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Abstract

Continual Semantic Segmentation (CSS) is an emerging
trend, where catastrophic forgetting has been a perplexing
problem. In this paper, we propose a Text-to-Image Knowl-
edge Preservation (TIKP) framework to address this issue.
TIKP applies Text-to-Image techniques to CSS by automat-
ically generating prompts and content adaptation. It extracts
associations between the labels of seen data and constructs
text-level prompts based on these associations, which are pre-
served and maintained at each incremental step. During train-
ing, these prompts generate correlated images to mitigate the
catastrophic forgetting. Particularly, as the generated images
may have different distributions from the original data, TIKP
transfers the knowledge by a content adaption loss, which de-
termines the role played by the generated images in incre-
mental training based on the similarity. In addition, for the
classifier, we use the previous model from a different perspec-
tive: misclassifying new classes into old objects instead of the
background. We propose a knowledge distillation loss based
on wrong labels, enabling us to attribute varying weights to
individual objects during the distillation process. Extensive
experiments conducted in the same setting show that TIKP
outperforms state-of-the-art methods by a large margin on
benchmark datasets.

Introduction
Semantic segmentation is a fundamental computer vision
task that is widely used in various real-world scenarios. Re-
cently, numerous models (Chen et al. 2017, 2018; Long,
Shelhamer, and Darrell 2015; Xie et al. 2021; Xiao et al.
2018) have been designed to solve this problem with promis-
ing results. Nevertheless, these deep models face a con-
siderable challenge of catastrophic forgetting (Michieli and
Zanuttigh 2019) in the scenario of continual semantic seg-
mentation (CSS), which means that the network forgets the
categories it has already acquired while learning new ones.

Michieli et al. (Michieli and Zanuttigh 2019) first pro-
posed the CSS task and pointed out that the task suffers
from catastrophic forgetting. After that, a number of meth-
ods have been proposed to solve this task with promising
results. Distillation-based methods (Cermelli et al. 2020;
Douillard et al. 2021; Michieli and Zanuttigh 2021a,b; Phan
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Figure 1: Overview of heuristic images-based CSS. In con-
tinual training, these heuristic images provide old knowl-
edge to the model by content adaptation loss combined with
added data.

et al. 2022; Shang et al. 2023) consider other properties of
this task in distilling the knowledge of the old model to the
new one to obtain better results. For example, MiB (Cer-
melli et al. 2020) takes into account the problem of back-
ground bias in CSS and models it to mitigate the forgetting
of old knowledge. Some approaches (Maracani et al. 2021;
Zhu et al. 2023) use replay-based methods to improve the
performance. In addition, there are works (Cha et al. 2021;
Zhang et al. 2022; Xiao et al. 2023) that utilize other tech-
niques to retain the knowledge acquired.

In real life, when learning new knowledge, humans of-
ten recall old knowledge through key information, which
strengthens their memory of it. Inspired by this phe-
nomenon, we propose using Text-to-Image technology to
heuristically generate images and assist in incremental train-
ing, thus avoiding catastrophic forgetting, as shown in Fig.
1. Text-to-Image technology can generate relevant images
from text prompts that contain specific categories. Based on
this, we extract prompts and their corresponding categories
from all seen images and maintain a set of prompts between
seen categories, which is inexpensive. During the incremen-
tal training process, we use these maintained prompts to gen-
erate images with similar labels to the old data and protect
the old knowledge. Compared with GAN-based methods,
images generated based on prompts have a higher quality
and stronger heuristic ability.

The heuristic images (or generated images) can assist
the model in retaining the old knowledge through two ap-
proaches: pseudo-label and knowledge distillation. Note that
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the distributions between these images and old data may or
may not be identical. When the heuristic images are simi-
lar to the original distribution, it is appropriate to transfer
the old knowledge using a pseudo-label. For generated im-
ages that are dissimilar to the seen data, it is more suitable
to transfer the old knowledge by knowledge distillation. To
this end, we introduce a content adaptation loss for incre-
mental semantic segmentation. This loss calculates the con-
tent similarity between the generated image with the origi-
nal data, and uses it as the magnitude of the difference in the
distribution between them. Generated images with smaller
differences from the seen image are biased to provide the
old knowledge to the model using pseudo-label, while those
with larger differences are used for knowledge distillation.

