87.34 60.49 58.05 86.70 61.34 58.49 87.25

C
al

te
ch

10
1-

20

BSV 42.41 39.30 55.90 34.87 30.26 50.43 41.91 25.10 45.56 40.65 18.64 45.30
MIC 31.62 37.45 60.18 28.07 33.88 57.28 26.90 30.36 54.29 23.37 25.08 50.58

MKKM-IK 33.28 46.23 66.91 34.02 44.84 66.62 28.21 32.74 59.18 31.30 34.85 56.90
UEAF 41.68 54.53 72.54 39.12 49.50 69.54 35.35 45.52 66.76 33.71 44.02 66.53

IK-MKC 35.38 47.17 67.47 34.85 41.86 63.89 30.40 33.63 56.83 30.17 33.42 57.23
FLSD 41.85 54.55 72.90 41.50 52.33 71.83 40.47 49.40 69.93 38.77 47.58 68.41

IMVC-CBG 47.86 58.92 75.98 48.78 56.80 74.75 44.57 53.99 72.90 43.82 53.12 72.27
LSIMVC 32.42 40.01 61.94 33.03 39.79 61.76 32.61 39.42 61.84 33.04 39.42 62.23

BGIMVSC 50.78 52.43 66.18 50.62 47.80 64.82 43.20 46.82 60.15 48.32 47.08 63.94
PIMVC 49.19 60.52 76.35 47.71 60.29 76.28 46.02 58.39 74.88 46.17 57.62 74.40
HCLS 52.44 58.03 73.57 57.44 59.92 74.29 53.10 56.47 72.62 53.79 56.78 74.15
Ours 71.14 68.63 79.91 69.45 64.93 77.58 57.28 61.34 76.51 65.02 61.13 75.98

C
C

V

BSV 11.75 5.94 13.67 12.08 5.25 12.88 11.82 4.60 12.70 12.00 4.39 12.57
MIC 15.08 10.56 19.10 13.90 9.10 17.53 12.76 7.57 16.32 12.00 6.66 15.57

MKKM-IK 15.42 11.55 19.53 15.20 10.83 19.02 13.74 9.47 18.16 14.57 10.15 18.40
UEAF 19.06 17.05 22.32 19.02 16.04 21.31 16.90 14.03 19.29 15.97 12.94 18.63

IK-MKC 18.03 14.11 22.19 16.65 12.78 20.39 15.30 11.50 18.83 14.75 11.18 18.40
FLSD 14.31 12.33 18.46 13.81 10.70 17.98 14.23 10.48 18.05 13.70 10.20 17.56

IMVC-CBG 21.73 16.82 25.11 20.22 15.70 23.32 18.55 14.41 21.98 17.15 12.91 20.88
LSIMVC 19.26 18.17 24.39 18.94 16.82 23.76 17.45 14.83 21.55 16.19 12.79 20.13

BGIMVSC 19.11 16.78 20.19 15.33 12.96 17.44 17.08 14.25 19.79 16.32 13.10 19.32
PIMVC 18.51 17.51 23.21 18.30 16.38 23.48 16.66 14.27 20.93 16.01 13.35 19.67
HCLS 17.67 13.49 21.82 18.51 13.39 22.68 17.99 13.13 21.33 17.90 13.15 21.71
Ours 23.67 18.16 26.16 21.97 17.06 24.81 20.42 15.76 23.07 20.00 14.70 22.88

Table 2: Clustering results of different methods on Caltech101-7, Caltech101-20 and CCV.

O(dn+ ltdn+ ltnmt) and O(ltm
2
t ). Hence, updating {At}

takes O(n
∑T

t=1(ltd + ltmt)) totally. When updating each
Gt, constructing q and computing analytical solutions take
O(mtltd+mtdn+dn) and O(mtn). Hence, updating {Gt}
takes O(d

∑T
t=1(mtlt) + dn

∑T
t=1(mt)) totally. Construct-

ing hv,t takes O(dvn + dvltmt + dvmtn + mtn). Hence,
updating α takes O(d

∑T
t=1(ltmt)+nd

∑T
t=1(mt)). Due to

mt ≤ lt and mt ≪ d, hence, updating {Pv,t}, {At}, {Gt}
and α totally takes O(nd

∑T
t=1(lt)). Evidently, it is linear

w.r.t. n. In integration stage, it also takes O(n). Hence, our
DVSAI enjoys linear time overhead w.r.t. n.

