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Abstract

In numerous real-world applications, it is quite common that
sample information is partially available for some views due
to machine breakdown or sensor failure, causing the problem
of incomplete multi-view clustering (IMVC). While several
IMVC approaches using view-shared anchors have success-
fully achieved pleasing performance improvement, (1) they
generally construct anchors with only one dimension, which
could deteriorate the multi-view diversity, bringing about se-
rious information loss; (2) the constructed anchors are typi-
cally with a single size, which could not sufficiently charac-
terize the distribution of the whole samples, leading to limited
clustering performance. For generating view-shared anchors
with multi-dimension and multi-size for IMVC, we design a
novel framework called Diverse View-Shared Anchors based
Incomplete multi-view clustering (DVSAI). Concretely, we
associate each partial view with several potential spaces. In
each space, we enable anchors to communicate among views
and generate the view-shared anchors with space-specific di-
mension and size. Consequently, spaces with various scales
make the generated view-shared anchors enjoy diverse di-
mensions and sizes. Subsequently, we devise an integration
scheme with linear computational and memory expenditures
to integrate the outputted multi-scale unified anchor graphs
such that running spectral algorithm generates the spectral
embedding. Afterwards, we theoretically demonstrate that
DVSAI owns linear time and space costs, thus well-suited
for tackling large-size datasets. Finally, comprehensive exper-
iments confirm the effectiveness and advantages of DVSAL

Introduction

As a technology for effectively grouping multi-view data
without requiring any priori labels, multi-view clustering has
drawn widespread concerns recently (Li et al. 2022b; Wang
et al. 2022a; Yu et al. 2023a). However, their performance
is heavily dependent on the completeness of sample infor-
mation. In many situations, the sample information could
be missing in some views, bringing about partial multi-view
data (Yang et al. 2021a; Yu et al. 2023b; Xia et al. 2022a).
For example, in medical data, patients typically choose to do
some types of examinations rather than all types of them; In
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web-page data, some webs may include audio, video and hy-
perlink simultaneously, and yet others may have one or two
types (Zhang et al. 2019; Liang et al. 2023; Fu et al. 2023).
The unpaired sample absence in respective view causes it to
be quite difficult to capture the consensus representation, re-
sulting in serious performance degradation. This induces the
problem of incomplete multi-view clustering IMVC).

For effectively tackling IMVC issues, numerous algo-
rithms have been devised, like (Li, Jiang, and Zhou 2014;
Fang et al. 2020; Wang et al. 2019a; Yang et al. 2021b;
Wen et al. 2021). Li, Jiang, and Zhou (2014) adopt NMF
scheme to handle partial views and seek to build the latent
subspace such that similar samples reside tightly. Wang et al.
(2019a) build up the connection between IMVC and per-
turbation theory, and learn the consensus characteristics by
minimizing the perturbation risk. These methods receive the
desirable clustering results, however, they usually take cu-
bic time and/or square memory overheads. This causes them
unable to tackle large-size datasets, greatly impeding the
model’s scalability. Recently, anchor strategy (Kang et al.
2020; Qiang et al. 2021; Xia et al. 2022b), a promising tech-
nology for decreasing the overheads, has captured increasing
interest. Instead of constructing the relationship between all
samples, it first chooses a small number of landmarks as an-
chors and then generates the relationship between anchors
and all samples. Accordingly, the graph with size n x n is
reduced to one with m x n where m < n.

IMVC algorithms based on anchors have made extraordi-
nary progress in increasing both the efficiency and the clus-
tering results (Wang et al. 2022b; Li et al. 2022a; Liu et al.
2022b), nevertheless, the view-shared anchors constructed
by existing methods are generally with only one dimension,
which could deteriorate the diversity between views, lead-
ing to severe information loss. This is mainly because ev-
ery view normally has exclusive features and one common
dimension may not be competent to characterize all views.
In addition to this, the constructed view-shared anchors are
typically with a single size, which could be unfavorable for
deeply exploiting heterogeneous representations since only
one size could not adequately reflect the actual distribution
of the whole samples, resulting in less discriminative an-
chors. The clustering performance is also largely dependent
on the choice of dimension and size of anchors, which to
some extent limits the flexibility of the model.
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Figure 1: Illustration of the devised DVSAI. We utilize matrices {Pw}th1 to build up T' potential spaces for every partial
view v. In each space, we enable anchors to communicate among views, and jointly learn across views to produce unified
anchor graph and view-shared anchors with space-specific dimension and size. In such ways, spaces with diverse scales make
the learned view-shared anchors enjoy multi-dimension and multi-size. Subsequently, these unified anchor graphs with various
scales generated in all potential spaces are integrated together within linear computation and memory expenditures.