Moreover, in the process of continual learning, the model
may misclassify some pixels belonging to the added classes
as old objects instead of the background. This will cause
the performance of these old objects to degrade significantly
faster than others, as their features are quickly covered.
Therefore, it is important to provide more protection to those
classes that have been misclassified. To achieve this, we pro-
pose a knowledge distillation loss based on wrong labels.
This loss assigns different weights to each class based on
the ratio of the number of pixels of the new classes to those
of the classes that are misclassified. The weights of all seen
classes are added to the knowledge distillation loss to avoid
forgetting these old classes quickly.

Finally, extensive experiments on benchmark datasets
demonstrate the effectiveness of TIKP. The quantitative re-
sults show that our method achieves better performance than
competitors by a large margin, and generates more reason-
able segmentation results by better retaining the old knowl-
edge through heuristic images.

Our main contributions can be summarized as follows:
• We propose TIKP, which extracts and maintains a set of

text prompts during training, and uses these prompts to
generate heuristic images to address the catastrophic for-
getting issue.

• We design a content adaptation loss, which dynami-
cally adjusts the way the generated images retain the old
knowledge to avoid performance degradation due to in-
consistent distribution among images.

• We put forward a knowledge distillation loss based on
wrong labels to protect classes that are misclassified and
prevent rapid forgetting during continual learning.

• We show through extensive experiments that TIKP per-
forms significantly better than state-of-the-art methods in
existing scenarios and datasets.

Related Work
Continual Learning
There are gradually increasing concerns about continual
learning (also known as incremental or lifelong learning).
Previous works are divided into three main categories:
replay-based, regularization-based, and parameter isolation-
based. Replay-based methods (Rebuffi et al. 2017; Hou et al.
2019; Iscen et al. 2020) select or generate examples of pre-
vious tasks in some way. Then, the model employs these

examples along with the new data to learn the new classes.
Regularization-based methods (Zenke, Poole, and Ganguli
2017; Douillard et al. 2020; He et al. 2020) adopt some tech-
niques, such as the distillation, to generate an additional loss
that acts as a regularization constraint to prevent forgetting.
Parameter isolation-based methods (Rusu et al. 2016; Liu
et al. 2020) allocate an independent set of model parameters
to each task to prevent forgetting.

Continual Semantic Segmentation
Michieli et al. (Michieli and Zanuttigh 2019) first propose
continual learning for semantic segmentation and put for-
ward a general framework to address the problem of catas-
trophic forgetting, which retains the old knowledge through
the knowledge distillation of the output and feature spaces
of the model. Subsequently, several distillation-based works
(Cermelli et al. 2020; Douillard et al. 2021; Michieli and
Zanuttigh 2021a; Phan et al. 2022) are proposed. MiB (Cer-
melli et al. 2020) first points out the background shift prob-
lem in CSS, and models the background to mitigate the
transfer problem. PLOP (Douillard et al. 2021) proposes Lo-
cal POD that preserves long and short-distance spatial re-
lationships at the feature level. SDR (Michieli and Zanut-
tigh 2021a) uses prototype matching and contrast learning
to construct robust features. REMINDER (Phan et al. 2022)
designs CSW-KD, which adjusts the distillation weights of
each class based on the similarity between objects.

In addition, RECALL (Maracani et al. 2021) retains the
seen classes using images generated by GAN or crawled
from the Web. Some other approaches (Cha et al. 2021;
Zhang et al. 2022) achieve promising results with additional
models or structures. SSUL (Cha et al. 2021) relies on the
saliency detection model to discover potential objects, which
requires models trained on other datasets. RCIL (Zhang et al.
2022), on the other hand, utilizes parallel convolutions to im-
prove performance.