Space Complexity The main storage overheads of DV-
SAI are from the optimization variables {Pv,t ∈ Rdv×lt},
{At ∈ Rlt×mt}, {Gt ∈ Rmt×n} and α ∈ RV×T . There-
fore, the memory cost is d

∑T
t=1 lt+n

∑T
t=1 mt. In general,

the anchor dimension lt is a constant and much smaller than
n. Consequently, our space complexity is O(n).

Experiments
Datasets, Baselines and Setup
Six datasets are utilized in the experiments. Caltech101-7
and Caltech101-20 are two image datasets with small size.
CCV and SUNRGBD are the video and the 3D datasets with
medium size. NUSWIDEOBJ and YoutubeFace Sel are
large-size web-page and video datasets respectively. Their
detailed descriptions are presented in Table 1. To demon-
strate the superiority of DVSAI, we compare it with the
following eleven strong baselines: BSV(Jordan and Weiss
2002), MIC (Shao, He, and Yu 2015), MKKM-IK (Liu
et al. 2017), UEAF (Wen et al. 2019), IK-MKC (Liu et al.
2020), FLSD (Wen et al. 2021), IMVC-CBG (Wang et al.
2022b), LSIMVC (Liu et al. 2022a), BGIMVSC (Sun et al.
2023), PIMVC (Deng et al. 2023), HCLS (Wen et al. 2023).

We tune the hyper-parameter β in [2−4, 2−3, · · · , 23, 24]
and γ in [102, 103, 104, 105]. We set the dimension and size
of anchors lt and mt in space t to be the same, both as tk,
and the number of spaces T as 5. Three metrics, ACC, NMI,
Purity, are employed to assess the clustering performance.
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Data Methods 0.1 0.3 0.5 0.7
ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

SU
N

R
G

B
D

BSV 4.76 3.16 13.33 5.34 3.14 13.09 6.03 3.15 12.88 6.98 3.33 13.15
MIC 16.83 25.12 37.21 15.22 23.05 34.39 14.02 20.93 31.77 13.91 19.35 29.92

MKKM-IK 11.25 15.04 26.61 11.41 14.86 26.61 11.13 15.05 26.88 11.34 15.24 26.99
UEAF 17.81 25.21 37.00 16.18 23.04 35.08 15.35 21.59 33.58 14.10 20.29 31.64

IK-MKC 19.85 24.83 37.67 17.96 21.89 34.47 16.68 19.85 32.33 15.35 18.67 30.83
FLSD 15.09 22.57 34.28 14.67 21.46 32.99 14.28 20.45 31.76 14.33 20.12 31.91

IMVC-CBG 17.95 24.40 37.94 16.60 21.99 35.34 15.73 19.94 32.79 15.95 18.68 31.32
LSIMVC 11.75 18.35 29.24 12.00 18.28 29.58 12.79 18.24 29.59 12.95 18.64 30.56

BGIMVSC 15.21 8.73 16.03 11.42 3.85 12.11 11.01 3.28 11.65 10.97 3.07 11.64
PIMVC 16.09 24.89 36.45 15.55 23.97 35.50 14.99 22.41 33.96 14.60 20.07 32.88
HCLS 20.74 24.73 37.04 19.34 23.08 35.24 17.43 22.21 34.25 17.25 20.05 32.89
Ours 23.98 25.34 37.31 21.83 23.22 35.54 21.08 21.87 34.32 19.83 20.15 33.59

N
U

SW
ID

E
O

B
J

BSV - - - - - - - - - - - -
MIC - - - - - - - - - - - -

MKKM-IK - - - - - - - - - - - -
UEAF - - - - - - - - - - - -

IK-MKC - - - - - - - - - - - -
FLSD - - - - - - - - - - - -

IMVC-CBG 12.35 10.89 22.10 12.69 10.44 21.90 11.88 9.92 21.45 11.71 9.49 21.13
LSIMVC - - - - - - - - - - - -

BGIMVSC - - - - - - - - - - - -
PIMVC - - - - - - 14.40 12.38 22.13 13.37 11.27 21.08
HCLS - - - - - - - - - - - -
Ours 18.85 13.89 23.98 17.57 12.58 23.09 17.29 11.82 22.55 15.98 10.69 21.10

Y
ou

tu
be

Fa
ce

Se
l

BSV - - - - - - - - - - - -
MIC - - - - - - - - - - - -

MKKM-IK - - - - - - - - - - - -
UEAF - - - - - - - - - - - -

IK-MKC - - - - - - - - - - - -
FLSD - - - - - - - - - - - -

IMVC-CBG 18.50 15.67 31.24 16.89 13.61 29.85 15.63 12.18 28.71 14.06 10.97 28.16
LSIMVC - - - - - - - - - - - -

BGIMVSC - - - - - - - - - - - -
PIMVC - - - - - - - - - - - -
HCLS - - - - - - - - - - - -
Ours 27.13 25.82 37.14 26.67 24.25 35.94 25.84 22.95 35.38 23.58 20.46 33.70

Table 3: Clustering results of different methods on SUNRGBD, NUSWIDEOBJ and YoutubeFace Sel.