For overcoming these limitations, we develop an inno-
vative framework named DVSAI, as described in Fig. 1.
Specifically, we integrate anchor generation and anchor
graph construction into a joint learning IMVC framework,
and associate each partial view with T' potential spaces.
In each space, we enable anchors to communicate among
views and learn across views to generate the view-shared
anchors with space-specific dimension and size. Accord-
ingly, spaces enjoying various scales guarantee the gener-
ated view-shared anchors to be with both multi-dimension
and multi-size. Subsequently, it is essential to integrate the
outputted unified anchor graphs with diverse scales together
so as to generate the spectral embedding. Nevertheless, how
to integrate graphs with different scales has not been well
researched. For alleviating this problem, we develop an inte-
gration scheme enjoying linear computational and memory
expenditures by avoiding building up the complete affinity
of each anchor graph. Afterwards, for optimizing the resul-
tant objective function, we devise a four variable alterna-
tive approach. In conjunction with it, our DVSAI is proven
to be with linear time and space complexities, thus winning
the ability to handle large-size datasets. By conducting com-
prehensive experiments on six common multi-view datasets,
DVSALT’s effectiveness and advantages are both verified. Our
main contributions are summarized as follows:

* We generate view-shared anchors with multi-dimension
and multi-size for IMVC so as to aggregate heteroge-
neous features more sufficiently.

* We offer an integration scheme with linear computational
and storage expenditures to combine together the anchor
graphs with diverse scales.

We design an iterative method involving four variables,
which owns linear time and space complexities, to opti-
mize the resultant IMVC objective function. Reasonable
experiments are implemented to validate our advantages.
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Related Work
View-shared Anchor Clustering

Anchor strategy selects a few number of landmarks to ap-
proximately represent the overall samples, and then builds
up the relation with original samples to generate graphs with
small size (Kang et al. 2020; Li et al. 2023; Chen et al. 2022;
Li et al. 2022c¢). The basic framework is defined as:

\%4
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where X, € R**" A, € R¥*™ G, € R™*" repre-
sent the sample matrix, anchors and anchor graph of the v-th
view. Usually, the number of anchors, m, is much smaller
than the number of samples, n. On this foundation, the
framework using view-shared anchors can be formulated as:

v
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where W, € RX4v A ¢ RIX™ G € R™*™ represent
the compression matrix for view v, view-shared anchors and
unified anchor graph respectively. [ and m denote the di-
mension and size of view-shared anchors. Following this
line, Sun et al. (2021) utilize learning strategy instead of ran-
dom sampling to produce anchors. Wang et al. (2022c¢) of-
fer a framework without additional parameters, and generate
the unified anchor graph with low-rank property. Liu et al.
(2022c) directly output the clustering labels by construct-
ing the unified anchor graph with k-connected components.
Wang et al. (2022b) provide a flexible fusion framework to
tackle any view incompleteness. Despite impressive results,
the view-shared anchors generated by current methods are
generally with only one dimension and a single size, which
could deteriorate the data diversity and not well characterize
the whole samples, limiting the clustering performance.
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Formulation
Framework

We first measure the incompleteness of multi-view data via
the given indicator vectors {w, € R™}V_, where n, repre-
sents the number of the observed samples in view v. Specif-
ically, for each partial view, we associate an index matrix S,

consisting of element [S,]; ;,

[Soli; = {

Then, X, S, € R% X" represents the samples available in
view v. Afterwards, we make view-shared anchors learnable
and jointly optimize view-shared anchors and unified anchor
graph in one framework:

1
0

if[wv]j =1 V] = 1727"' y Ny«
otherwise.
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st. ATA=1,,,G>0,G'1=1.

Further, to generate the view-shared anchors with multi-
dimension and multi-size, we assign several potential spaces
with diverse scales to each partial view, and learn across
views in all spaces so as to make view-shared anchors en-
joy space-specific dimension and size:

v T
o 2D IS, — PuiAGS, [+ 8 |Gl

min
Py, Ay, =
stPy P =1, AlA =1,,G, >0,G/1=1,
(5)

where {P,;, € R%>!}T | represent T’ potential spaces in-
troduced for view v, and A; € R!*™¢ represents the pro-
duced view-shared anchors in space t. I; and m; represent
the dimension and size of view-shared anchors in space t re-
spectively. The orthogonal constraints guarantee the learned
view-shared anchors and potential spaces to be more dis-
criminative. P, ;, A, and G are iteratively updated into one
framework, which makes them boost each other.

Additionally, considering that A; could have different
contributions in spaces {P,}Y_;, we offer a group of
weight variables for each space to adaptively balance the
contributions of view-shared anchors. Finally, we design the
DVSAI framework as

vV T
Z Zai,t (”Xvsv — Pv,tAthSvH2F +

v=1 t=1

min
P, t,A:,Gt,x

2 2
BIGHIE) +7 e
stPl P =1, Al A =1,

G, >0,G/1=1,a>0,a'1=1.
(6)
In this manner, besides successfully generating view-
shared anchors with diverse dimensions and sizes for IMVC,
it is also able to automatically adjust the importance of view-
shared anchors so as to better characterize partial multi-
view data, increasing the model’s expression. Moreover,
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the generated multi-scale unified anchor graphs {G; €
R™+*"11T have more strong ability to capture the simi-
larity relationship with samples, and thereby bring inspiring
clustering performance improvement.