Text-to-Image Technology
Text-to-image is an emerging technique that uses genera-
tive models to generate images that are inspired by textual
descriptions. Some approaches rely on GANs (Brock, Don-
ahue, and Simonyan 2019; Karras et al. 2020) and achieve
satisfactory results. Moreover, advances in diffusion prob-
abilistic models (DMs) (Sohl-Dickstein et al. 2015) lead
to state-of-the-art results in terms of both density estima-
tion (Kingma et al. 2021) and sample quality (Dhariwal and
Nichol 2021). Building on these advances, LDM (Rombach
et al. 2022) introduces the technique for high-quality im-
age synthesis. Different from these works, we extract text
prompts from the dataset and use them to generate heuristic
images that help retain the old knowledge during incremen-
tal training.

Methodology
Overview
Before formulating the framework, we first introduce some
related concepts. The purpose of CSS is to train a segmenta-
tion model in T steps to learn new classes without forgetting
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Figure 2: Overview of TIKP. The framework contains a text prompts that is used to instruct the Text-to-Image model to generate
relevant images. These images are trained incrementally in conjunction with the added data. The generation of correlated images
is supervised by the content adaption loss to avoid performance degradation due to the inconsistent distribution. The added
images are supervised by the knowledge distillation loss based on wrong labels. Models in gray indicate that they are frozen
during training.

old ones. We define that Ct is the class learned at step t, and
C1:t−1 denotes all the seen classes from step 1 to step t− 1.
For step t, we present a dataset Dt that comprises a set of
pairs (Xt, Lt), where Xt is an image with a size of H ×W ,
and Lt is the ground truth segmentation map, which con-
tains only the class Ct learned in the current step. Besides,
we denote Y t as the one-hot label of Lt.

Typically, the segmentation model at step t is denoted as
M t, which contains a feature extractor f t and a classifier
gt. The feature extractor f t is used to extract the features of
the image, while the classifier gt outputs the corresponding
semantic segmentation prediction maps Zt.

Fig. 2 shows the framework of TIKP, which first extracts
text prompts from all seen data and stores them in mem-
ory. In incremental training, relevant images are generated
to address the catastrophic forgetting by the Text-to-Image
model, which is denoted as G. These images are combined
with the added data for incremental training. In addition, the
added data is trained by the cross-entropy loss (Lce) and the
knowledge distillation loss based on wrong labels (Lwl−kd).
The old knowledge of heuristic images is transferred from
M t−1 to M t by the content adaption loss (LCTA).

Generated Images by Text Prompts
TIKP leverages the Text-to-Image model to generate diverse
and relevant images, effectively preserving old knowledge
during continual learning. Text prompts are used to guide the
image generation, allowing the model to recall important in-
formation from previously learned classes and incorporate it
into training new classes. We use the old dataset to generate
prompts for controlling image generation. By counting co-
occurrence frequencies, we select the top combinations of
classes to generate prompts, reducing their number. These

prompts serve as a fixed base inspiration for subsequent in-
cremental training.

In each step t (t > 1), we generate new prompts for
added classes and update the prompt file. Pseudo-labels are
obtained from the model trained in the previous step and
combined with ground truth labels to create comprehensive
pseudo-labels for all seen classes. These pseudo-labels are
used to generate prompts for new classes based on their cor-
relations with old classes.

The format of a text prompt form classes is “a color pho-
tograph of class 1, class 2, ..., and class m”. The Text-to-
Image model uses these prompts to generate images Xt′ at
step t, containing only seen classes. The pseudo-label Lt−1′

is obtained fromM t−1, and the corresponding one-hot label
is Y t−1′. These generated images and pseudo-labels assist
the model in retaining learned knowledge during continual
learning.