Dataset 0.1 0.3 0.5 0.7
COMP Ours COMP Ours COMP Ours COMP Ours

Caltech101-7 0.37 0.08 0.37 0.08 0.38 0.07 0.36 0.07
Caltech101-20 0.84 0.36 0.84 0.35 0.82 0.34 0.83 0.35

CCV 4.31 0.26 4.27 0.25 4.29 0.26 4.28 0.25
SUNRGBD 11.03 0.51 11.21 0.51 11.11 0.52 10.95 0.50

NUSWIDEOBJ 151.21 4.32 154.46 4.29 150.52 4.29 150.93 4.16
YoutubeFace Sel - 13.67 - 13.83 - 13.70 - 13.73

Table 4: Execution time (in second) comparison between the COMP scheme and our graph integration scheme.

Experimental Results
Table 2 and 3 present the clustering results on six datasets
under the missing rate p = 0.1, 0.3, 0.5, 0.7, where ’-’ de-
notes the memory overflow failure. We can have that:

(1) Our DVSAI displays obvious advantages over these
advanced IMVC competitors. Especially under the missing
rate 0.1, it exceeds all compared approaches in ACC, NMI
and PUR. Moreover, on datasets Caltech101-20 and CCV, it
makes the best results. On other datasets and missing rates,
it also can generate comparable results. These give well ev-

idence of the effectiveness of our DVSAI.
(2) For YoutubeFace Sel, which has more than 100000

instances, most of approaches report the memory overflow
failure. This indicates that these approaches can not effec-
tively tackle large-size IMVC problem. By contrast, DVSAI
can not only execute normally but also produce the best re-
sults in three metrics. These suggest that DVSAI is well able
to work with large-size partial multi-view data.

(3) In contrast with MIC, MKKM-IK, IK-MKC, UEAF,
FLSD, etc, which handle incomplete multi-view clustering
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Dataset Ablation 0.1 0.3 0.5 0.7
ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

Caltech101-7

SDSS 51.22 54.17 83.99 48.24 48.72 80.33 48.41 46.60 79.20 48.85 45.77 79.11
SDMS 53.12 55.70 85.96 50.63 51.15 83.71 50.36 48.51 82.21 50.98 48.26 82.09
MDSS 53.91 55.24 85.45 49.18 49.08 81.14 48.54 46.91 79.77 49.69 47.47 79.72
Ours 62.73 62.02 87.90 59.48 60.69 87.34 60.49 58.05 86.70 61.34 58.49 87.25

Caltech101-20

SDSS 69.45 66.52 77.87 56.62 59.85 74.60 52.76 57.76 73.30 62.99 58.33 72.93
SDMS 69.75 66.66 77.96 58.78 61.16 75.05 54.03 59.99 74.68 64.29 59.28 74.50
MDSS 69.78 66.70 79.04 58.50 61.99 75.68 56.84 59.75 73.91 63.45 59.19 73.93
Ours 71.14 68.63 79.91 69.45 64.93 77.58 57.28 61.34 76.51 65.02 61.13 75.98

CCV

SDSS 22.10 16.98 24.91 21.08 16.16 23.95 19.25 14.27 22.22 18.75 13.35 21.35
SDMS 22.68 17.67 25.32 21.13 16.38 24.25 19.61 15.14 22.66 19.09 14.37 22.30
MDSS 22.20 17.28 24.98 21.88 16.76 24.35 19.40 14.87 22.92 19.75 14.35 22.35
Ours 23.67 18.16 26.16 21.97 17.06 24.81 20.42 15.76 23.07 20.00 14.70 22.88

SUNRGBD

SDSS 21.42 23.75 34.52 19.16 21.37 33.33 19.03 20.54 32.04 16.03 18.05 31.35
SDMS 22.96 24.79 35.77 20.95 22.67 35.31 19.93 20.91 32.28 16.77 19.04 31.71
MDSS 22.15 24.55 35.21 19.61 22.37 34.97 19.68 20.86 32.22 16.56 18.95 31.92
Ours 23.98 25.34 37.31 21.83 23.22 35.54 21.08 21.87 34.32 19.83 20.15 33.59