Solver

We solve Eq. (6) by the following four steps alternatively.
Step-1: Optimize {P,;},_i’,_,. Fixing {A.}, {G}

and «, the optimization w.r.t. each P, ; in Eq. (6) is

min || X, S, — Pv,tAthSUH?, s.t. PIth,t =L, @

After expanding F-norm and deleting the irrelevant terms,
Eq. (7) equivalently becomes

max Tr (P, X,S.S, G/ A]) st. P Py =1, (3

Denote the SVD of X, S, S/ G/ A/ as ULV . Accord-
ing to the theorem in (Wang et al. 2019b), we have that the
optimal P,, ; is LOAYAN

Considering that the multiplication of X, and S,,S, costs
O(d,n?) complexity, directly performing SVD is relatively
time-consuming. In particular, when the number of samples
n is larger, this will bring about expensive time overhead,
causing the inability to handling large-size tasks.

For improving the efficiency, we notice that

Svs;r = diag(fv,17fv,2a"' 7fv,n>7 (9)
where f,; = z;;l[sv]i,j, i =1,--- ,n. Thatis, the diag-
onal element is the row sum of S,. Hence, we have

XvSvSI = fv,l[Xv]:,la fv,Z[Xv]:,Qv T fv,n[Xv]:,n] .
(10)
Further, Eq. (10) can be reformulated as

X,S,S,) =X, OF,, (n
where F\, = 14,51 - [fu,1, fo2, -, fonlyx,- Hadamard
product X, ® F, costs O(d,n) complexity. Therefore, we
run SVD on (X, ® F,)G,/ A/ to acquire the optimal P, ;.
Step-2: Optimize {A,}7_,. Fixing {P,;}, {G:} and «,

the optimization w.r.t. each A; in Eq. (6) is
min

14
min > 0l XSy — Py AiGS, 3. (12)
t A=

)

13
The optimal A, is UV T where U and V are the SVD mz(itri?
cesof the term >°V_, a2 P, (X, ® F,) G/ respectively.
Step-3: Optimize {G,}7_,. Fixing {P, .}, {A;} and c,
the optimization w.r.t. each G, in Eq. (6) is

Deleting irrelevant items, Eq. (12) is transformed as

1%
Tr (Aj (Z o2 P, (X,0F,)G/

v=1

max
AT A=1L,,

14
_ 5 2 2
I'Icl;ltn Eil Qo t (HX’US’U - Pv,tAthS'u”F + 6 HGtHF)

st.Gy>0,G]1=1.
(14)
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Given that the feasible region is aimed at the column of G,
hence, we can update G; by column:

Vv
(Z a2y (fog+ 6))
v=1

) (15)
5J

Note that the term szl o2 (fu,j + ) is a scalar, and
hence we can equivalently rewrite Eq. (15) as

. T .
& 1Geli-(Gel-s
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—2[G] ;. (Z ol A/P] X,OF,
v=1
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st [Gyl.j > 0,[Gy]

t]:,g

i NGil.s — aill5 st [Gily 2 0,[Gl];1 =1, (16)
(21‘;/:1 ‘X%.tA:PIthQFv

).
vy ol (fu »J +ﬂ)
Eq. (16), we formulate the Lagrangian function as

where ¢q; = . For solving

v=1 ¥u,t

1
L([Gi].j, P, 0) =3 [Geliy — a5l % — @7 [Gul.,j

(I7)
- o (G 1-1).
Using KKT conditions, we can get
[Gilj—q—®—p1l=0, ®'[Gy.; =0.  (I8)

Further, in conjunction with [Gt]fjl =1, we can get
[Gy].; = max (¢; + ¢1,0) , o = (1 =g 1)/m;. (19)

Step-4: Optimize . Fixing {P,;}, {A.} and {G,}, the
optimization w.r.t. o in Eq. (6) is

vV T
minz Zagthw sta>0,a'1=1, (20)

v=1t=1
where h,; = |XySy — Pyt AGS, |5 + BGell3 + 7
For any given v and ¢, h, + is a constant. Thus, we have

1
ho,t

-
E’Uil hi,t

21

Qy.t =

Integration
We need to integrate the generated multi-scale unified an-
chor graphs {G; € R™*"}T_ together such that running
spectral algorithm generates the spectral embedding.
According to Ref. (Chen and Cai 2011), we have that the
complete affinity O; of G can be recovered by setting O; =
éjéh where ét = Mt_l/QGt. The matrix M; € R™t*"+
is diagonal, and the element [M]; ; is set as >-7_, [Gyli j,
1 =1,2,---  my. Therefore, the affinity between all views
can be calculated as

vV T
0=> > a0,

v=1t=1

(22)

Subsequently, the spectral embedding can be acquired by
performing spectral algorithm on O.
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Algorithm 1: DVSAI

Input:Partial views {X,}Y_,, index matrices {S,}"_;, pa-
rameters (3, y;
Initialize: {P,.},_i",_1, {A}T, (G}, e
1: repeat

Solving every P, ; by Eq. (8);

Solving every A; by Eq. (13);

Solving every G; by Eq. (15);

Solving by Eq. (21);
until convergent
. Integrating {G;}7_, by Eq. (24);
: Generating U by running SVD on L;
Output: Clustering indicators by running k-means on U;

A A ol

Considering that, however, O is with size n x n, it will
cost O(n?) memory expenditure and O(n?®) computational
expenditure when producing the spectral embedding.