Knowledge Preservation by the Content Adaption
Loss
As mentioned before, there are usually two methods:
pseudo-label and knowledge distillation. The former refers
to obtaining pseudo-labels for these generated images by the
modelM t−1 in step t−1, and then using these pseudo-labels
to supervise the training of M t, which is more applicable to
the data with the same distribution. The latter refers to M t

learning the prediction distribution of M t−1 generated in
these heuristic samples, and it is more applicable to the data
with different distributions. Unlike them, we design the con-
tent adaption loss to solve the problem no matter whether the
distribution between the generated and original images are
the same. It will construct the distillation and cross-entropy
loss weights automatically for each heuristic image based on
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the similarity between the old and heuristic data.
Specifically, we use intermediate features to evaluate the

similarity between data. For each seen class, we compute a
feature prototype Pc. To obtain the prototype Pc of the new
class c at step t, we calculate an average on the features of
all images belonging to Dt as follows:

Pc =

∑
(Xt,Lt)∈Dt

∑HW
i f t(Xt)1Lt=c∑

(Xt,Lt)∈Dt

∑HW
i 1Lt=c

(1)

The cumulative prototypes of all classes from task 1 to
task t are computed at the end of task t. In incremental step
t, for each generated imageXt′, we first compute its pseudo-
label Lt′ using M t−1. Then, for each class c in the pseudo-
label, we calculate the class features Fc:

Fc =

∑HW
i f t−1(Xt′)1Lt−1′=c∑HW

i 1Lt−1′=c

(2)

Then, we calculate the cosine similarity between the fea-
tures Fc and the feature prototypes Pc retained by the orig-
inal data. The similarity of each class is computed by:

sc =
Pc · Fc

‖Pc‖‖Fc‖
(3)

After that, the similarity of the whole generated image to
the original data is defined:

sXt′ =

∑
c∈Lt−1′ sc∑
c∈Lt−1′ 1

(4)

This similarity is the content similarity of each image to
the original data. The greater the similarity, the more similar
the image is to the distribution of seen data, and the greater
weight is applied to the pseudo-label to retain the old knowl-
edge. On the other hand, a smaller similarity indicates that
the image is less similar to the distribution of seen data, then
a greater weight is applied to the distillation for retaining the
old knowledge.

Thus, the content adaption loss is formulated as:

LCTA =
∑

c∈C1:t−1

((sXt′ − 1)M t−1(Xt′)c log(Z
t
c
′
)

− sXt′Y t−1
c

′
log(Zt

c
′
)) (5)

whereM t−1(Xt′)c is the c−th channel of the predictions of
M t−1, Y t−1′ is the one-hot label of Xt′ output by M t−1,
and Zt

c
′
=M t(Xt′).

Pseudo-Labels for Added Data
In CSS, the background shift problem, where the pixels of
the previous classes are labeled as the background in the cur-
rent step, causes the old classes to be overwritten quickly. To
solve this problem, the previous model trained at step t − 1
is employed to generate the pseudo-label Ỹ t−1, which con-
tains the labels of all seen classes. It is combined with the la-
bel Y t of the current step to generate a new pseudo-label Ỹ t,

which includes the label of the current class and the pseudo-
label of all seen classes. The one-hot pseudo-label of the
pixel i for class c at step t is formalized as:

Ỹ t
i,c =


Y t
i,c, if Y t

i,cb
6= 1

Ỹ t−1
i,c , if Y t

i,cb
= 1

0, otherwise
(6)

where cb is the background, and Y t
i,c is the one-hot ground

truth of the pixel i for class c at step t.
And, the pseudo-label Ỹ t−1 is used as a label for the

added data to compute Lce.

Knowledge Distillation Loss Based on Wrong
Labels
Knowledge distillation at the prediction level contributes to
the retention of the prior classes. The knowledge distillation
loss is formulated as:

Lkd = − 1

HW

HW∑
i

∑
c∈C1:t−1

Zt−1
i,c log(Zt

i,c) (7)

However, we find that the model from step t − 1 recog-
nizes pixels belonging to the new classes added at the current
step as previous objects (non-background), which leads to
performance degradation of the new model on these classes.
Therefore, we propose the knowledge distillation based on
wrong labels, which generates higher weights for those pix-
els that are misclassified to induce the model to better protect
these classes at the current step.