NUSWIDEOBJ

SDSS 18.58 12.88 22.95 16.79 12.07 21.45 16.16 11.05 21.13 15.42 10.01 20.02
SDMS 18.63 13.26 23.62 17.23 12.27 22.86 17.06 11.42 22.06 15.61 10.38 21.02
MDSS 18.74 13.20 23.05 17.27 12.15 22.61 16.93 11.46 22.26 15.64 10.29 20.65
Ours 18.85 13.89 23.98 17.57 12.58 23.09 17.29 11.82 22.55 15.98 10.69 21.10

YoutubeFace Sel

SDSS 25.00 23.34 32.38 24.09 23.28 32.62 24.03 21.45 32.16 21.36 18.56 31.15
SDMS 26.43 24.73 35.74 25.28 23.55 35.01 24.23 21.72 34.14 21.94 18.95 31.52
MDSS 26.30 25.14 36.70 24.96 23.73 34.53 24.23 22.70 34.90 23.39 20.08 32.42
Ours 27.13 25.82 37.14 26.67 24.25 35.94 25.84 22.95 35.38 23.58 20.46 33.70

Table 5: Ablation on the multi-dimension multi-size strategy.

tasks by subspace graph or kernel, DVSAI can produce the
best results in most cases. These demonstrate that our strat-
egy constructing anchor graph to solve IMVC is effective.

(4) In contrast with IMVC-CBG which generates consen-
sus anchors for IMVC, our DVSAI outperforms it in terms
of three metrics in most situations on all datasets. These il-
lustrate that our scheme producing diverse view-shared an-
chors is more suitable for coping with IMVC problems.

(5) BGIMVSC, PIMVC and HCLS are slightly superior
to DVSAI in certain aspects, possibly because BGIMVSC
learns the consensus probability information by relaxing the
spectral clustering framework, PIMVC exploits the structure
representation among data via a group of projective regular-
izers, and HCLS tries to construct the high-level consensus
graph based on a confidence graph. Nevertheless, they are
all incapable of solving the large-size clustering problem.

Besides, to illustrate the efficiency of the devised integra-
tion scheme, we count its execution time. According to Table
4, we have that compared to the generally adopted COMP
(Chen and Cai 2011), our integration scheme spends less
time. Especially, when running on YoutubeFace Sel, COMP
induces memory overflow while ours still executes normally.

Efficiency

As proven previously, DVSAI enjoys O(n) time expendi-
ture. For validating its efficiency, we record the running
time. Fig. 2 shows that DVSAI has shorter running time.
IMVC-CBG is a little faster than us, which is mainly be-
cause it generates a single anchor matrix. Despite time-
saving, it is incapable of exploiting features at diverse scales.
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Figure 2: Running time (log2) comparison on six datasets.

Convergence and Hyper-parameter Sensitivity
Fig. 3 show that after each iteration, the objective values
reduce monotonically, and gradually reach a steady status,
which well reveals DVSAI’s convergence. Fig. 4 shows that
the performance is not largely affected by β and γ, indicat-
ing that DVSAI is robust to hyperparameters to some extent.

Ablation Experiments
Unlike existing techniques generating the view-shared an-
chors with single-dimension single-size (SDSS), we suc-
cessfully generate the ones with multi-dimension multi-size
(MDMS). For validating the MDMS’s effectiveness, we
conduct four groups of ablations: SDSS, single-dimension
multi-size (SDMS), multi-dimension single-size (MDSS),
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Dataset T
0.1 0.3 0.5 0.7

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

Caltech101-7

1 51.22 54.17 83.99 48.24 48.72 80.33 48.41 46.60 79.20 48.85 45.77 79.11
2 52.31 57.40 85.09 51.70 54.50 84.19 50.27 51.50 81.80 51.61 50.13 82.75
3 61.46 60.95 87.71 53.91 57.08 85.94 52.91 53.88 83.66 57.35 53.34 83.47
4 62.15 61.74 87.94 53.31 56.00 83.74 58.00 55.41 84.69 58.88 54.85 83.92
5 62.73 62.02 87.90 59.48 60.69 87.34 60.49 58.05 86.70 61.34 58.49 87.25