To decrease the complexity, we observe that

O=LL", (23)

where
L= Oé1,1alT,"' 7041,Té;,"' ,av,lélT,"' 7Oév,TéH .
(24)

Denote the SVD of matrix L, € R?*(Xi=1m)V s USV T,
We have
0 =Ux?U", (25)

which illustrates that the matrix consisting of the eigen-
vectors of O equals to U. Therefore, U can be regarded
as the spectral embedding, and we can run k-means on
it to produce the discrete clustering indicators. Due to
VS, m; < n, integrating {G,}7_, as L takes O(n)
space cost, and performing SVD on L takes O(n) time cost.
As a result, the space and computational overheads of our
integration scheme are both linear w.r.t. n. The pipeline of
the devised DVSALI algorithm is presented in Algorithm 1.

Dataset Samples Feature Dimension
Caltech101-7 1474 48, 40, 254, 1984, 512, 928
Caltech101-20 2386 48, 40, 254, 1984, 512, 928

CCV 6773 20, 20, 20

SUNRGBD 10335 4096, 4096
NUSWIDEOBJ 30000 65, 226, 145, 74, 129
YoutubeFace_Sel | 101499 64,512, 64, 647, 838

Table 1: Details of six benchmark datasets.

Complexity

Computational Complexity The time overhead is mainly
composed of updating the variables {P,, ;. }, {A;}, {G.} and
. When updating each P, 4, calculating (X, ©F,)G] A
and running SVD on it take O(dyn + dynmy + dymyly)
and O(d,l?) respectively. Hence, updating {P,;} takes
O(dn Zle(mt)). When updating each A;, calculating
PN a2 /Pl , (X, ©F,) G/ and running SVD on it take
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Data Methods 0.1 0.3 0.5 0.7
ACC NMI PUR | ACC NMI PUR | ACC NMI PUR | ACC NMI PUR
BSV 5490 30.14 7257 | 54.57 20.05 6845 | 54.66 1026 61.98 | 54.57 14.08 64.85
MIC 44.02 31.80 78.09 | 40.70 28.88 74.24 | 3450 25.10 70.72 | 3495 21.12 68.85
MKKM-IK | 3495 30.11 77.71 | 34.64 2941 77.84 | 41.02 3545 77.17 | 3936 33.12 77.00
~ UEAF 41.87 39.15 79.52 | 3846 3830 79.63 | 36.58 3227 7643 | 34.02 3197 77.75
5' IK-MKC 33.11 3036 77.49 | 4372 2852 77.14 | 49.04 28.07 77.05 | 40.64 29.17 76.17
= FLSD 55.89 4176 81.13 | 5597 39.70 80.32 | 55.37 37.71 79.32 | 5475 3542 78.07
8 IMVC-CBG | 48.57 43.60 8035 | 46.67 43.62 8159 | 46.60 40.59 81.05 | 43.76 4233 79.86
< LSIMVC 4135 29.74 77.17 | 3894 2890 7432 | 4437 3245 77.73 | 45.69 32.10 77.81
© BGIMVSC | 62.65 51.14 8277 | 5326 48.58 83.24 | 61.39 44.66 80.75 | 59.81 51.56 81.61
PIMVC 56.44 56.08 8596 | 55.67 5452 84.48 | 49.87 50.03 83.65 | 54.99 5373 85.55
HCLS 62.22 59.78 8531 | 60.75 50.43 8535 | 60.02 4842 8494 | 6130 47.81 84.46
Ours 62.73 62.02 87.90 | 5948 60.69 87.34 | 6049 58.05 86.70 | 61.34 58.49 87.25
BSV 4241 3930 5590 | 3487 3026 5043 | 4191 25.10 45.56 | 40.65 18.64 45.30
MIC 31.62 3745 60.18 | 28.07 33.88 57.28 | 26.90 3036 54.29 | 23.37 25.08 50.58
MKKM-IK | 3328 46.23 6691 | 34.02 4484 66.62 | 28.21 3274 59.18 | 31.30 34.85 56.90
S UEAF 41.68 5453 7254 | 39.12 4950 69.54 | 3535 4552 66.76 | 33.71 44.02 66.53
- IK-MKC 3538 47.17 67.47 | 3485 4186 63.89 | 3040 33.63 56.83 | 30.17 3342 5723
% FLSD 41.85 5455 7290 | 41.50 5233 71.83 | 4047 49.40 69.93 | 38.77 47.58 68.41
3 IMVC-CBG | 47.86 5892 7598 | 48.78 56.80 74.75 | 44.57 5399 7290 | 43.82 53.12 7227
= LSIMVC 3242  40.01 6194 | 33.03 39.79 61.76 | 32.61 3942 61.84 | 33.04 3942 6223
© BGIMVSC | 50.78 5243 66.18 | 50.62 47.80 64.82 | 43.20 46.82 60.15 | 48.32 47.08 63.94
PIMVC 49.19 60.52 7635 | 47.71 6029 76.28 | 46.02 5839 74.88 | 46.17 57.62 7440
HCLS 5244 58.03 7357 | 5744 5992 7429 | 53.10 56.47 72.62 | 53.79 56.78 74.15
Ours 71.14 68.63 7991 | 6945 6493 77.58 | 57.28 61.34 76.51 | 65.02 61.13 75.98
BSV 11.75 594 13.67 | 12.08 525 1288 | 11.82 4.60 1270 | 12.00 4.39 12.57
MIC 15.08 1056 19.10 | 13.90 9.10 1753 | 1276 757 1632 | 12.00 6.66 1557
MKKM-IK | 1542 11.55 19.53 | 1520 10.83 19.02 | 13.74 9.47 18.16 | 1457 10.15 18.40
UEAF 19.06 17.05 2232 | 19.02 16.04 2131 | 16.90 14.03 1929 | 1597 1294 18.63
IK-MKC 18.03 14.11 22.19 | 16.65 12.78 20.39 | 1530 11.50 18.83 | 1475 11.18 18.40
a FLSD 1431 1233 1846 | 13.81 10.70 1798 | 1423 1048 18.05 | 13.70 1020 17.56
@) IMVC-CBG | 21.73 16.82 25.11 | 2022 1570 23.32 | 1855 14.41 2198 | 17.15 1291 20.88
LSIMVC 19.26 1817 2439 | 1894 16.82 2376 | 1745 1483 21.55 | 16.19 1279 20.13
BGIMVSC | 19.11 16.78 20.19 | 1533 1296 17.44 | 17.08 1425 19.79 | 16.32 13.10 19.32
PIMVC 18.51 17.51 2321 | 1830 1638 2348 | 16.66 1427 2093 | 16.01 1335 19.67
HCLS 17.67 1349 21.82 | 1851 1339 2268 | 17.99 13.13 21.33 | 1790 13.15 21.71
Ours 23.67 18.16 26.16 | 21.97 17.06 24.81 | 2042 15.76 23.07 | 20.00 14.70 22.88