First, the weight of the old class co ∈ C1:t−1 is:

wco =

∑HW
i

∑
c∈Ct 1Ỹ t−1

i,co
=1&Y t

i,c=1&co 6=cb∑HW
i

∑
c∈Ct 1Y t

i,c=1

(8)

where 1Ỹ t−1
i,co

=1&Y t
i,c=1&co 6=cb

denotes negative samples be-
longing to class c, i.e., the label is class c, but the predicted
value by the old model is co (non-background). We define
wco = 0 if class co is the background.

Subsequently, The normalized weight ŵco of class co is
formulated as:

ŵco =
ewco∑C
c=1 e

wco

(9)

Thus, the knowledge distillation based on wrong labels
Lwl−kd is formulated as:

Lwl−kd = − 1

HW

HW∑
i

∑
co∈C1:t−1

ŵcoZ
t−1
i,co

log(Zt
i,co) (10)

Notice the difference between our Lwl−kd and CSW-KD
(Phan et al. 2022), which uses prototypes between classes to
re-weight them. In contrast, we use wrong labels of the old
model to re-weight each class and do not use the prototypes.
Therefore, they are two orthogonal techniques.

Finally, the combined loss is formulated as:

L = Lce + λ1LCTA + λ2Lwl−kd (11)

where λ1 and λ2 are weighting factors.
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Method 19-1 (2 tasks) 15-5 (2 tasks) 15-1s (6 tasks)
old new all avg old new all avg old new all avg

ILT 67.75 10.88 65.05 71.23 67.08 39.23 60.45 70.37 8.75 7.99 8.56 40.16
MiB 70.57 22.82 68.30 72.95 75.30 48.68 68.96 75.07 39.47 14.50 33.53 54.44
SDR 68.52 23.29 66.37 71.48 75.21 46.72 68.64 74.32 43.08 19.31 37.42 54.52

PLOP 75.50 30.22 73.35 75.43 75.44 49.65 69.30 74.82 63.41 26.76 54.68 66.96
RECALL 67.90 53.50 68.40 - 66.60 50.90 64.00 - 65.70 47.80 62.70 -

REMINDER 76.48 32.34 74.38 76.22 76.11 50.74 70.07 75.36 68.30 27.23 58.52 68.27
RICL 76.48 35.36 74.52 76.35 78.80 52.00 72.40 76.65 70.60 27.40 59.40 69.12

TIKP (Ours) 77.40 40.41 75.64 76.82 78.81 55.50 73.26 78.46 73.77 42.31 66.28 71.94

Table 1: mIoU for different continual learning settings on the dataset Pascal VOC 2012. Herein, best results are marked in
boldface, and second best results are underlined.

Experiments
Experimental Setup
Datasets. We validate our method on three benchmark
datasets: Pascal VOC 2012 (Everingham et al. 2010),
Cityscapes (Cordts et al. 2016) and ADE20k (Zhou et al.
2017). The Pascal VOC 2012 dataset contains 20 object
classes and one background. Its training and validation sets
include 10,582 and 1,449 images, respectively. The ADE20k
dataset contains 150 objects with 20,210 training images and
2,000 test images. The Cityscapes dataset contains 2,975
training images, 500 validation images and 1,525 test im-
ages. There are 19 classes from 21 cities.