Caltech101-20

1 69.45 66.52 77.87 56.62 59.85 74.60 52.76 57.76 73.30 62.99 58.33 72.93
2 69.52 67.02 78.45 55.75 59.09 74.35 53.15 58.84 74.20 61.41 58.72 73.16
3 70.92 67.53 79.63 66.15 63.44 76.81 56.27 60.36 75.75 64.85 60.69 75.32
4 71.36 67.85 80.00 66.63 62.94 76.05 56.20 59.37 74.82 59.67 60.16 75.62
5 71.14 68.63 79.91 69.45 64.93 77.58 57.28 61.34 76.51 65.02 61.13 75.98

CCV

1 22.10 16.98 24.91 21.08 16.16 23.95 19.25 14.27 22.22 18.75 13.35 21.35
2 22.27 17.31 25.14 21.53 16.72 24.41 20.18 15.22 23.39 19.45 14.27 22.39
3 22.48 17.33 25.69 21.01 16.69 23.73 19.71 15.15 22.74 19.30 14.42 22.06
4 22.90 17.43 25.78 20.98 16.87 23.95 20.01 15.49 22.75 19.31 14.40 22.18
5 23.67 18.16 26.16 21.97 17.06 24.81 20.42 15.76 23.07 20.00 14.70 22.88

SUNRGBD

1 21.42 23.75 34.52 19.16 21.37 33.33 19.03 20.54 32.04 16.03 18.05 31.35
2 24.03 24.83 35.78 20.53 22.74 35.44 20.45 20.66 32.28 18.43 19.62 32.62
3 23.69 24.99 36.00 21.15 23.23 35.82 19.88 20.58 32.25 18.97 19.75 32.90
4 23.72 25.33 36.53 21.31 23.17 35.71 20.71 20.54 32.39 19.03 19.96 33.26
5 23.98 25.34 37.31 21.83 23.22 35.54 21.08 21.87 34.32 19.83 20.15 33.59

NUSWIDEOBJ

1 18.58 12.88 22.95 16.79 12.07 21.45 16.16 11.05 21.13 15.42 10.01 20.02
2 18.42 13.70 23.82 17.39 12.37 22.95 16.57 11.71 22.32 15.55 10.66 21.41
3 18.16 13.58 23.85 16.82 12.37 22.74 16.57 11.68 22.23 16.49 10.65 21.27
4 18.64 13.94 24.02 17.17 12.53 22.87 17.31 11.70 22.36 15.79 10.67 21.20
5 18.85 13.89 23.98 17.57 12.58 23.09 17.29 11.82 22.55 15.98 10.69 21.10

YoutubeFace Sel

1 25.00 23.34 32.38 24.09 23.28 32.62 24.03 21.45 32.16 21.36 18.56 31.15
2 27.74 25.68 37.39 24.12 23.42 33.93 24.37 22.39 34.53 23.55 20.42 33.39
3 27.18 25.27 37.02 24.77 23.75 34.68 24.59 22.46 34.62 23.19 20.38 33.25
4 26.95 25.37 36.91 24.68 23.88 35.00 24.48 22.30 34.55 23.14 20.37 33.39
5 27.13 25.82 37.14 26.67 24.25 35.94 25.84 22.95 35.38 23.58 20.46 33.70

Table 6: Ablation on the number of potential spaces.
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Figure 3: Convergence curves.

and our MDMS. Table 5 clearly illustrate that our MDMS
strategy indeed brings the performance raise.

To explore the influence of the number of potential spaces
T on clustering results, we respectively count the results
when T takes 1, 2, 3, 4, 5 in Table 6. As seen, when T is 5,
most of results are the best. Some sub-optimal results could
be due to the redundancy of potential spaces. How to deter-
mine the optimal number of potential spaces automatically
is expected to be further studied in the future.

Conclusion
In the article, we design a DVSAI framework to solve the
IMVC problem. It integrates anchor generation and anchor

(a) Caltech101-7 (b) Caltech101-20

Figure 4: Sensitivity of hyper-parameters β and γ.

graph construction, and generates view-shared anchors with
multi-dimension and multi-size. Besides being able to alle-
viate the diversity deterioration, these diverse view-shared
anchors can characterize the actual distribution of the whole
samples more sufficiently. For efficiently combining the pro-
duced multi-scale graphs together, we devise an integration
scheme with linear overheads. For optimizing the resultant
IMVC objective, we propose an iterative approach involving
four variables, which owns linear time and space expendi-
tures. Plenty of experiments have displayed its advantages,
even under high missing rate or/and large-size datasets.
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