Table 2: Clustering results of different methods on Caltech101-7, Caltech101-20 and CCV.

O(dn+lydn+1l;nmy) and O(lym?). Hence, updating { A}
takes O(n Zf,T:1(ltd + lymy)) totally. When updating each
G, constructing ¢ and computing analytical solutions take
O(mylid+midn+dn) and O(mn). Hence, updating { G }
takes O(d Zthl (myly) +dn ZL (my)) totally. Construct-
ing hy takes O(dyn + dylymy + dymyn + men). Hence,
updating o takes O(d 37, (Il;my)+nd 3, (my)). Due to
my <, and m; < d, hence, updating {P,, ; }, {A;}, {G}
and « totally takes O(nd Zthl(lt))- Evidently, it is linear
w.r.t. n. In integration stage, it also takes O(n). Hence, our
DVSAI enjoys linear time overhead w.r.t. n.

Space Complexity The main storage overheads of DV-
SAI are from the optimization variables {P,,; € R% !},
{A; € Riexme} Gy € R™>*"} and o € RV*T, There-

fore, the memory cost is d Z?:l li+n 23:1 m,. In general,
the anchor dimension /; is a constant and much smaller than
n. Consequently, our space complexity is O(n).
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Experiments
Datasets, Baselines and Setup

Six datasets are utilized in the experiments. Caltech101-7
and Caltech101-20 are two image datasets with small size.
CCYV and SUNRGBD are the video and the 3D datasets with
medium size. NUSWIDEOBJ and YoutubeFace_Sel are
large-size web-page and video datasets respectively. Their
detailed descriptions are presented in Table 1. To demon-
strate the superiority of DVSAI, we compare it with the
following eleven strong baselines: BSV(Jordan and Weiss
2002), MIC (Shao, He, and Yu 2015), MKKM-IK (Liu
et al. 2017), UEAF (Wen et al. 2019), IK-MKC (Liu et al.
2020), FLSD (Wen et al. 2021), IMVC-CBG (Wang et al.
2022b), LSIMVC (Liu et al. 2022a), BGIMVSC (Sun et al.
2023), PIMVC (Deng et al. 2023), HCLS (Wen et al. 2023).
We tune the hyper-parameter 3 in [274,273 ... 23 2]
and v in [102,10%, 10, 10°]. We set the dimension and size
of anchors /; and m, in space ¢ to be the same, both as tk,
and the number of spaces 7" as 5. Three metrics, ACC, NMI,
Purity, are employed to assess the clustering performance.
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Data | Methods 0.1 03 05 0.7
ACC NMI _PUR | ACC NMI _PUR | ACC NMI _PUR | ACC NMI _PUR
BSV 476 316 1333 | 534 3.14 1309 | 603 3.5 1288 | 698 333 13.15
MIC 16.83 2512 3721 | 1522 2305 3439 | 1402 2093 3177 | 1391 1935 29.92
MKKM-IK | 1125 1504 2661 | 1141 1486 2661 | 11.13 1505 26.88 | 11.34 1524 26.99
UEAF 17.81 2521 37.00 | 1618 23.04 3508 | 1535 2159 3358 | 1410 2029 31.64
= IK-MKC | 19.85 24.83 37.67 | 17.96 21.89 3447 | 16.68 19.85 3233 | 1535 18.67 30.83
S FLSD 1509 2257 3428 | 1467 2146 3299 | 1428 2045 3176 | 1433 20.12 3191
Z | IMVC-CBG | 17.95 2440 3794 | 1660 21.99 3534 | 1573 19.94 3279 | 1595 1868 31.32
2 | LSIMVC | 1175 1835 2924 | 1200 1828 29.58 | 1279 1824 29.59 | 1295 18.64 30.56
BGIMVSC | 1521 873 1603 | 1142 385 1211 | 11.01 328 11.65 | 1097 3.07 11.64
PIMVC | 16.09 24.89 3645 | 1555 23.97 3550 | 1499 2241 3396 | 1460 20.07 32.88
HCLS 2074 2473 37.04 | 1934 2308 3524 | 1743 2221 3425 | 1725 2005 32.89
Ours 2398 2534 37.31 | 21.83 2322 3554 | 21.08 2187 3432 | 19.83 20.15 33.59
BSV - - - - - - - - - - - -
MIC - - - - - - - - - - - -
MKKM-IK | - - - - - - - - - - - -
= UEAF - - - - - - - - - - - -
2 IK-MKC - - - - - - - - - - - -
fa FLSD - - - - - - - - - - - -
= | IMVC-CBG | 1235 10.89 22.10 | 1269 10.44 21.90 | 11.88 9.92 2145 [ 11.71 949 2113
£ | LSIMVC - - - - - - - - - - - -
Z | BGIMVSC - - - - - - - - - - - -
PIMVC - - - - - - | 1440 1238 2213 | 1337 1127 21.08
HCLS - - - - - - - - - - - -
Ours 18.85 13.89 2398 | 17.57 12.58 23.09 | 17.29 11.82 22.55 | 1598 10.69 21.10
BSV - - - - - - - - - - - -
MIC - - - - - - - - - - - -
_ | MKKMAIK | - - - - - - - - - - - -
3 UEAF - - - - - - - - - - - -
9 IK-MKC - - - - - - - - - - - -
s FLSD - - - - - - - - - - - -
2 | IMVCCBG | 1850 1567 3124 | 1689 1361 29.85 | 1563 1218 2871 | 1406 1097 28.16
2 | LSIMVC - - - - - - - - - - - -
S | BGIMVSC - - - - - - - - - - - -
PIMVC - - - - - - - - - - - -
HCLS - - - - - - - - - - - -
Ours 27.13 2582 37.14 | 26.67 2425 3594 | 2584 2295 3538 | 23.58 2046 33.70