Experimental Setting. Initially, MiB (Cermelli et al.
2020) sets two different experimental settings, namely dis-
joint and overlapped. Previous works (Douillard et al. 2021;
Phan et al. 2022) mainly report their results in the over-
lapped setting, as the latter is more realistic and challeng-
ing. Therefore, we likewise evaluate the performance of the
model in the overlapped setting. For the Pascal VOC 2012
dataset, we perform experiments in six settings, including
adding 1 class after training 19 classes (19-1), adding 5
classes after training 15 classes (15-5), adding 5 classes se-
quentially after training 15 classes (15-1s), and more chal-
lenging settings of 10-10, 10-5s, and 10-1s. For the ADE20k
dataset, we perform experiments in four settings, which are
adding 50 classes after training 100 classes (100-50), adding
50 classes each time after training 50 classes (50-50s), and
adding 10 classes each time sequentially after training 100
classes (100-10s). For the Cityscapes dataset, we follow the
approach of (Douillard et al. 2021) and treat the training data
for each city as a domain. We evaluate our method in three
settings: adding 5 domains each time after training 11 do-
mains (11-5), adding 5 domains each time sequentially after
training 11 domains (11-1s), and adding one domain at a
time (1-1s).

Metrics. For semantic segmentation, the mean Intersec-
tion over Union (mIoU) metric is frequently used to mea-
sure the performance of the model. In CSS, we report four
different mIoUs. First, the mIoU of all initial classes is used
to indicate the ability of the model to retain the old knowl-
edge. Second, the mIoU of all incremental classes is used
to indicate the ability of the model to learn the new knowl-
edge. Then, the mIoU of all classes (all) shows the combina-

tion performance of the model. Finally, the average value of
mIoU (avg) evaluates the performance of the model through-
out the continual learning process.

Implementation Details. For all experiments, as in pre-
vious work, we use Deeplabv3 (Chen et al. 2017) as the seg-
mentation network with ResNet-101 (He et al. 2016) as the
backbone, which is pre-trained on ImageNet (Deng et al.
2009). The feature distillation is used as PLOP (Douillard
et al. 2021). For the Pascal VOC 2012 and ADE20k datasets,
the model is trained with a crop size of 512×512 and a
batch size of 12. The model is trained for 30 epochs on Pas-
cal VOC 2012 and 60 epochs on ADE20k, respectively. For
Cityscapes, the model is trained for 50 epochs with a crop
size of 800×800. Empirically, λ1 is set to 1 and λ2 is set
to 10 in experiments. We use the stochastic gradient descent
(SGD) optimizer, where the base learning rate is 0.001 with
a weight decay of 0.0001. We use the Text-to-Image model
to generate 100 images for each class for the Pascal VOC
2012, 50 images for each class for ADE20k, and 50 images
for each class for Cityscapes via text prompts.

Quantitative Evaluation
We compare the experimental results of TIKP with state-of-
the-art methods: ILT (Michieli and Zanuttigh 2019), MiB
(Cermelli et al. 2020), SDR (Michieli and Zanuttigh 2021a),
PLOP (Douillard et al. 2021), RECALL (Maracani et al.
2021), REMINDER (Phan et al. 2022) and RICL (Zhang
et al. 2022).

For the Pascal VOC 2012 dataset, Tab. 1 shows the re-
sults for the 19-1 (2 tasks), 15-5 (2 tasks) and 15-1s (6 tasks)
settings. In the 19-1 setting, REMINDER and RCIL obtain
promising results for all classes (74.38% and 74.52%, re-
spectively), and our method obtains a significant improve-
ment on the new classes (+5.05%) compared with the latter.
For the 15-5 setup, adding 5 classes in one incremental step
causes the model to severely forget the old classes. Com-
pared with the state-of-the-art method, our method improves
the mIoU on both new and all classes (+3.50% and +0.86%,
respectively). For the longer continual learning process (15-
1s), there is a significant performance degradation for each
method, especially for the newly added class. In contrast,
TIKP achieves a larger improvement (+14.91%) in the new
classes and retains the old knowledge well (73.77%), thus
improving the overall performance (all). In addition, Tab. 2
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Method 10-10 (2 tasks) 10-5s (3 tasks) 10-1s (11 tasks)
old new all avg old new all avg old new all avg

ILT 70.82 63.52 67.34 73.94 55.59 47.67 51.82 66.45 16.98 7.27 3.77 5.60
MiB 70.51 63.73 67.28 73.91 56.99 51.47 54.36 68.28 20.02 20.11 20.06 39.14
SDR 70.60 63.99 67.45 74.00 56.96 51.41 54.32 68.75 32.42 17.20 25.17 42.86

PLOP 73.82 63.55 68.93 74.81 58.58 53.66 56.24 69.89 44.95 15.43 30.89 44.77
RECALL 65.00 58.40 63.10 - 60.80 52.90 58.40 - 59.50 46.70 54.80 -

RICL 73.98 65.34 69.87 75.22 61.11 55.74 58.55 71.36 55.44 15.03 36.20 47.37
TIKP (Ours) 75.12 65.61 70.59 75.60 69.32 57.91 63.89 72.66 69.71 43.48 57.22 67.28

Table 2: mIoU for different continual learning settings on the dataset Pascal VOC 2012.

Method 100-50 (2 tasks) 50-50s (3 tasks) 100-10s (6 tasks)
old new all avg old new all avg old new all avg

ILT 18.29 14.40 17.00 29.42 3.53 12.85 9.70 30.12 0.11 3.06 1.09 12.56
MiB 40.52 17.17 32.79 37.31 45.57 21.01 29.31 38.98 38.21 11.12 29.24 35.12
SDR 40.52 17.17 32.79 37.31 45.66 18.76 27.85 34.25 37.26 12.13 28.94 34.48

PLOP 41.76 14.52 32.74 37.73 47.33 20.27 29.41 38.75 38.59 14.21 30.52 34.48
REMINDER 41.55 19.16 34.14 38.43 47.11 20.35 29.39 39.26 38.96 21.28 33.11 36.97

RCIL 42.30 18.80 34.50 38.63 48.30 24.40 32.50 40.26 39.30 17.50 32.10 37.47
TIKP (Ours) 42.17 20.21 34.90 38.90 48.75 25.86 33.56 40.84 40.96 19.56 33.79 38.61

Table 3: mIoU for different continual learning settings on the dataset ADE20k.

Method 100-5s (11 tasks)
old new all avg

ILT 0.08 1.31 0.49 7.83
MiB 36.01 5.66 25.96 32.69
SDR 33.02 10.63 25.61 33.07

PLOP 35.72 12.18 27.93 35.10
REMINDER 36.06 16.38 29.54 36.49

RCIL 38.50 11.50 29.60 36.61
TIKP (Ours) 37.48 17.56 30.88 37.11

Table 4: mIoU for the setting 100-5s on the dataset ADE20k.

shows the results for the 10-10 (2 tasks), 10-5s (3 tasks),
and 10-1s (11 tasks) settings. For more challenging settings,
TIPK achieves the most advanced results. The mIoU of all
classes is improved by +0.72%, +5.34% and +21.02% at 10-
10, 10-5s and 10-1s settings, respectively.

For the ADE20k dataset, Tab. 3 shows the results for the
100-50 (2 tasks), 50-50s (3 tasks), and 100-10s (6 tasks)
settings. For the 100-50 setting, our method improves the
mIoU of all classes (+0.40%), compared with the advanced
method RCIL. For the 50-50s setting, our method obtains
an mIoU of 33.56% for all classes, which is 1.06% higher
than the second-best result. Moreover, For the more difficult
setting of 100-10s, our method preserves the old knowledge
well in the CSS, improving +1.66% on the old classes com-
pared with RCIL and again obtaining a state-of-the-art result
of 33.79% for all classes. Tab. 4 compares the performance
of the model for 11 tasks in the longer setup of 100-5s on
ADE20k. In such settings, the model is highly susceptible
to forgetting the old knowledge because of the high num-
ber of learning steps. As shown in the table, our method
performs better than current top-performing methods on all