Table 3: Clustering results of different methods on SUNRGBD, NUSWIDEOBJ and YoutubeFace_Sel.

Dataset 0.1 0.3 0.5 0.7
COMP Ours | COMP Ours | COMP Ours | COMP  Ours
Caltech101-7 0.37 0.08 0.37 0.08 0.38 0.07 0.36 0.07
Caltech101-20 0.84 0.36 0.84 0.35 0.82 0.34 0.83 0.35
CCvV 431 0.26 4.27 0.25 4.29 0.26 4.28 0.25
SUNRGBD 11.03 0.51 11.21 0.51 11.11 0.52 10.95 0.50
NUSWIDEOBIJ 151.21 4.32 15446  4.29 150.52 4.29 150.93 4.16
YoutubeFace_Sel - 13.67 - 13.83 - 13.70 - 13.73

Table 4: Execution time (in second) comparison between the COMP scheme and our graph integration scheme.

Experimental Results

Table 2 and 3 present the clustering results on six datasets
under the missing rate p = 0.1,0.3,0.5,0.7, where ’-’ de-
notes the memory overflow failure. We can have that:

(1) Our DVSALI displays obvious advantages over these
advanced IMVC competitors. Especially under the missing
rate 0.1, it exceeds all compared approaches in ACC, NMI
and PUR. Moreover, on datasets Caltech101-20 and CCV, it
makes the best results. On other datasets and missing rates,
it also can generate comparable results. These give well ev-
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idence of the effectiveness of our DVSAI

(2) For YoutubeFace_Sel, which has more than 100000
instances, most of approaches report the memory overflow
failure. This indicates that these approaches can not effec-
tively tackle large-size IMVC problem. By contrast, DVSAI
can not only execute normally but also produce the best re-
sults in three metrics. These suggest that DVSAI is well able
to work with large-size partial multi-view data.