Method 11-5 11-1s 1-1s
ILT 59.11 57.48 30.11
MiB 61.58 60.06 42.29

PLOP 63.55 62.17 45.22
RCIL 64.31 63.03 48.90

TIKP (Ours) 65.51 65.06 50.88

Table 5: mIoU for different settings on the dataset
Cityscapes.

classes and gets a mIoU of 30.88%.
The experimental results under different incremental set-

tings on Cityscapes are presented in Tab. 5. Unlike other
datasets, we treat each city as an increment rather than a
class. As a result, existing methods perform better on this
dataset. However, we observe an inevitable performance
degradation as the number of training steps increases, which
is due to the differences in the data distribution between dif-
ferent cities. Our proposed method, TIKP, outperforms the
existing methods on this dataset, achieving the best results.
These results demonstrate the effectiveness of our frame-
work in preserving and utilizing the old knowledge to mit-
igate catastrophic forgetting even in a more complex and
challenging setting such as incremental city-wise learning.

Ablation Study
We evaluate the impact of the proposed components and the
experimental results are shown in Tab. 6. We use DeepLabv3
trained with the cross-entropy loss (Lce) and knowledge dis-
tillation loss (Lkd) as the baseline (BL). First, we replace
Lkd with Lwl−kd, and the performances of both old and
new classes are improved by +4.44% and +3.34%, respec-
tively. After that, we add the Text-to-Image strategy (TI) to
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Images MiB PLOP TIKP GT

Figure 3: Visualization results of MiB, PLOP and TIKP for some test images on the Pascal VOC 2012 in 15-1s setting. TIKP
has less confusion between the background and foreground classes, compared with PLOP and MiB. GT is the hand-annotated
labels.

BL Lwl−kd TI LCTA old new all
X 63.41 26.76 54.68

X 67.85 30.10 58.86
X X 70.55 41.81 63.71
X X X 71.67 50.29 66.58

Table 6: Ablation study on the 15-1s setting of the Pascal
VOC 2012 dataset. TI means adding the Generated Image in
incremental training. BL means the baseline.

generate heuristic images for the old classes, and the old
knowledge on the heuristic images is transferred by both the
pseudo label and knowledge distillation strategies. With the
help of this strategy, the performance is greatly improved
(63.71%). Finally, we add the content adaption loss (LCTA)
to the framework. The mIoU on the old classes is further im-
proved (+1.12%) and the best mIoU (66.58%) for all classes
is obtained. These experiments demonstrate the effective-
ness of the proposed components.

Qualitative Evaluation
Fig. 3 illustrates the predictions of MiB, PLOP, and TIKP
on the 15-1s setting of Pascal VOC 2012. Both MiB and
PLOP have serious errors between foreground classes and
the background, as shown in rows 1 and 2. Row 3 of the
figure reveals the problem of confusion between foreground
classes due to the forgetting during the incremental learning.
In contrast, TIKP greatly alleviates this problem by transfer-
ring the old knowledge of the heuristic images.

In Fig. 4, we present a partial comparison of the heuris-
tic with the original images. Although the generated heuris-
tic image contains the same classes as the prompt, there
are inconsistencies in terms of image style when compared
with the original image. Therefore, we introduce the content

Original 
images

Heuristic 
images

Figure 4: Comparisons of the heuristic images with the orig-
inal images.

adaption loss, which is designed to tackle this problem.

Conclusions
In this paper, we addressed the catastrophic forgetting in
CSS by introducing the Text-to-Image Knowledge Preserva-
tion (TIKP) framework. TIKP leverages text prompts to re-
tain old knowledge. These prompts are cost-effective as they
consist of text and can be easily maintained across steps. The
images generated from the prompts provide valuable infor-
mation for preserving the old knowledge. Moreover, to mit-
igate performance degradation caused by different data dis-
tributions, we put forward a content adaption loss to mea-
sure similarity with the original data. Additionally, we pro-
posed a knowledge distillation loss based on wrong labels
to balance learning between old and new classes. Extensive
experiments on benchmark datasets demonstrate that TIKP
achieves state-of-the-art performance.
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