(3) In contrast with MIC, MKKM-IK, IK-MKC, UEAF,
FLSD, etc, which handle incomplete multi-view clustering
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Dataset Ablation 0.1 0.3 0.5 0.7
ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR
SDSS 51.22 5417 8399 | 4824 48.72 80.33 | 48.41 46.60 79.20 | 48.85 45.77 79.11
Caltech101-7 SDMS 53.12 5570 8596 | 50.63 51.15 83.71 | 50.36 4851 82.21 | 50.98 48.26 82.09
MDSS 5391 5524 8545 | 49.18 49.08 81.14 | 4854 4691 79.77 | 49.69 47.47 79.72
Ours 62.73 62.02 8790 | 5948 60.69 87.34 | 60.49 58.05 86.70 | 61.34 5849 87.25
SDSS 69.45 6652 77.87 | 56.62 59.85 74.60 | 52.76 57.76 73.30 | 62.99 58.33 7293
Caltech101-20 SDMS 69.75 66.66 77.96 | 58.78 61.16 75.05 | 54.03 59.99 74.68 | 6429 59.28 74.50
MDSS 69.78 66.70 79.04 | 58,50 61.99 75.68 | 56.84 59.75 7391 | 6345 59.19 73.93
Ours 71.14 68.63 7991 | 6945 6493 77.58 | 57.28 61.34 76.51 | 65.02 61.13 75.98
SDSS 22.10 1698 24091 | 21.08 16.16 2395 | 19.25 1427 2222 | 18.75 1335 21.35
ccv SDMS 22.68 17.67 2532 | 21.13 16.38 24.25 | 19.61 15.14 22.66 | 19.09 1437 22.30
MDSS 2220 1728 2498 | 21.88 16.76 2435 | 1940 14.87 2292 | 19.75 1435 22.35
Ours 23.67 18.16 26.16 | 21.97 17.06 24.81 | 2042 15.76 23.07 | 20.00 14.70 22.88
SDSS 2142 2375 3452 | 19.16 2137 3333 | 19.03 20.54 32.04 | 16.03 18.05 31.35
SUNRGBD SDMS 2296 2479 3577 | 2095 22.67 3531 | 1993 2091 3228 | 16.77 19.04 31.71
MDSS 22.15 2455 3521 | 19.61 2237 3497 | 19.68 20.86 32.22 | 16.56 1895 31.92
Ours 2398 2534 37.31 | 21.83 23.22 3554 | 21.08 21.87 34.32 | 19.83 20.15 33.59
SDSS 18.58 12.88 2295 | 16.79 12.07 21.45 | 16.16 11.05 21.13 | 1542 10.01 20.02
NUSWIDEOBI SDMS 18.63 13.26 23.62 | 17.23 1227 2286 | 17.06 1142 22.06 | 1561 1038 21.02
MDSS 1874 1320 23.05 | 17.27 12,15 2261 | 1693 1146 2226 | 1564 1029 20.65
Ours 1885 13.89 2398 | 17.57 12.58 23.09 | 17.29 11.82 22.55 | 1598 10.69 21.10
SDSS 25.00 2334 3238 | 24.09 2328 32.62 | 2403 2145 32.16 | 21.36 18.56 31.15
YoutubeFace.Sel SDMS 2643 2473 3574 | 2528 23.55 35.01 | 2423 2172 34.14 | 21.94 18.95 31.52
- MDSS 26.30 25.14 36.70 | 2496 2373 3453 | 2423 2270 3490 | 23.39 20.08 3242
Ours 27.13 2582 37.14 | 26.67 24.25 3594 | 25.84 2295 3538 | 23.58 20.46 33.70
Table 5: Ablation on the multi-dimension multi-size strategy.
tasks by subspace graph or kernel, DVSAI can produce the . . .
best results in most cases. These demonstrate that our strat- : e K
egy constructing anchor graph to solve IMVC is effective. . : 6
(4) In contrast with IMVC-CBG which generates consen- : . .
sus anchors for IMVC, our DVSAI outperforms it in terms 2 o o
of three metrics in most situations on all datasets. These il- (a) Caltech101-7  (b) Caltech101-20 (c) CCV

lustrate that our scheme producing diverse view-shared an-
chors is more suitable for coping with IMVC problems.

(5) BGIMVSC, PIMVC and HCLS are slightly superior
to DVSALI in certain aspects, possibly because BGIMVSC
learns the consensus probability information by relaxing the
spectral clustering framework, PIMVC exploits the structure
representation among data via a group of projective regular-
izers, and HCLS tries to construct the high-level consensus
graph based on a confidence graph. Nevertheless, they are
all incapable of solving the large-size clustering problem.

Besides, to illustrate the efficiency of the devised integra-
tion scheme, we count its execution time. According to Table
4, we have that compared to the generally adopted COMP
(Chen and Cai 2011), our integration scheme spends less
time. Especially, when running on YoutubeFace_Sel, COMP
induces memory overflow while ours still executes normally.

Efficiency

As proven previously, DVSAI enjoys O(n) time expendi-
ture. For validating its efficiency, we record the running
time. Fig. 2 shows that DVSAI has shorter running time.
IMVC-CBG is a little faster than us, which is mainly be-
cause it generates a single anchor matrix. Despite time-
saving, it is incapable of exploiting features at diverse scales.
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Figure 2: Running time (log,) comparison on six datasets.

Convergence and Hyper-parameter Sensitivity

Fig. 3 show that after each iteration, the objective values
reduce monotonically, and gradually reach a steady status,
which well reveals DVSATI’s convergence. Fig. 4 shows that
the performance is not largely affected by 8 and +, indicat-
ing that DVSALI is robust to hyperparameters to some extent.

Ablation Experiments

Unlike existing techniques generating the view-shared an-
chors with single-dimension single-size (SDSS), we suc-
cessfully generate the ones with multi-dimension multi-size
(MDMS). For validating the MDMS’s effectiveness, we
conduct four groups of ablations: SDSS, single-dimension
multi-size (SDMS), multi-dimension single-size (MDSS),
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Dataset T 0.1 0.3 0.5 0.7

ACC NMI PUR | ACC NMI PUR | ACC NMI PUR | ACC NMI PUR

1 | 51.22 5417 8399 | 48.24 4872 80.33 | 48.41 46.60 79.20 | 48.85 45.77 79.11

2 | 5231 5740 85.09 | 51.70 5450 84.19 | 50.27 51.50 81.80 | 51.61 50.13 82.75

Caltech101-7 3 16146 6095 87.71 | 5391 57.08 8594 | 5291 53.88 83.66 | 57.35 5334 8347

4 | 62.15 61.74 87.94 | 53.31 56.00 83.74 | 58.00 5541 84.69 | 58.88 54.85 83.92

5 | 6273 62.02 8790 | 5948 60.69 87.34 | 6049 58.05 86.70 | 61.34 5849 87.25

1 | 6945 6652 7787 | 56.62 59.85 74.60 | 52.76 57.76 73.30 | 62.99 5833 7293

2 | 69.52 67.02 7845 | 55775 59.09 7435 | 53.15 58.84 7420 | 6141 58.72 73.16

Caltech101-20 3 17092 6753 179.63 | 66.15 6344 76.81 | 56.27 6036 75.75 | 64.85 60.69 7532

4 | 71.36 67.85 80.00 | 66.63 6294 76.05 | 5620 59.37 74.82 | 59.67 60.16 75.62

5| 71.14 68.63 7991 | 6945 6493 77.58 | 57.28 61.34 76.51 | 65.02 61.13 75.98

1 | 2210 1698 2491 | 21.08 16.16 2395 | 19.25 1427 2222 | 1875 1335 21.35

2 | 2227 17.31 25.14 | 21.53 16.72 2441 | 20.18 1522 2339 | 1945 1427 22.39

CCV 3 12248 17.33  25.69 | 21.01 16.69 23.73 | 19.71 15.15 22.74 | 19.30 1442 22.06

4 | 2290 17.43 2578 | 2098 16.87 2395 | 20.01 1549 2275 | 19.31 1440 22.18

5 | 23.67 18.16 26.16 | 21.97 17.06 24.81 | 2042 15.76 23.07 | 20.00 14.70 22.88

1| 2142 2375 3452 | 19.16 2137 3333 | 19.03 20.54 32.04 | 16.03 18.05 31.35

2 | 2403 2483 3578 | 20.53 2274 3544 | 2045 20.66 3228 | 1843 19.62 32.62

SUNRGBD 312369 2499 36.00 | 21.15 23.23 35.82 | 19.88 20.58 3225 | 1897 19.75 32.90

4 | 23.72 2533 3653 | 21.31 23.17 3571 | 20.71 20.54 3239 | 19.03 1996 33.26

5 12398 2534 37.31 | 21.83 2322 3554 | 21.08 21.87 3432 | 19.83 20.15 33.59

1| 1858 12.88 2295 | 16.79 1207 2145 | 16.16 11.05 21.13 | 1542 10.01 20.02

2 | 1842 1370 23.82 | 17.39 1237 2295 | 1657 11.71 2232 | 1555 10.66 2141

NUSWIDEOBJ | 3 | 18.16 13.58 23.85 | 16.82 1237 2274 | 16.57 11.68 22.23 | 1649 10.65 21.27

4 | 18.64 1394 24.02 | 17.17 1253 22.87 | 17.31 11.70 2236 | 1579 10.67 21.20

5 | 1885 13.89 2398 | 17.57 1258 23.09 | 17.29 11.82 2255 | 1598 10.69 21.10

1 | 25.00 2334 3238 | 24.09 2328 32.62 | 24.03 2145 32.16 | 21.36 1856 31.15

2 | 27.74 25.68 37.39 | 24.12 2342 3393 | 2437 2239 3453 | 23.55 2042 33.39

YoutubeFace_Sel | 3 | 27.18 25.27 37.02 | 2477 2375 34.68 | 2459 2246 34.62 | 23.19 2038 33.25

4 | 2695 2537 3691 | 24.68 23.88 35.00 | 2448 22.30 34.55 | 23.14 2037 33.39

5 | 2713 2582 37.14 | 26.67 24.25 3594 | 25.84 2295 3538 | 23.58 2046 33.70

Table 6: Ablation on the number of potential spaces.
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Figure 3: Convergence curves.

and our MDMS. Table 5 clearly illustrate that our MDMS
strategy indeed brings the performance raise.

To explore the influence of the number of potential spaces
T on clustering results, we respectively count the results
when T takes 1, 2, 3, 4, 5 in Table 6. As seen, when 7 is 5,
most of results are the best. Some sub-optimal results could
be due to the redundancy of potential spaces. How to deter-
mine the optimal number of potential spaces automatically
is expected to be further studied in the future.

Conclusion

In the article, we design a DVSAI framework to solve the
IMVC problem. It integrates anchor generation and anchor
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(a) Caltech101-7 (b) Caltech101-20

Figure 4: Sensitivity of hyper-parameters 5 and ~.

graph construction, and generates view-shared anchors with
multi-dimension and multi-size. Besides being able to alle-
viate the diversity deterioration, these diverse view-shared
anchors can characterize the actual distribution of the whole
samples more sufficiently. For efficiently combining the pro-
duced multi-scale graphs together, we devise an integration
scheme with linear overheads. For optimizing the resultant
IMVC objective, we propose an iterative approach involving
four variables, which owns linear time and space expendi-
tures. Plenty of experiments have displayed its advantages,
even under high missing rate or/and large-size datasets.
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